MAT513 Homework 12

Due Wednesday, May 3

1. Let $f(x)=x^{2}$ on $\left[\frac{1}{2}, 3\right]$.
(a) Let \mathcal{P} be the partition $\left\{\frac{1}{2}, 1,2,3\right\}$ and compute $L(f, \mathcal{P})$ and $U(f, \mathcal{P})$, where L and U are the lower and upper sums with respect to the partition.
(b) Let $\mathcal{Q}=\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3\right\}$ and compute $L(f, \mathcal{Q})$ and $U(f, \mathcal{Q})$.
2. Let f be continuous on $[a, b]$ and suppose that $f(x) \geq 0$ for all $x \in[a, b]$. Prove that if $L(f)=0$, then $f(x)=0$ for all $x \in[a, b]$.

Hint: Argue by contradiction.
3. Prove the Mean Value Theorem for Integrals: If f is continuous on $[a, b]$, then there exists $c \in(a, b)$ for which

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(This value $f(c)$ is called the average value of \boldsymbol{f} on the interval $[a, b]$.)
Hint: Use the classical mean value theorem to an appropriate function that is differentiable.
4. Assume that functions $u(x)$ and $v(x)$ have continuous derivatives on $[a, b]$. Derive the formula for integration by parts:

$$
\int_{a}^{b} u(t) v^{\prime}(t) d t=(u(b) v(b)-u(a) v(a))-\int_{a}^{b} v(t) u^{\prime}(t) d t
$$

5. Write an explanation of the intuitive heuristic behind the second part of the Fundamental Theorem of Calculus: Let $G(x)$ be the function that measures the area under the graph of g from a to x. Then the derivative of G at x is the height $y=g(x)$, since the approximate change from x to $x+h$ is essentially the area of the rectangle with base h and height y.

You might want to include a relevant picture, and relate this to the explicit statement of the relevant part of the FTC. Give your explanation so that it can be understood by a beginning calculus student.

