Homework 10 (due 11/14)

MAT 324: Real Analysis

Problem 1. Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be two σ-algebras in \mathbb{R}. Consider the σ-algebra \mathcal{F} in \mathbb{R}^{2} that is generated by sets of the form $A \times B$, where $A \in \mathcal{F}_{1}$ and $B \in \mathcal{F}_{2}$. Recall that, by definition, any other σ-algebra \mathcal{C} that contains all sets of the form $A \times B$, where $A \in \mathcal{F}_{1}$ and $B \in \mathcal{F}_{2}$, necessarily contains \mathcal{F}. The σ-algebra \mathcal{F} is denoted by $\mathcal{F}_{1} \times \mathcal{F}_{2}$.
Prove that if a set $E \subset \mathbb{R}^{2}$ is contained in the σ-algebra \mathcal{F} then:
(i) for every $x \in \mathbb{R}$ the slice $E_{x}=\{y \in \mathbb{R}:(x, y) \in E\}$ is contained in \mathcal{F}_{2} and
(ii) for every $y \in \mathbb{R}$ the slice $E^{y}=\{x \in \mathbb{R}:(x, y) \in E\}$ is contained in \mathcal{F}_{1}.

Hint: Consider the collection \mathcal{C} of sets satisfying (i) and (ii) and show that \mathcal{C} is a σ-algebra containing all sets of the form $A \times B$, where $A \in \mathcal{F}_{1}$ and $B \in \mathcal{F}_{2}$.

Problem 2. Let $\mathcal{N} \subset[0,1]$ be a non-measurable set and $C \subset[0,1]$ be the Cantor set. Decide whether the following are true or false and explain your answer:
(i) $\mathcal{N} \times C$ is a Borel set.
(ii) $\mathcal{N} \times C$ lies in the σ-algebra $\mathcal{M}_{1} \times \mathcal{M}_{1}$, where \mathcal{M}_{1} is the σ-algebra of measurable subsets of \mathbb{R}.
(iii) $\mathcal{N} \times C$ lies in the σ-algebra \mathcal{M}_{2} of measurable subsets of \mathbb{R}^{2}.
(iv) $\mathcal{M}_{2}=\mathcal{M}_{1} \times \mathcal{M}_{1}$.

Hint: use Problem 1.

Problem 3. Consider the function

$$
g(x, y)= \begin{cases}\frac{1}{x^{2}}, & 0<y<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Compute $\int g d m_{2}$.
Hint: use the criterion of Homework 8, Problem 5(i), which also holds for the 2-dimensional Lebesgue measure; you do not need to prove that.

Problem 4. Consider the function

$$
g(x, y)= \begin{cases}\frac{1}{x^{2}} & 0<y<x<1 \\ -\frac{1}{y^{2}} & 0<x<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Show that $\int_{0}^{1}\left(\int_{0}^{1} g(x, y) d x\right) d y=-1$ and $\int_{0}^{1}\left(\int_{0}^{1} g(x, y) d y\right) d x=1$.
(ii) Explain why Fubini's theorem does not apply for the function g.

Hint: use Problem 3.

