Homework 9 (due 11/07)

MAT 324: Real Analysis

Problem 1. Show Hölder's inequality when $p=1$ and $q=\infty$, so that $\frac{1}{p}+\frac{1}{q}=1$. More specifically, show that if $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, then $f \cdot g \in L^{1}(\mathbb{R})$ and

$$
\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}
$$

Problem 2. Let $p, q \in[1, \infty]$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Consider functions $f, f_{n} \in L^{p}(\mathbb{R})$ and $g, g_{n} \in L^{q}(\mathbb{R}), n \in \mathbb{N}$, such that $f_{n} \rightarrow f$ in L^{p} and $g_{n} \rightarrow g$ in L^{q}. Show that $f_{n} g_{n} \rightarrow f g$ in L^{1}.

Problem 3. Let $0<p<\infty$ and define

$$
f(x)= \begin{cases}0, & x \leq 0 \\ x^{-1 / p}(1+|\log x|)^{-2 / p}, & x>0\end{cases}
$$

Show that $f \in L^{p} \backslash L^{q}$ for all $q \neq p$.

Problem 4.

(i) Suppose that $f \in L^{p}(E)$ for all $1 \leq p<\infty$. Is is true that $f \in L^{\infty}(E)$?
(ii) Suppose that $f \in L^{\infty}(E)$. Is is true that $f \in L^{p}(E)$ for any $p \geq 1$?
(iii) Suppose that $f \in L^{\infty}(E) \cap L^{q}(E)$ for some $q \geq 1$. Then show that $f \in L^{p}(E)$ for all $p>q$.
(iv) Suppose that $f \in L^{\infty}(E)$ and $m(E)<\infty$. Then show that $f \in L^{p}(E)$ for all $1 \leq p<\infty$.

Problem 5.

(i) Suppose that f is continuous in \mathbb{R} and lies in L^{p} for some $p \geq 1$. What can you say about $\lim _{x \rightarrow \infty} f(x)$?
(ii) Suppose that f is uniformly continuous in \mathbb{R} and lies in L^{p} for some $p \geq 1$. What can you say about $\lim _{x \rightarrow \infty} f(x)$?

Problem 6 (Optional). Show that if $f \in L^{\infty}(\mathbb{R}) \cap L^{q}(\mathbb{R})$ for some $q \geq 1$, then $f \in L^{p}(\mathbb{R})$ for all $p>q$. Moreover, show that

$$
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}
$$

