MAT 533 S25 PROBLEM SET 1

- **1.** (Folland, Exercise 4.46.) Prove the locally compact version of the Tietze Extension Theorem.
- **2.** If X is Hausdorff and Y is locally compact then a continuous map $\phi : X \to Y$ is called *proper* if $\phi^{-1}(K)$ is a compact subset of X whenever K is a compact subset of Y.
 - **a.** Show that if X is Hausdorff, Y is locally compact and there is a proper map $\phi : X \to Y$ then X is locally compact.
 - **b.** Show that if X and Y are locally compact Hausdorff spaces then every continuous proper map $\phi : X \to Y$ has closed image.
 - c. (Folland, Exercise 4.51) Show that a continuous map $\phi \in X \to Y$ is proper if and only if the extension $\phi^* : X^* \to Y^*$ defined by setting $\phi^*(\infty_X) := \infty_Y$ is continuous.
- 3. (Folland, Exercise 4.57) An open cover 𝔄 of a topological space X is called locally finite if each x ∈ X has a neighborhood that intersects only finitely many members of 𝔄. If 𝔄 and 𝒛 are open covers of X then 𝒴 is said to be a refinement of 𝔄 if for each V ∈ 𝒴 there exists U ∈ 𝔄 such that V ⊂ U. X is called paracompact if every open cover has a locally finite refinement.
 - **a.** Show that if X is a σ -compact locally finite Hausdorff space then X is paracompact. In fact, every open cover \mathscr{U} has locally finite refinements $\{V_{\alpha}\}, \{W_{\alpha}\}$ such that \overline{V}_{α} is compact and $\overline{W}_{\alpha} \subset V_{\alpha}$ for all α . (See Folland for a guiding hint.)
 - **b.** Show that if X is a σ -compact locally finite Hausdorff space then for every open cover \mathscr{U} of X there is a partition of unity subordinate to \mathscr{U} and consisting of compactly supported functions.
- 4. Let $B_r := \{x \in \mathbb{R}^n ; |x| < r\}$, let $\{\alpha_j\}_{j \in \mathbb{N}} \subset (0, 1]$ and let $0 < C_1 < C_2 < \dots$ Consider the set of functions

$$\mathcal{H} := \left\{ f : \mathbb{R}^n \to \mathbb{C} ; ||f||_{B_j, \alpha_j} < C_j \text{ for all } j \ge 1 \right\},\$$

where

$$||f||_{K,\alpha} := \sup_{x \in K} |f(x)| + \sup_{x,y \in K, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

- **a.** Is \mathcal{H} a vector space?
- **b.** Is \mathcal{H} relatively compact?
- **c.** Is \mathcal{H} compact?
- In all cases, justify your answer.