MAT 533 S25 PROBLEM SET 3

- 1. (Folland, Exercise 5.22) Let \mathscr{X} and \mathscr{Y} be normed vector spaces and let $T \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$. a. Define $T^{\dagger} : \mathscr{Y}^* \to \mathscr{X}^*$ by $T^{\dagger} f := f \circ T$. Then $T^{\dagger} \in \mathscr{L}(\mathscr{Y}^*, \mathscr{X}^*)$ and $||T^{\dagger}|| = ||T||$.
 - **b.** Show that $(T^{\dagger})^{\dagger}(\hat{x}) = Tx$ for all $x \in \mathscr{X}$.
 - c. Show that T^{\dagger} is injective if and only if the image of T is dense in \mathscr{Y} .
 - **d.** Show that if the image of T^{\dagger} is dense in \mathscr{X}^* then T is injective, and that conversely, if \mathscr{X} is reflexive and T is injective then T^{\dagger} has dense image in \mathscr{X}^* .
- 2. (Folland, Exercise 5.39) Let X, Y and Z be Banach spaces and let B : X × Y → Z be a bilinear map that is separately continuous, i.e., for each x ∈ X and each y ∈ Y the linear maps B(x, ·) : Y → Z and B(·, y) : X → Z are continuous. Show that B is continuous. (Hint: Reduce the problem to proving that ||B(x, y)|| ≤ C||x|| · ||y|| for some C > 0.)
- **3.** (Folland, Exercise 5.44) Show that if \mathscr{X} is a first countable topological vector space such that every Cauchy sequence converges then every Cauchy net converges.
- **4.** (Folland, Exercise 5.49) Let \mathscr{X} be an infinite-dimensional Banach space.
 - **a.** Show that every non-empty weakl-open set in \mathscr{X} and every non-empty weak*-open set in \mathscr{X}^* is unbounded.
 - **b.** Show that every bounded subset of \mathscr{X} is nowhere-dense in the weak topology, and that every bounded subset of \mathscr{X}^* is nowhere-dense in the weak* topology.
 - c. Show that \mathscr{X} is meager in itself with respect to the weak topology, and that \mathscr{X}^* is meager in itself with respect to the weak* topology.
 - **d.** Show that the weak* topology on \mathscr{X}^* is not defined by any translation-invariant metric. (You may use Exercise 5.48**d**, which you solved last semester.)