Homework 8 (due 10/31)

MAT 324: Real Analysis

Problem 1. Let $(H,(\cdot, \cdot))$ be an inner product space. Show the polarization identity:

$$
4(f, g)=\|f+g\|^{2}-\|f-g\|^{2}+i\left(\|f+i g\|^{2}-\|f-i g\|^{2}\right)
$$

for all $f, g \in H$.
Problem 2. Consider the space $L^{1}([0,1])$. Show that there is no inner product on the space $L^{1}([0,1])$ that gives rise to the L^{1} norm.
Hint: show that the parallelogram law is not satisfied for some pair of functions.
Problem 3. Suppose that $m(E)<\infty$. Show that $L^{2}(E) \subset L^{1}(E)$ and show that the reverse inclusion does not hold.
Problem 4. Let $f_{n} \in L^{1}([0,1]) \cap L^{2}([0,1]), n \in \mathbb{N}$. Prove or disprove the following:
(i) If $\left\|f_{n}\right\|_{L^{1}} \rightarrow 0$ then $\left\|f_{n}\right\|_{L^{2}} \rightarrow 0$.
(ii) If $\left\|f_{n}\right\|_{L^{2}} \rightarrow 0$ then $\left\|f_{n}\right\|_{L^{1}} \rightarrow 0$.

Problem 5.

(i) Let $f: E \rightarrow \mathbb{R}$ be a measurable function. Show that $f \in L^{p}(E)$, where $1 \leq p<\infty$, if and only if

$$
\sum_{k=-\infty}^{\infty} 2^{k p} m\left(\left\{2^{k} \leq|f|<2^{k+1}\right\}\right)<\infty
$$

(ii) For $\alpha \in \mathbb{R}$ consider the function $f(x)=|x|^{-\alpha} \cdot \mathbf{1}_{(0,1)}$. For each $p \in$ $[1, \infty)$ specify the set of $\alpha \in \mathbb{R}$ for which $f \in L^{p}(\mathbb{R})$.
Problem 6. Let $p \in[1, \infty)$. Suppose that $f_{n} \in L^{p}(E), n \in \mathbb{N}$, is a sequence of functions converging to a function $f \in L^{p}(E)$ in the L^{p} norm. Show that there exists a subsequence of f_{n} that converges to f almost everywhere.
Hint: follow the proof of the case $p=1$ that we did in class.

