Homework 9 (due 11/07)

MAT 324: Real Analysis

Problem 1. Show Hölder's inequality when p = 1 and $q = \infty$, so that $\frac{1}{p} + \frac{1}{q} = 1$. More specifically, show that if $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, then $f \cdot g \in L^1(\mathbb{R})$ and

$$||fg||_1 \le ||f||_1 ||g||_{\infty}.$$

Problem 2. Let $p, q \in [1, \infty]$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Consider functions $f, f_n \in L^p(\mathbb{R})$ and $g, g_n \in L^q(\mathbb{R}), n \in \mathbb{N}$, such that $f_n \to f$ in L^p and $g_n \to g$ in L^q . Show that $f_n g_n \to fg$ in L^1 .

Problem 3. Let 0 and define

$$f(x) = \begin{cases} 0, & x \le 0\\ x^{-1/p}(1+|\log x|)^{-2/p}, & x > 0. \end{cases}$$

Show that $f \in L^p \setminus L^q$ for all $q \neq p$.

Problem 4.

- (i) Suppose that $f \in L^p(E)$ for all $1 \le p < \infty$. Is is true that $f \in L^\infty(E)$?
- (ii) Suppose that $f \in L^{\infty}(E)$. Is is true that $f \in L^{p}(E)$ for any $p \ge 1$?
- (iii) Suppose that $f \in L^{\infty}(E) \cap L^{q}(E)$ for some $q \geq 1$. Then show that $f \in L^{p}(E)$ for all p > q.
- (iv) Suppose that $f \in L^{\infty}(E)$ and $m(E) < \infty$. Then show that $f \in L^{p}(E)$ for all $1 \le p < \infty$.

Problem 5.

- (i) Suppose that f is continuous in \mathbb{R} and lies in L^p for some $p \ge 1$. What can you say about $\lim_{x\to\infty} f(x)$?
- (ii) Suppose that f is uniformly continuous in \mathbb{R} and lies in L^p for some $p \ge 1$. What can you say about $\lim_{x\to\infty} f(x)$?

Problem 6 (Optional). Show that if $f \in L^{\infty}(\mathbb{R}) \cap L^{q}(\mathbb{R})$ for some $q \geq 1$, then $f \in L^{p}(\mathbb{R})$ for all p > q. Moreover, show that

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$