Homework 5 (due 10/03)

MAT 324: Real Analysis

Problem 1. Show that for simple functions the two definitions of the Lebesgue integral that we gave agree. Namely, if $f=\sum_{i=1}^{n} a_{i} 1_{A_{i}}$ is a simple function expressed in canonical representation, then $\int_{\mathbb{R}} f d m$ can be defined in the following two ways:

$$
\int_{\mathbb{R}} f d m=\sum_{i=1}^{n} a_{i} m\left(A_{i}\right)
$$

and

$$
\int_{\mathbb{R}} f d m=\sup \left\{\int_{\mathbb{R}} \phi d m: 0 \leq \phi \leq f \text { and } \phi \text { is simple }\right\} .
$$

Show that the right hand sides agree.
Problem 2. Show that a simple function $\phi: \mathbb{R} \rightarrow[0, \infty)$ is integrable if and only if $m(\{\phi \neq 0\})<\infty$.
Problem 3. Define a function $f:[0,1] \rightarrow \mathbb{R}$ as follows. Set $f(x)=0$ for all x in the Cantor set, and if x lies in an interval of length 3^{-k} that has been removed from $[0,1]$ in the construction of the Cantor set, we set $f(x)=k$. Show that f is measurable and evaluate $\int_{[0,1]} f d m$.
Problem 4. Let $f_{n}, f: E \rightarrow[0, \infty]$ be measurable functions and assume that f is integrable and $m(E)<\infty$. Suppose that the sequence f_{n} converges uniformly to f. Show that f_{n} is integrable for all sufficiently large $n \in \mathbb{N}$ and that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d m=\int_{E} \lim _{n \rightarrow \infty} f_{n} d m=\int_{E} f d m .
$$

Does the conclusion hold if we drop the assumption that $m(E)<\infty$?
Remark: The statement holds not only for non-negative but also for $\overline{\mathbb{R}}$ valued functions.

Problem 5. Let $f: \mathbb{R} \rightarrow[0, \infty]$ be a measurable function and let $\alpha>0$. Show that

$$
m(\{x \in \mathbb{R}: f(x)>\alpha\}) \leq \frac{1}{\alpha} \int_{\mathbb{R}} f d m .
$$

This is known as Chebychev's inequality.
Moreover, show that the factor $1 / \alpha$ in the above inequality is optimal, in the following sense: if $C(\alpha)>0$ is a positive function of $\alpha>0$ such that

$$
m(\{x \in \mathbb{R}: f(x)>\alpha\}) \leq C(\alpha) \int_{\mathbb{R}} f d m
$$

for all non-negative measurable functions f and for all $\alpha>0$, then $1 / \alpha \leq$ $C(\alpha)$.

Problem 6. Suppose that $f: \mathbb{R} \rightarrow[0, \infty]$ is integrable. Show then that f is finite a.e. Does the converse hold? Namely, if f is finite a.e., is it true that it is integrable?
Hint: Find bounds for the measure of the set $\{f=\infty\}$ using Chebychev's inequality.

