MAT513 Homework 7

Due Wednesday, March 29

- **1.** Let $A = \left\{ (-1)^n + \frac{1}{n+1} \mid n \in \mathbb{N} \right\}$. Answer the following questions about *A*, justifying your answers fully.
 - (a) Is A an open set?
 - (**b**) Is *A* a closed set?
 - (c) Does A contain any isolated points? (If so, identify them.)
 - (d) What are the limit points of *A*?
 - (e) What is \overline{A} ?
- **2.** In class we showed that if $K \subseteq \mathbb{R}$ is compact, then it must be closed and bounded. Prove the converse: If $K \subseteq \mathbb{R}$ is closed and bounded, then it is compact.
- **3.** A notion dual to the closure of a set is the interior of a set. Specifically, given a set *E*, the **interior of** *E* is denoted by \mathring{E} and is defined as

 $\mathring{E} = \{ x \in E \mid \text{there exists a neighborhood } V_{\varepsilon}(x) \subseteq E \}.$

There is a symmetry between many properties regarding closure and the interior of sets.

- (a) Recall that we have showed that \overline{E} is the smallest closed set containing *E*. Show that a set *E* is closed if and only if $E = \overline{E}$.
- (b) Show that \mathring{U} is the largest open set contained in U.
- (c) Show that a set U is open if and only if $U = \mathring{U}$.
- (d) Recall that E^c denotes the complement of E, that is, $E^c = \mathbb{R} \setminus E$. Show that $(\overline{E})^c$ is the interior of (E^c) . Also show that $(\mathring{E})^c$ is the closure of E^c .
- **4.** Decide whether each of the following statements is true or false. Prove the true ones, and give a counterexample for the false ones.
 - (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - **(b)** $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 - (c) The interior of $A \cup B$ is $\mathring{A} \cup \mathring{B}$.
 - (d) The interior of $A \cap B$ is $\mathring{A} \cap \mathring{B}$.
- **5.** Below are several statements about compact sets; some are true and some are not. Prove the true ones, and give a counterexample for the false ones.

(a) Let K_n be a compact set for each $n \in \mathbb{N}$. Then $K = \bigcup_{n=1}^{\infty} K_n$ must be compact.

- (**b**) Let F_{λ} be a compact set for each $\lambda \in \Lambda$. Then $F = \bigcap_{\lambda \in \Lambda} F_{\lambda}$ must be compact.
- (c) Let A be an arbitrary subset of \mathbb{R} , and let K be compact. Then $A \cap K$ is compact.
- (d) Let *K* be compact and *F* be closed. Then $K \setminus F = \{x \in K \mid x \notin F\}$ is open.