MAT513 Homework 3

Due Wednesday, February 15

1. Explain why the following argument for showing that \mathbb{Q} is uncountable is incorrect.

Assume for contradiction that \mathbb{Q} is countable. Thus, we can write $\mathbb{Q} = \{r_1, r_2, r_3, ...\}$. For each $n \in \mathbb{N}$ we find a closed interval I_n with distinct endpoints such that $r_n \notin I_n$ and $I_{n+1} \subset I_n$. The nested intervals property implies that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ so the infinite intersection contains a rational number r_m . However, $r_m \notin I_m$, a contradiction.

2. Find a countable collection of disjoint open intervals. Can you find an uncountable collection of disjoint open intervals?

Hint: you may use the fact that an infinite subset of a countable set is countable.

- **3.** Let $I = \{x : 0 < x < 1\}$ be the open unit interval (0,1), and let *S* be the open unit square, that is, $S = \{(x, y) : 0 < x < 1 \text{ and } 0 < y < 1\} = (0, 1) \times (0, 1).$
 - (a) Find an injective function (that is, a one-to-one function) $f: I \to S$. This should be *very* easy: f does not need to be surjective (onto).
 - (b) Use the fact that every real number x has a decimal expansion to produce an injective function g : S → I. Is your function g a surjection (onto)?
 It might be helpful to remember that every real number which has a "terminating" decimal expansion (such as 0.25) can also be written as an infinite decimal (e.g., 0.24999... or 0.25000...).

As a consequence of the Schröder-Bernstein Theorem (which says that if there are injective functions $f : A \to B$ and $g : B \to A$, then there is a bijective function $h : A \to B$), this shows that the unit interval and the unit square have the same cardinality.

4. A real number $x \in \mathbb{R}$ is called **algebraic** if there are integers $a_0, a_1, a_2, \ldots, a_n$ so that

 $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$

that is, $x \in \mathbb{R}$ is algebraic if it is a root of a polynomial with integer coefficients (note that rational numbers are algebraic, since each is the root of a degree 1 polynomial). Real numbers which are not algebraic are called **transcendental** numbers.

- (a) Show that $\sqrt{2}$ and $\sqrt{3} + \sqrt{2}$ are algebraic.
- (b) Fix $n \in \mathbb{N}$ and let A_n be set of algebraic numbers which are roots of polynomials of degree n. Show that each A_n is a countable set.

Hint: the Fundamental Theorem of Algebra is relevant here; you may assume it.

- (c) Prove that the set of algebraic numbers is a countable set.
- **5.** In both parts below, justify your answer fully by establishing an bijection between the set in question and a set of known cardinality.
 - (a) Let \mathcal{F} be the set consisting of all functions from $\{0,1\}$ to \mathbb{N} . What is the cardinality of \mathcal{F} ?
 - (b) Let \mathcal{G} be the set consisting of all functions from \mathbb{N} to $\{0,1\}$. What is the cardinality of \mathcal{G} ?

- 6. * Study but do not submit this problem. Suppose that A_1, A_2, A_3, \ldots , are countable sets.
 - (a) Show that $A_1 \cup A_2$ is countable. More generally, $A_1 \cup A_2 \cup \cdots \cup A_n$ is countable for each $n \in \mathbb{N}$.
 - (**b**) Show that $\bigcup_{i=1}^{\infty} A_i$ is countable.
 - (c) Show that $A_1 \times A_2 = \{(a_1, a_2) : a_1 \in A_1, a_2 \in A_2\}$ is countable. More generally, $A_1 \times A_2 \times \cdots \times A_n$ is countable for each $n \in \mathbb{N}$.
 - (d) Is the set $\{(a_1, a_2, a_3, ...) : a_i \in A_i, i \in \mathbb{N}\}$ countable?