Homework 3 (due 09/19)

MAT 324: Real Analysis

Problem 1. Show that the family of intervals of the form $[a, b), a<b$, $a, b \in \mathbb{R}$, generates the Borel σ-algebra.

Problem 2. Show that a set $E \subset \mathbb{R}$ is measurable if and only if for each $\varepsilon>0$ there exists an open set $\mathcal{O} \supset E$ such that $m^{*}(\mathcal{O} \backslash E)<\varepsilon$. (We have proved one direction in the lecture.)

Problem 3. Let $f: E \rightarrow \mathbb{R}$ be a function, where $E \in \mathcal{M}$. Suppose that for any two rational numbers p, q with $p<q$ the set $\{x \in E: p<f(x)<q\}$ is measurable. Show that f is measurable.

Problem 4. Let $f: E \rightarrow \mathbb{R}$ be a function, where $E \in \mathcal{M}$. For $a \in \mathbb{R}$ consider the level set $E_{a}:=\{x \in E: f(x)=a\}$.
(i) Show directly that if f is measurable then for each $a \in \mathbb{R}$ the set E_{a} is measurable.
(ii) Suppose that E_{q} is measurable for each $q \in \mathbb{Q}$. Does it follow that the function f is measurable?

Problem 5. Suppose that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is increasing; that is if $x<y, x, y \in \mathbb{R}$, then $f(x) \leq f(y)$. Show that f is measurable.

Problem 6.

(i) Let $E \in \mathcal{M}$ and $f: E \rightarrow \mathbb{R}$ be a function. Suppose that f is continuous on $E \backslash N$, where $m(N)=0$; that is, f is continuous almost everywhere on E. Show that f is measurable.
(ii) Using part (i) and the fact that an increasing function is continuous, except at a countable set, give an alternative proof of Problem 5.

Problem 7.

(i) Let $E \in \mathcal{M}$ and $f, g: E \rightarrow \mathbb{R}$ be measurable functions. Show that the function f / g, defined on the set $F=\{x \in E: g(x) \neq 0\}$ is measurable. (Part of the proof is to explain why the set F is measurable.)
(ii) Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a non-measurable function and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function such that the set $\{x \in \mathbb{R}: f(x)=0\}$ is a null set; that is, $f \neq 0$ almost everywhere. Decide whether the function $f \cdot h$ is measurable or not.

Problem 8 (Optional). Let $E \in \mathcal{M}$ with $m(E)>0$. Consider the set $E-E=\{x-y: x, y \in E\}$. Show that $E-E$ contains an interval of the form $(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$.
Hint: Consider the function $f(x)=m((E+x) \cap E), x \in \mathbb{R}$. Show that f is continuous; show first that this holds if E is an interval or a finite union of disjoint intervals. Then show that $f(0)>0$ and conclude that there exists an interval $(-\varepsilon, \varepsilon)$ such that $f(x)>0$ for all $x \in(-\varepsilon, \varepsilon)$.

Problem 9 (Optional). Let $E \in \mathcal{M}$ with $m(E)>0$. Show that there exists a non-measurable set $N \subset E$.
Hint: Use the construction of a non-measurable set and Problem 8.
Problem 10 (Optional). The goal of this problem is to show that $\mathcal{B} \subsetneq \mathcal{M}$. Let $f:[0,1] \rightarrow[0,1]$ be a continuous, increasing and surjective function with the property that $f(\mathcal{C})=[0,1]$, where \mathcal{C} is the Cantor set; for example, such a function is the Cantor staircase function. Consider the function $g(x)=f(x)+x, x \in[0,1]$.
(i) Show that $g:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing, one-toone, onto, and that g^{-1} is continuous.
(ii) Show that $g(\mathcal{C})$ is measurable and $m(g(\mathcal{C}))=1$.

Hint: Study the set $g([0,1] \backslash \mathcal{C})$.
(iii) Let $N \subset g(\mathcal{C})$ be a non-measurable set, guaranteed to exist by Problem 9. Show that $g^{-1}(N) \in \mathcal{M}$.
(iv) Show that $A:=g^{-1}(N) \notin \mathcal{B}$. Do this by showing that a continuous, injective function $h:[a, b] \rightarrow \mathbb{R}$ has the property that $h(A) \in \mathcal{B}$ whenever $A \subset[a, b], A \in \mathcal{B}$.

