MAT 533 S25 PROBLEM SET 4

- **1.** Let \mathscr{H} be a complex Hilbert space.
 - **a.** Prove the Polarization Identity: for every $x, y \in \mathcal{H}$,

$$\langle x, y \rangle = \frac{1}{4} \sum_{m=0}^{3} ||x + i^m y||^2.$$

- **b.** Show that if \mathscr{H}' is another complex Hilbert space then a linear map $T : \mathscr{H} \to \mathscr{H}'$ is unitary if and only if T is isometric and surjective.
- **2.** (Folland, Exercise 57) Let \mathscr{H} be a complex Hilbert space and let $T : \mathscr{H} \to \mathscr{H}$ be a continuous linear map.
 - **a.** Show that there is a unique continuous map $T^* : \mathscr{H} \to \mathscr{H}$ such that $\langle T^*x, y \rangle = \langle x, Ty \rangle$ for all $x, y \in \mathscr{H}$.
 - **b.** Show that $||T^*|| = ||T||$, $||T^*T|| = ||T||^2$, $(aS + bT)^* = \bar{a}S^* + \bar{b}T^*$, $(ST)^* = T^*S^*$ and $T^{**} = T$.
 - **c.** Show that $T(\mathscr{H})^{\perp} = \operatorname{Kernel}(T^*)$ and $\operatorname{Kernel}(T)^{\perp}$ is the closure of $T(\mathscr{H})$.
 - **d.** Show that T is unitary if and only if T is invertible and $T^{-1} = T^*$.
- 3. (Folland, Exercise 58) Let *M* be a closed subspace of a Hilbert space *H*, and let P : *H* → *H* be the map sending x ∈ *H* to the unique element Px ∈ *M* such that x Px ∈ *M*[⊥]. (The map P is called the *orthogonal projection onto M*.)
 - **a.** Show that P is continuous, that $P = P^* = P^2$ and that $\text{Kernel}(P) = \mathcal{M}^{\perp}$.
 - **b.** Conversely, suppose $T : \mathscr{H} \to \mathscr{H}$ is a continuous linear map that satisfies $T = T^* = T^2$. Show that $T(\mathscr{H})$ is closed and that T is the orthogonal projection onto $T(\mathscr{H})$.
 - **c.** If $\{u_{\alpha}\}_{\alpha \in A}$ is an orthonormal basis, show that $Px = \sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha}$.
- **4.** (Folland, Exercise 59) Show that every closed convex subset in a Hilbert space has an element of minimal norm.
- **5.** (Folland, Exercise 67) Let \mathscr{H} be a complex Hilbert space and let $U : \mathscr{H} \to \mathscr{H}$ be a unitary operator. Let $\mathscr{M} := \{x \in \mathscr{H} ; Ux = x\}$, let $P : \mathscr{H} \to \mathscr{H}$ denote the orthogonal projection onto \mathscr{M} , and let

$$S_n := \frac{1}{n} \sum_{j=0}^{n-1} U^j.$$

Show that $S_n \to P$ in the strong operator topology. (Hint: If $x \in \mathcal{M}$ then $S_n x = x$, and if x = y - Uy compute $S_n x$ and show that $S_n x \to 0$. Use Exercise 2d to show that $\mathcal{M} = \{x \in \mathcal{H} ; U^*x = x\}$, and then apply Exercise 2c with T = I - U.)