MAT513 Homework 5

Due Wednesday, March 1

1. Let $y_1 = 1$ and for each $n \in \mathbb{N}$, let $y_{n+1} = \frac{3y_n + 4}{4}$.

- (a) Show that $y_n < 4$ for all $n \in \mathbb{N}$. *Hint*: use induction.
- (b) Now show that y_1, y_2, y_3, \ldots forms an increasing sequence.
- (c) Conclude that the sequence converges. What is the limit?
- 2. (Cesàro Means) Given a sequence $\{x_n\}$, define a new sequence whose terms are the arithmetic mean of the first *n* terms. That is, let

$$y_n = \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n}$$

- (a) Show that if $\{x_n\}$ converges to a limit *L*, then the sequence of averages $\{y_n\}$ also converges to the same limit.
- (b) Give an example where the sequence of averages $\{y_n\}$ converges but the original sequence $\{x_n\}$ does not.

3. (Calculating square roots) Consider the sequence defined by $x_1 = 2$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$.

- (a) Show that x_n^2 is always greater than 2, and then use this to conclude that $\{x_n\}$ is a decreasing sequence. Then show that $\lim x_n = \sqrt{2}$.
- (b) Modify the sequence in part (a) to obtain a sequence that converges to \sqrt{c} .
- 4. An invented definition:

A sequence $\{a_n\}$ is **quasi-increasing** if for all $\varepsilon > 0$, there exists an $K \in \mathbb{N}$ so that whenever $n > m \ge K$ it follows that $a_n > a_m - \varepsilon$.

- (a) Give an example of a sequence which is quasi-increasing but is not monotone or eventually monotone.
- (b) Give an example of a quasi-increasing sequence that is divergent and not monotone.
- (c) Is there an analogue of the Monotone Convergence Theorem for quasi-increasing sequences? That is, suppose $\{a_n\}$ is bounded and quasi-increasing. Must it also converge? If so prove it; if not, give a counter-example.
- **5.** Prove the Comparison Test for Series: Let $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$.

Use the Monotone Convergence Theorem (a bounded monotone sequence has a limit).