Homework 12 (due 12/03)

MAT 324: Real Analysis

Problem 1.

(i) Let $a_{n}, n \in \mathbb{N}$, be a non-negative sequence. Define a function $\mu: \mathcal{P}(\mathbb{N}) \rightarrow$ $[0, \infty]$ by $\mu(\emptyset)=0$ and

$$
\mu(E)=\sum_{n \in E} a_{n}
$$

for $E \neq \emptyset$. Show that E is a σ-finite measure on \mathbb{N}.
(ii) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be a measure space. Show that there exists a sequence $a_{n}, n \in \mathbb{N}$, of non-negative numbers such that $\mu(E)=\sum_{n \in E} a_{n}$ for all $E \neq \emptyset$.

Problem 2. Let μ, ν be two measures on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N})$). By Problem 1, there exist sequences $a_{n}, b_{n} \geq 0, n \in \mathbb{N}$, such that $\mu(E)=$ $\sum_{n \in E} a_{n}$ and $\nu(E)=\sum_{n \in E} b_{n}$ for all $E \neq \emptyset$.
(i) What are necessary and sufficient conditions on the sequences a_{n}, b_{n} so that $\nu \ll \mu$?
(ii) If $\nu \ll \mu$, compute the Radon-Nikodym derivative $\frac{d \nu}{d \mu}$.

Problem 3. Suppose that μ, ν are two measures on a measure space (Ω, \mathcal{F}).
(i) Suppose that μ and ν are finite measures. Show that $\nu \ll \mu$ if and only if for every $\varepsilon>0$ there exists a $\delta>0$ such that for all $F \in \mathcal{F}$ with $\mu(F)<\delta$ we have $\nu(F)<\varepsilon$.
(ii) Show that the above statement does not hold in general without the assumption that the measures are finite.

Hint: Suppose that the (ε, δ) condition fails. Then there exists $\varepsilon>0$ and sets F_{n} such that for all $n \in \mathbb{N}$ we have $\mu\left(F_{n}\right)<1 / 2^{n}$ and $\nu\left(F_{n}\right) \geq \varepsilon$. Define
$A=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} F_{k}$ and compute $\mu(A)$ and $\nu(A)$. Where is the assumption of the finiteness of the measures used?

For (ii) let μ be the Lebesgue measure on \mathbb{R} and construct a measure $\nu=\mu_{h}$ for some appropriate function $h \geq 0$.

Problem 4. Suppose that λ, ν, μ are σ-finite measures on a measurable space (Ω, \mathcal{F}) with $\lambda \ll \mu$ and $\nu \ll \mu$.
(i) Prove that $\lambda+\nu \ll \mu$.

Hence, by the Radon-Nikodym theorem the derivatives $\frac{d \lambda}{d \mu}, \frac{d \nu}{d \mu}$, and $\frac{d(\lambda+\nu)}{d \mu}$ exist.
(ii) Show that

$$
\frac{d(\lambda+\nu)}{d \mu}=\frac{d \lambda}{d \mu}+\frac{d \nu}{d \mu}
$$

almost everywhere with respect to the measure μ; that is, the set where the above equality fails has μ-measure zero. Equivalently, we say that the above equality holds μ-a.e.
(iii) If $\lambda \ll \nu$, then show the "chain rule":

$$
\frac{d \lambda}{d \mu}=\frac{d \lambda}{d \nu} \cdot \frac{d \nu}{d \mu}
$$

almost everywhere with respect to μ.
(iv) If $\mu \ll \nu$, then show that

$$
\frac{d \mu}{d \nu}=\left(\frac{d \nu}{d \mu}\right)^{-1}
$$

almost everywhere with respect to μ.

