MAT513 Homework 10

Due Wednesday, April 19

- **1.** Suppose that $f: [a,b] \rightarrow [a,b]$ is continuous. Prove that f has a **fixed point**; that is, that there is a $c \in [a,b]$ so that f(c) = c.
- 2. Assume that the temperature T(x) of a point x on the equator of the Earth is a continuous function. As a corollary to the Intermediate Value Theorem, at every moment there is a point x on the equator with the property that its antipodal point (the point -x which is immediately opposite it on a line through the center of the Earth) has exactly the same temperature, that is T(x) = T(-x).

Write a paragraph or two explaining this in a way that it can be understood by a high school student.

- **3.** Suppose f is differentiable on an interval A. Prove that if $f'(x) \neq 0$ on A, then f must be one-to-one on A. Give an example that shows the converse does not always hold.
- **4.** Let $f: [a,b] \to \mathbb{R}$ be a one-to-one function, and let B = f([a,b]). Then there is an inverse function $f^{-1}: B \to [a,b]$ given by $f^{-1}(y) = x$ where f(x) = y. You may assume that if f is a continuous function, then so is f^{-1} .

Assume *f* is differentiable on [a,b] with $f'(x) \neq 0$ for every $x \in [a,b]$. Show that f^{-1} is differentiable on *B* with $(f^{-1})'(y) = 1/f'(x)$ where y = f(x).

5. By analogy with the definition of uniform continuity, let's say that a function $f: A \to \mathbb{R}$ is **uniformly differentiable** on *A* if for every $\varepsilon > 0$ there exists a $\delta > 0$ so that

$$\left|\frac{f(x) - f(y)}{x - y} - f'(y)\right| < \varepsilon \quad \text{whenever} \quad 0 < |x - y| < \delta \text{ with } x, y \in A$$

- (a) Is $f(x) = x^2$ uniformly differentiable on \mathbb{R} ? What about $g(x) = x^3$?
- (b) Show that if a function f is uniformly differentiable on an interval A, then the derivative of f must be continuous on A.
- 6. Let $h: [0,3] \to \mathbb{R}$ be differentiable with h(0) = 1, h(1) = 2, and h(3) = 2.
 - (a) Show there must be a point c with h'(c) = 1/3.
 - (b) Show there is another point b with h'(b) = 1/4.