MAT513 Homework 6

Due Wednesday, March 22

1. For each of the following, either give an example of such a sequence, or give an arguement why its existence is impossible.
(a) A sequence that contains no terms equal to 0 or 1 , but has subsequences which converge to each of these.
(b) A monotone sequence that diverges, but has a convergent subsequence.
(c) A sequence that contains subsequences which converge to each point in the infinite set

$$
\left\{\frac{1}{n}: n \in \mathbb{N}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\} .
$$

(d) An unbounded sequence with a convergent subsequence.
(e) A sequence which is bounded but contains no subsequence that converges.
2. A made-up definition: Call a sequence $\left\{a_{n}\right\}$ pseudo-Cauchy if, for every $\varepsilon>0$, there exists a $K_{\varepsilon} \in \mathbb{N}$ such that $\left|a_{n+1}-a_{n}\right|<\varepsilon$ for all $n>K_{\varepsilon}$.

Either prove that all pseudo-Cauchy sequences are also Cauchy (and hence converge), or give an example of a divergent sequence which is pseudo-Cauchy.
3. Call a sequence $\left\{x_{n}\right\}$ contractive if there is some number C with $0<C<1$ so that

$$
\left|x_{n+1}-x_{n}\right|<C\left|x_{n}-x_{n-1}\right| \quad \text { for all } n \in \mathbb{N} .
$$

Show that every contractive sequence is Cauchy.
Hint: it might be useful to use $1+C+C^{2}+\cdots+C^{n}=\left(1-C^{n+1}\right) /(1-C)$.
4. An invented defintion: A series subverges if the sequence of partial sums $\left\{s_{n}\right\}$ has a convergent subsequence. For each of the statements below, decide if it is true or false; justify your answer with either a sketch of a proof or a counter example.
(a) If $\left\{a_{n}\right\}$ is bounded, then $\sum a_{n}$ subverges.
(b) Every convergent series is subvergent.
(c) If $\sum\left|a_{n}\right|$ subverges, then $\sum a_{n}$ also subverges.
(d) If $\sum a_{n}$ subverges, then $\left\{a_{n}\right\}$ has a convergent subsequence.
5. Consider the picture at right below, a "proof without words" of something. What is being proven?
First, write an explanation of what is being demonstrated by this image in a way that can be understood by a student who knows something (not a lot) about infinite series.
Then, discuss whether you think this constitutes a convincing proof. Even if not, is this image helpful? Explain.

You might want to consider the image below, a "standard proof that $65 / 2=63 / 2$ ", as part of your discussion.

(See also Wikipedia: "Missing square puzzle").

Roger B. Nelsen,
 Mathematics Magazine 62 (Dec. 1989), pp.332-333

