
Homework 2 (due 09/12)

MAT 324: Real Analysis

Problem 1.

(i) Let E =
⋃∞

n=1En. Show that m∗(E) = 0 if and only if m∗(En) = 0
for all n ∈ N.

(ii) Show that the outer measure is translation invariant : for each A ⊂ R
and t ∈ R we have

m∗(A) = m∗(A+ t),

where A+ t = {x+ t : x ∈ A}.

Solution. (i) If m∗(En) = 0 for all n ∈ N, then by the subadditivity we have

m∗(E) ≤
∞∑
n=1

m∗(En) = 0.

If m∗(E) = 0, then by the monotonicity, since En ⊂ E, we have m∗(En) ≤
m∗(E) = 0 for each n ∈ N

(ii) If {In}n∈N are intervals such that A ⊂
⋃∞

n=1 In, then the intervals
{In + t}n∈N cover A+ t. Hence,

m∗(A+ t) ≤
∞∑
n=1

`(In + t) =
∞∑
n=1

`(In).

This holds for all intervals {In}n∈N as above so by the definition of outer
measure we have m∗(A+t) ≤ m∗(A). The same argument shows the reverse
inequality.

Problem 2.

(i) Show that a countable intersection of measurable sets is measurable.
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(ii) Suppose that A,B ⊂ R are such that m∗(A∆B) = 0. Here, A∆B =
(A \B) ∪ (B \A). Show that A ∈M if and only if B ∈M.

Solution. (i) Let En ∈M, n ∈ N. Then

∞⋂
n=1

En =

( ∞⋃
n=1

Ec
n

)c

and the latter is measurable (why?).
(ii) Let G ⊂ R be an arbitrary set and suppose that A ∈M, so

m∗(G) = m∗(G ∩A) +m∗(G ∩Ac).

We wish to show that

m∗(G) = m∗(G ∩B) +m∗(G ∩Bc).

Using the assumption, one can show (how?) that m∗(G ∩ B) = m∗(G ∩ A)
and m∗(G ∩Bc) = m∗(G ∩Ac) so the conclusion follows.

Problem 3. Show that if A,B ∈M with A ⊂ B and m(A) <∞, then

m(B \A) = m(B)−m(A).

Does the statement hold if m(A) =∞?

Solution. Note that B = (B \A) ∪A, because A ⊂ B. By the additivity of
the measure, we have

m(B) = m(B \A) +m(A).

Since m(A) < ∞, we have m(B \ A) = m(B) −m(A); note that this even
holds if m(B) = ∞. We only have to avoid having expressions of the form
∞−∞. Indeed, if m(A) = ∞ then the statement fails. For example, let
A = [0,∞) and B = R. Then m(B)−m(A) does not make sense.

Problem 4. Suppose that A,B ∈M. Show that

m(A ∪B) +m(A ∩B) = m(A) +m(B).

Solution. Note that A∪B = (A\ (A∩B))∪ (B \ (A∩B))∪ (A∩B). All sets
involved are measurable and disjoint, so by the additivity of the measure we
have

m(A ∪B) = m(A \ (A ∩B)) +m(B \ (A ∩B)) +m(A ∩B).
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If m(A ∩ B) = ∞ then m(A) ≥ m(A ∩ B) = ∞ so the required statement
holds and we have nothing to prove. Suppose that m(A ∩ B) < ∞. Using
the previous problem we have

m(A ∪B) = m(A)−m(A ∩B) +m(B)−m(A ∩B) +m(A ∩B)

= m(A) +m(B)− (A ∩B)

as desired.

Problem 5. Let En ∈M, n ∈ N. Is it true that

m

( ∞⋂
n=1

En

)
= lim

n→∞
m(En)?

What if we further assume that En ⊂ En+1 for each n ∈ N? What if we
even further assume that the limit in the right hand side exists and is a
finite number?

Solution. In general the statement is not true. For example, let En = [n, n+
1]. Then the intersection is empty, but m(En) = 1.

Even if we assume that En ⊂ En+1 the statement fails. For example, let
En = [n,∞). Then

⋂∞
n=1En = ∅ so its measure is 0. On the other hand,

m(En) =∞, so limn→∞m(En) =∞ 6= 0.
Finally, if we assume that limn→∞m(En) < ∞, then the statement is

true. See the proof of Theorem 2.19(ii) in the book.

Problem 6. Let E ∈M. Show that

m(E) = sup{m(K) : K ⊂ E and K is compact}.

Solution. We have proved that if E ∈ M, then for each ε > 0 there exists
an open set O ⊃ E such that m(O \ E) < ε.

Since E ∈ M, we have Ec ∈ M. Hence, for each ε there exists an open
set O ⊃ Ec such that m(O \Ec) < ε. Note that O \Ec = O ∩E = E \ Oc.
Therefore, we have m(E\K) < ε. The set K := Oc is closed and is contained
in E (why?). It follows that for each ε > 0, there exists a closed set K ⊂ E
such that m(K) ≤ m(E) = m(E \ K) + m(K) ≤ ε + m(K). This shows
(why?) that

m(E) = sup{m(K) : K ⊂ E and K is closed}.

Finally, we want to replace “closed” by “compact”. Let ε > 0 and
consider a closed set K ⊂ E with m(K) ≤ m(E) ≤ m(K) + ε/2. For each
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n ∈ N, define Kn = K ∩ [−n, n] and note that Kn is compact (why?). Also,
observe that Kn ⊂ Kn+1 and

⋃∞
n=1Kn = K. Therefore by Theorem 2.19(i)

we have
m(K) = lim

n→∞
m(Kn).

In case m(E) < ∞, then m(K) < ∞ (why?), so this implies that there
exists a sufficiently large n such that m(K) ≤ m(Kn) + ε/2. Therefore,
Kn ⊂ K ⊂ E and

m(Kn) ≤ m(K) ≤ m(E) ≤ m(K) + ε/2 ≤ m(Kn) + ε/2 + ε/2 = m(Kn) + ε.

Thus, we have “approximated” the measure of E by the measure of a com-
pact set Kn, i.e.,

m(E) = sup{m(K) : K ⊂ E and K is compact}.

If m(E) = ∞, then we must also have m(K) = ∞ (why?). If it fol-
lows that limn→∞m(Kn) = ∞, so m(Kn) becomes arbitrarily large as n
increases, and in particular it approaches the measure of E. It also follows
in this case that

m(E) =∞ = sup{m(K) : K ⊂ E and K is compact}.

(Recall that supZ = ∞ if and only if there exists a sequence zn ∈ Z with
limn→∞ zn =∞.)

Problem 7. Construct a Cantor-like set C(α) ⊂ [0, 1] as follows. Fix a
number α ∈ (0, 1) and let C0 = [0, 1]. In order to obtain the set C1, remove
from C0 the “middle” open interval of length α; for example, if α = 1/3 as in
the standard Cantor set, then we remove (1/3, 2/3). We write C1 = I1

1 ∪ I1
2 .

From each of the intervals I1
i , i = 1, 2, we remove a “middle” open interval

of length α ·`(I1
i ) and obtain in this way the set C2. In the n-th step we have

a set Cn that is the union of 2n disjoint intervals Ini , i = 1, . . . , 2n, and in
order to obtain Cn+1 we remove from each of them a “middle” open interval
of length α · `(Ini ). Let

C(α) =

∞⋂
n=0

Cn.

Compute m(C(α)).
Hint: Using induction, find a formula for m([0, 1] \ Cn) depending on α and
n. Then pass to the limit.
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Solution. At the first step, we see that m(C1) = 1−α and m([0, 1]\C1) = α.
Intuitively, at each step we are keeping a proportion (1− α) of the measure
and we are throwing away a proportion α of the measure. Inductively, one
can show (how?) that

m(Cn+1) = (1− α)m(Cn)

for each n ∈ N. Therefore, m(Cn) = (1−α)n. Since C(α) ⊂ Cn for all n ∈ N,
we have

m(C(α)) ≤ (1− α)n

for all n ∈ N, which implies that m(C(α)) = 0.
Remark: Surprisingly, even if we throw away 1/1000-th of the set at every
step, we still get a set of measure 0.

Problem 8 (Optional). Modify the construction of C(α) of Problem 7 as
follows. Instead of removing a fixed proportion α at each step, remove vari-
able proportions. That is, C1 is obtained from C0 by removing a “middle”
interval of length α1. Then C2 is obtained from C1 by removing from each
of the two intervals of C1 a middle interval of proportion α2, and so on. In
this way, we obtain another Cantor-like set C({αn}n∈N) that depends on the
sequence of proportions that we choose. Show that the proportions can be
chosen so that this Cantor-like set has positive measure.

Problem 9 (Optional). Let O ⊂ R be an open set. Show that there exist
disjoint open intervals Ii, i ∈ Λ, such that

O =
⋃
i∈Λ

Ii.

Moreover, the index set Λ is finite or countable.

Problem 10 (Optional). Let E ∈ M with m(E) > 0. Then for any α ∈
(0, 1) there exists an interval I such that

m(E ∩ I) > αm(I).

Remark: If α = 0.999, for example, this says that we can always “zoom
in” the set E at a small interval I and see that E takes up a lot of space
within that interval. An alternative formulation is m(I \E) < (1−α)m(I) =
0.001m(I), so E covers almost all of I.
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