Homework 10 (due 11/14)

MAT 324: Real Analysis

Problem 1. Let $\mathcal{F}_1, \mathcal{F}_2$ be two σ -algebras in \mathbb{R} . Consider the σ -algebra \mathcal{F} in \mathbb{R}^2 that is generated by sets of the form $A \times B$, where $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$. Recall that, by definition, any other σ -algebra \mathcal{C} that contains all sets of the form $A \times B$, where $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$, necessarily contains \mathcal{F} . The σ -algebra \mathcal{F} is denoted by $\mathcal{F}_1 \times \mathcal{F}_2$.

Prove that if a set $E \subset \mathbb{R}^2$ is contained in the σ -algebra \mathcal{F} then:

- (i) for every $x \in \mathbb{R}$ the slice $E_x = \{y \in \mathbb{R} : (x, y) \in E\}$ is contained in \mathcal{F}_2 and
- (ii) for every $y \in \mathbb{R}$ the slice $E^y = \{x \in \mathbb{R} : (x, y) \in E\}$ is contained in \mathcal{F}_1 .

Hint: Consider the collection C of sets satisfying (i) and (ii) and show that C is a σ -algebra containing all sets of the form $A \times B$, where $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$.

Problem 2. Let $\mathcal{N} \subset [0,1]$ be a non-measurable set and $C \subset [0,1]$ be the Cantor set. Decide whether the following are true or false and explain your answer:

- (i) $\mathcal{N} \times C$ is a Borel set.
- (ii) $\mathcal{N} \times C$ lies in the σ -algebra $\mathcal{M}_1 \times \mathcal{M}_1$, where \mathcal{M}_1 is the σ -algebra of measurable subsets of \mathbb{R} .
- (iii) $\mathcal{N} \times C$ lies in the σ -algebra \mathcal{M}_2 of measurable subsets of \mathbb{R}^2 .
- (iv) $\mathcal{M}_2 = \mathcal{M}_1 \times \mathcal{M}_1$.

Hint: use Problem 1.

Problem 3. Consider the function

$$g(x,y) = \begin{cases} \frac{1}{x^2}, & 0 < y < x < 1\\ 0, & \text{otherwise.} \end{cases}$$

Compute $\int g dm_2$.

Hint: use the criterion of Homework 8, Problem 5(i), which also holds for the 2-dimensional Lebesgue measure; you do not need to prove that.

Problem 4. Consider the function

$$g(x,y) = \begin{cases} \frac{1}{x^2} & 0 < y < x < 1\\ -\frac{1}{y^2} & 0 < x < y < 1\\ 0 & \text{otherwise.} \end{cases}$$

(i) Show that $\int_0^1 (\int_0^1 g(x, y) dx) dy = -1$ and $\int_0^1 (\int_0^1 g(x, y) dy) dx = 1$.

(ii) Explain why Fubini's theorem does not apply for the function g. Hint: use Problem 3.