Homework 7 (due 10/17)

MAT 324: Real Analysis

Problem 1. Suppose that $f_{n} \in L^{1}(\mathbb{R}), n \in \mathbb{N}$, and $\left|f_{n}\right| \leq g$ for all $n \in \mathbb{N}$, where $g \in L^{1}(\mathbb{R})$. Show that

$$
\int \liminf _{n \rightarrow \infty} f_{n} \leq \liminf _{n \rightarrow \infty} \int f_{n} \leq \limsup _{n \rightarrow \infty} \int f_{n} \leq \int \limsup _{n \rightarrow \infty} f_{n}
$$

Conclude that if f_{n} converges almost everywhere to a function f, then $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.
Remark: the first inequality holds always for non-negative functions by Fatou's lemma. However, the last inequality does not necessarily hold even for non-negative functions. Why?

Problem 2. Let $E \subset[0,1]$ be a Cantor-like set of positive measure (see Homework 2, Problem 8) and set $f=\mathbf{1}_{E}$. (The only properties of E we are going to need are that it has positive measure, it is compact and it contains no intervals).
(i) Show that f is not Riemann integrable on $[0,1]$.
(ii) Let $d(x, E)=\inf \{|x-y|: y \in E\}$. Show that the function $x \mapsto d(x, E)$ is continuous on $[0,1]$.
(iii) Let $f_{n}(x)=\max (0,1-n d(x, E))$. Show that $f_{n}, n \in \mathbb{N}$, is a decreasing sequence of continuous functions converging pointwise to f.
(iv) Show that $f_{n}, n \in \mathbb{N}$, is a Cauchy sequence in the L^{1} metric; that is for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for $n, m \geq N$ we have

$$
\int\left|f_{n}-f_{m}\right|<\varepsilon
$$

(v) Conclude that the metric space of equivalence classes of Riemann integrable functions on $[0,1]$ with the L^{1} metric is not complete.

Problem 3. Consider the sequence of functions $f_{n}(x)=\frac{1}{\sqrt{x}} \mathbf{1}_{(0,1 / n]}(x), n \in$ \mathbb{N}.
(i) Does f_{n} lie in $L^{1}(\mathbb{R})$? Check this without using the fundamental theorem of calculus, but using instead dyadic intervals, i.e., intervals of the form $\left[2^{-k}, 2^{-k+1}\right], k \in \mathbb{N}$.
(ii) Is $f_{n}, n \in \mathbb{N}$, a Cauchy sequence in $L^{1}(\mathbb{R})$?
(iii) For which $p \in[1, \infty)$ do we have

$$
\int\left|f_{n}\right|^{p}<\infty ?
$$

Problem 4. Consider the sequence of functions $f_{n}=n \mathbf{1}_{\left[n+1 / n^{2}, n+2 / n^{2}\right]}$, $n \geq 2$.
(i) Show that the infinite series $\sum_{n=2}^{\infty} f_{n}$ converges pointwise to a function f.
(ii) Does the series $\sum_{n=2}^{\infty} f_{n}$ converge in L^{1} to f ?
(iii) Show that $\sum_{n=2}^{\infty} f_{n}^{1 / 2}$ converges in L^{1} to $f^{1 / 2}$.

Problem 5. Let $f: \mathbb{R} \rightarrow[0, \infty]$ be a measurable function. Consider the distribution function of f, defined by

$$
\lambda_{f}(t)=m(\{x \in \mathbb{R}: f(x)>t\}) .
$$

Prove that:
(i) λ_{f} is a decreasing function of $t \in \mathbb{R}$ and it is right-continuous.
(ii) If $0 \leq f \leq g$, then $\lambda_{f} \leq \lambda_{g}$.
(iii) If $f_{n}, n \in \mathbb{N}$, is a sequence of non-negative measurable functions increasing to f, then $\lambda_{f_{n}}$ is an increasing sequence of functions, converging to λ_{f} pointwise.
(iv)

$$
\int_{\mathbb{R}} f d m=\int_{0}^{\infty} \lambda_{f}(t) d t
$$

Hint: show part (iv) first for simple functions. Then use approximation and convergence theorems to show the statement for any non-negative measurable function.

Problem 6. Let $(X,\|\cdot\|)$ be a normed vector space. Show that X is complete if and only if the following holds: whenever $x_{n} \in X, n \in \mathbb{N}$, is a sequence with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$, we have that the series $\sum_{n=1}^{\infty} x_{n}$ converges to an element $x \in X$; that is $\lim _{N \rightarrow \infty}\left\|\sum_{n=1}^{N} x_{n}-x\right\|=0$ for some $x \in X$.

Problem 7 (Optional). Does there exist a function $f: \mathbb{R} \rightarrow[0, \infty)$ with $f(x)<\infty$ for all $x \in \mathbb{R}$, but

$$
\int_{a}^{b} f=\infty
$$

for all intervals $[a, b] \subset \mathbb{R}$?
Problem 8 (Optional). Does there exist a function $f: \mathbb{R} \rightarrow[0, \infty)$ that is unbounded in every interval, but

$$
\int_{a}^{b} f<\infty
$$

for all intervals $[a, b] \subset \mathbb{R}$?
Problem 9 (Optional).
(i) If $f \in L^{1}(\mathbb{R})$, is it true that $\lim _{x \rightarrow \infty} f(x)=0$?
(ii) If $f \in L^{1}(\mathbb{R})$ is continuous and bounded, is it true that $\lim _{x \rightarrow \infty} f(x)=$ 0 ?

