MAT 533 S25 PROBLEM SET 10

1. (Folland, Exercise 8.8) Let $f \in L^p(\mathbb{R})$. A function $h \in L^p(\mathbb{R})$ is called the L^p -derivative of f if

$$\lim_{y \to 0} \left\| \frac{\tau_{-y}f - f}{y} - h \right\|_p = 0.$$

For f in $L^p(\mathbb{R}^n)$ the L^p -partial derivatives are similarly defined.

Fix $p \in [1, \infty]$ and let $q = \frac{p}{p-1}$ denote its conjugate exponent. Show that if $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$ and the L^p partial derivative $\partial_j f$ exists then $\partial_j (f * g)$ exists in the ordinary sense, and equals $(\partial_j f) * g$.

- **2.** (Folland, Exercise 8.15) Let $\operatorname{sinc}(x) := \frac{\sin(\pi x)}{\pi x}$ for $x \neq 0$ and $\operatorname{sinc}(0) := 1$. **a.** For a > 0 show that $\hat{\chi}_{[-a,a]}(x) = \check{\chi}_{[-a,a]}(x) = 2a\operatorname{sinc}(2ax)$.
 - **b.** Show that

$$\mathscr{H}_a := \left\{ f \in L^2(\mathbb{R}) \; ; \; \hat{f}(\xi) = 0 \text{ for almost every } \xi \in [-a, a]^c \right\}$$

is a Hilbert subspace of $L^2(\mathbb{R})$ and that $\{\sqrt{2a}\operatorname{sinc}(2ax-k) ; k \in \mathbb{Z}\}$ is an orthonormal basis for \mathscr{H}_a .

c. Show that if $f \in \mathscr{H}_a$ then there exists $f_o \in \mathscr{C}_0(\mathbb{R})$ such that $f = f_o$ a.e., and

$$f_o(x) = \sum_{k \in \mathbb{Z}} f_o(k/(2a)) \operatorname{sinc}(2ax),$$

with the latter series convergent both in $L^2(\mathbb{R})$ and uniformly on \mathbb{R} .

- **3.** (Folland, Exercise 8.18) Let $f \in L^2(\mathbb{R})$.
 - **a.** Show that the L^2 derivative f' (in the sense of Exercise 1) exists if and only if $\xi \mapsto \xi \hat{f}(\xi)$ is in L^2 , and in this case $\widehat{(f')}(\xi) 2\pi\sqrt{-1}\xi \hat{f}(\xi)$.
 - **b.** Show that if the L^2 derivative f' exists then

$$\frac{1}{2} \int |f(x)|^2 dx \le \left(\int |xf(x)|^2 dx \right)^{1/2} \left(\int |f'(x)|^2 dx \right)^{1/2}$$

(Hint: Note that $\int |f|^2 = \int \left(\frac{d}{dx}(x)\right) |f|^2$, and if the integrals on the right hand side are finite then one can integrate by parts.)

c. (Heisenberg's Inequality) For any $x_o, \xi_o \in \mathbb{R}$

$$\int (x - x_o)^2 |f(x)|^2 dx \int (\xi - \xi_o)^2 |\hat{f}(\xi)|^2 d\xi \ge \frac{||f||_2^2}{16\pi^2}$$

(Hint: Use the function $g(x) = e^{-2\pi\sqrt{-1}\xi_o x} f(x + x_o)$ to reduce to the case $x_o = \xi_o = 0$.)

4. (Folland, Exercise 8.30) Suppose that $f \in L^1(\mathbb{R}^n)$, that f is continuous at 0, and that $\hat{f} \ge 0$. Show that $\hat{f} \in L^1(\mathbb{R}^n)$