MAT 513 Homework 1

Due Wednesday, February 1

1. Show that in a field \mathbb{F} we cannot divide by zero. In other words, show that there exists no element $x \in \mathbb{F}$ with the property that $x \cdot 0=1$.

Hint: Show that for every $y \in \mathbb{F}$ we have $y \cdot 0=0$. Then argue by contradiction and use the fact that $0 \neq 1$.
2. We saw in class that the set $\mathbb{Z}_{2}=\{0,1\}$ is a field when + and \cdot are computed modulo ${ }^{\dagger} 2$, and we noted that something analogous is true for a set $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ with any prime p (i.e., $p=2,3,5,7,11, \ldots$). Show that the set $\mathbb{Z}_{4}=\{0,1,2,3\}$ is not a field when arithmetic is done modulo 4.

Hint: Show that in a field \mathbb{F}, if $a \cdot b=0$, then $a=0$ or $b=0$. Is this true for the set \mathbb{Z}_{4} ?
3. Show that $\sqrt{3}$ is irrational.

Hint: Argue by contradiction. Use the fact that if p is a natural number such that 3 divides p^{2}, then 3 also divides p. Then justify this fact using the prime factorization theorem.
4. Show that for every $a, b, c \in \mathbb{R}$ we have
(a) $|a+b| \leq|a|+|b|$,
(b) $||a|-|b|| \leq|a-b|$, and
(c) $|a-c| \leq|a-b|+|b-c|$.

Then explain why the first (or third) inequality is called the "triangle inequality".
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
(a) Given sets $A, B \subset \mathbb{R}$, what is the relation between $f(A \cup B)$ and $f(A) \cup f(B)$? Particularly, is one set contained in the other and are the sets equal to each other? Similarly, what is the relation between $f(A \cap B)$ and $f(A) \cap f(B)$? Prove your claims.
(b) If you conclude that the two sets are not equal to each other in general, then provide an example of a function f and sets A, B illustrating your conclusion.
(c) For a set $E \subset \mathbb{R}$, define $f^{-1}(E)=\{x \in \mathbb{R}: f(x) \in E\}^{\ddagger}$. What is the answer to part (a) if $f(A), f(B), f(A \cup B)$, and $f(A \cap B)$ are replaced with $f^{-1}(A), f^{-1}(B), f^{-1}(A \cup B)$, and $f^{-1}(A \cap B)$, respectively?
6. Use induction to prove that $5^{2 n}-1$ is divisible by 8 for all $n \in \mathbb{N}$.

Hint: Observe that $5^{2 n+2}-1=5^{2 n+2}-5^{2}+5^{2}-1$.
7. Study but do not submit Exercises 1.2.8 and 1.2.11.

[^0]
[^0]: ${ }^{\dagger}$ That is, we take the result to be the remainder after we divide it 2 .
 ${ }^{\ddagger}$ The preimage $f^{-1}(E)$ of a set E makes sense for every function f, even if the inverse function f^{-1} does not exist.

