MAT513 Homework 3

Due Wednesday, February 15

1. Explain why the following argument for showing that \mathbb{Q} is uncountable is incorrect.

Assume for contradiction that \mathbb{Q} is countable. Thus, we can write $\mathbb{Q}=\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$. For each $n \in \mathbb{N}$ we find a closed interval I_{n} with distinct endpoints such that $r_{n} \notin I_{n}$ and $I_{n+1} \subset I_{n}$. The nested intervals property implies that $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$ so the infinite intersection contains a rational number r_{m}. However, $r_{m} \notin I_{m}$, a contradiction.
2. Find a countable collection of disjoint open intervals. Can you find an uncountable collection of disjoint open intervals?

Hint: you may use the fact that an infinite subset of a countable set is countable.
3. Let $I=\{x: 0<x<1\}$ be the open unit interval $(0,1)$, and let S be the open unit square, that is, $S=\{(x, y): 0<x<1$ and $0<y<1\}=(0,1) \times(0,1)$.
(a) Find an injective function (that is, a one-to-one function) $f: I \rightarrow S$. This should be very easy: f does not need to be surjective (onto).
(b) Use the fact that every real number x has a decimal expansion to produce an injective function $g: S \rightarrow I$. Is your function g a surjection (onto)?
It might be helpful to remember that every real number which has a "terminating" decimal expansion (such as 0.25) can also be written as an infinite decimal (e.g., $0.2499 \overline{9} \cdots$ or $0.2500 \overline{0} \cdots$).
As a consequence of the Schröder-Bernstein Theorem (which says that if there are injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijective function $h: A \rightarrow B$), this shows that the unit interval and the unit square have the same cardinality.
4. A real number $x \in \mathbb{R}$ is called algebraic if there are integers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ so that

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0
$$

that is, $x \in \mathbb{R}$ is algebraic if it is a root of a polynomial with integer coefficients (note that rational numbers are algebraic, since each is the root of a degree 1 polynomial). Real numbers which are not algebraic are called transcendental numbers.
(a) Show that $\sqrt{2}$ and $\sqrt{3}+\sqrt{2}$ are algebraic.
(b) Fix $n \in \mathbb{N}$ and let A_{n} be set of algebraic numbers which are roots of polynomials of degree n. Show that each A_{n} is a countable set.

Hint: the Fundamental Theorem of Algebra is relevant here; you may assume it.
(c) Prove that the set of algebraic numbers is a countable set.
5. In both parts below, justify your answer fully by establishing an bijection between the set in question and a set of known cardinality.
(a) Let \mathcal{F} be the set consisting of all functions from $\{0,1\}$ to \mathbb{N}. What is the cardinality of \mathcal{F} ?
(b) Let \mathcal{G} be the set consisting of all functions from \mathbb{N} to $\{0,1\}$. What is the cardinality of \mathcal{G} ?
6. * Study but do not submit this problem. Suppose that $A_{1}, A_{2}, A_{3}, \ldots$, are countable sets.
(a) Show that $A_{1} \cup A_{2}$ is countable. More generally, $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ is countable for each $n \in \mathbb{N}$.
(b) Show that $\bigcup_{i=1}^{\infty} A_{i}$ is countable.
(c) Show that $A_{1} \times A_{2}=\left\{\left(a_{1}, a_{2}\right): a_{1} \in A_{1}, a_{2} \in A_{2}\right\}$ is countable. More generally, $A_{1} \times A_{2} \times$ $\cdots \times A_{n}$ is countable for each $n \in \mathbb{N}$.
(d) Is the set $\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in A_{i}, i \in \mathbb{N}\right\}$ countable?

