MAT513 Homework 10

Due Wednesday, April 19

1. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous. Prove that f has a fixed point; that is, that there is a $c \in[a, b]$ so that $f(c)=c$.
2. Assume that the temperature $T(x)$ of a point x on the equator of the Earth is a continuous function. As a corollary to the Intermediate Value Theorem, at every moment there is a point x on the equator with the property that its antipodal point (the point $-x$ which is immediately opposite it on a line through the center of the Earth) has exactly the same tempertature, that is $T(x)=T(-x)$.

Write a paragraph or two explaining this in a way that it can be understood by a high school student.
3. Suppose f is differentiable on an interval A. Prove that if $f^{\prime}(x) \neq 0$ on A, then f must be one-to-one on A. Give an example that shows the converse does not always hold.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a one-to-one function, and let $B=f([a, b])$. Then there is an inverse function $f^{-1}: B \rightarrow[a, b]$ given by $f^{-1}(y)=x$ where $f(x)=y$. You may assume that if f is a continuous function, then so is f^{-1}.

Assume f is differentiable on $[a, b]$ with $f^{\prime}(x) \neq 0$ for every $x \in[a, b]$. Show that f^{-1} is differentiable on B with $\left(f^{-1}\right)^{\prime}(y)=1 / f^{\prime}(x)$ where $y=f(x)$.
5. By analogy with the definition of uniform continuity, let's say that a function $f: A \rightarrow \mathbb{R}$ is uniformly differentiable on A if for every $\varepsilon>0$ there exists a $\delta>0$ so that

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(y)\right|<\varepsilon \quad \text { whenever } \quad 0<|x-y|<\delta \text { with } x, y \in A .
$$

(a) Is $f(x)=x^{2}$ uniformly differentiable on \mathbb{R} ? What about $g(x)=x^{3}$?
(b) Show that if a function f is uniformly differentiable on an interval A, then the derivative of f must be continuous on A.
6. Let $h:[0,3] \rightarrow \mathbb{R}$ be differentiable with $h(0)=1, h(1)=2$, and $h(3)=2$.
(a) Show there must be a point c with $h^{\prime}(c)=1 / 3$.
(b) Show there is another point b with $h^{\prime}(b)=1 / 4$.

