Homework 2 (due 09/12)

MAT 324: Real Analysis

Problem 1.

(i) Let $E=\bigcup_{n=1}^{\infty} E_{n}$. Show that $m^{*}(E)=0$ if and only if $m^{*}\left(E_{n}\right)=0$ for all $n \in \mathbb{N}$.
(ii) Show that the outer measure is translation invariant: for each $A \subset \mathbb{R}$ and $t \in \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}(A+t)
$$

where $A+t=\{x+t: x \in A\}$.
Solution. (i) If $m^{*}\left(E_{n}\right)=0$ for all $n \in \mathbb{N}$, then by the subadditivity we have

$$
m^{*}(E) \leq \sum_{n=1}^{\infty} m^{*}\left(E_{n}\right)=0
$$

If $m^{*}(E)=0$, then by the monotonicity, since $E_{n} \subset E$, we have $m^{*}\left(E_{n}\right) \leq$ $m^{*}(E)=0$ for each $n \in \mathbb{N}$
(ii) If $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ are intervals such that $A \subset \bigcup_{n=1}^{\infty} I_{n}$, then the intervals $\left\{I_{n}+t\right\}_{n \in \mathbb{N}}$ cover $A+t$. Hence,

$$
m^{*}(A+t) \leq \sum_{n=1}^{\infty} \ell\left(I_{n}+t\right)=\sum_{n=1}^{\infty} \ell\left(I_{n}\right)
$$

This holds for all intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ as above so by the definition of outer measure we have $m^{*}(A+t) \leq m^{*}(A)$. The same argument shows the reverse inequality.

Problem 2.

(i) Show that a countable intersection of measurable sets is measurable.
(ii) Suppose that $A, B \subset \mathbb{R}$ are such that $m^{*}(A \Delta B)=0$. Here, $A \Delta B=$ $(A \backslash B) \cup(B \backslash A)$. Show that $A \in \mathcal{M}$ if and only if $B \in \mathcal{M}$.

Solution. (i) Let $E_{n} \in \mathcal{M}, n \in \mathbb{N}$. Then

$$
\bigcap_{n=1}^{\infty} E_{n}=\left(\bigcup_{n=1}^{\infty} E_{n}^{c}\right)^{c}
$$

and the latter is measurable (why?).
(ii) Let $G \subset \mathbb{R}$ be an arbitrary set and suppose that $A \in \mathcal{M}$, so

$$
m^{*}(G)=m^{*}(G \cap A)+m^{*}\left(G \cap A^{c}\right) .
$$

We wish to show that

$$
m^{*}(G)=m^{*}(G \cap B)+m^{*}\left(G \cap B^{c}\right) .
$$

Using the assumption, one can show (how?) that $m^{*}(G \cap B)=m^{*}(G \cap A)$ and $m^{*}\left(G \cap B^{c}\right)=m^{*}\left(G \cap A^{c}\right)$ so the conclusion follows.

Problem 3. Show that if $A, B \in \mathcal{M}$ with $A \subset B$ and $m(A)<\infty$, then

$$
m(B \backslash A)=m(B)-m(A)
$$

Does the statement hold if $m(A)=\infty$?
Solution. Note that $B=(B \backslash A) \cup A$, because $A \subset B$. By the additivity of the measure, we have

$$
m(B)=m(B \backslash A)+m(A) .
$$

Since $m(A)<\infty$, we have $m(B \backslash A)=m(B)-m(A)$; note that this even holds if $m(B)=\infty$. We only have to avoid having expressions of the form $\infty-\infty$. Indeed, if $m(A)=\infty$ then the statement fails. For example, let $A=[0, \infty)$ and $B=\mathbb{R}$. Then $m(B)-m(A)$ does not make sense.

Problem 4. Suppose that $A, B \in \mathcal{M}$. Show that

$$
m(A \cup B)+m(A \cap B)=m(A)+m(B)
$$

Solution. Note that $A \cup B=(A \backslash(A \cap B)) \cup(B \backslash(A \cap B)) \cup(A \cap B)$. All sets involved are measurable and disjoint, so by the additivity of the measure we have

$$
m(A \cup B)=m(A \backslash(A \cap B))+m(B \backslash(A \cap B))+m(A \cap B) .
$$

If $m(A \cap B)=\infty$ then $m(A) \geq m(A \cap B)=\infty$ so the required statement holds and we have nothing to prove. Suppose that $m(A \cap B)<\infty$. Using the previous problem we have

$$
\begin{aligned}
m(A \cup B) & =m(A)-m(A \cap B)+m(B)-m(A \cap B)+m(A \cap B) \\
& =m(A)+m(B)-(A \cap B)
\end{aligned}
$$

as desired.
Problem 5. Let $E_{n} \in \mathcal{M}, n \in \mathbb{N}$. Is it true that

$$
m\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right) ?
$$

What if we further assume that $E_{n} \subset E_{n+1}$ for each $n \in \mathbb{N}$? What if we even further assume that the limit in the right hand side exists and is a finite number?

Solution. In general the statement is not true. For example, let $E_{n}=[n, n+$ $1]$. Then the intersection is empty, but $m\left(E_{n}\right)=1$.

Even if we assume that $E_{n} \subset E_{n+1}$ the statement fails. For example, let $E_{n}=[n, \infty)$. Then $\bigcap_{n=1}^{\infty} E_{n}=\emptyset$ so its measure is 0 . On the other hand, $m\left(E_{n}\right)=\infty$, so $\lim _{n \rightarrow \infty} m\left(E_{n}\right)=\infty \neq 0$.

Finally, if we assume that $\lim _{n \rightarrow \infty} m\left(E_{n}\right)<\infty$, then the statement is true. See the proof of Theorem 2.19(ii) in the book.

Problem 6. Let $E \in \mathcal{M}$. Show that

$$
m(E)=\sup \{m(K): K \subset E \text { and } K \text { is compact }\} .
$$

Solution. We have proved that if $E \in \mathcal{M}$, then for each $\varepsilon>0$ there exists an open set $\mathcal{O} \supset E$ such that $m(\mathcal{O} \backslash E)<\varepsilon$.

Since $E \in \mathcal{M}$, we have $E^{c} \in \mathcal{M}$. Hence, for each ε there exists an open set $\mathcal{O} \supset E^{c}$ such that $m\left(\mathcal{O} \backslash E^{c}\right)<\varepsilon$. Note that $\mathcal{O} \backslash E^{c}=\mathcal{O} \cap E=E \backslash \mathcal{O}^{c}$. Therefore, we have $m(E \backslash K)<\varepsilon$. The set $K:=\mathcal{O}^{c}$ is closed and is contained in E (why?). It follows that for each $\varepsilon>0$, there exists a closed set $K \subset E$ such that $m(K) \leq m(E)=m(E \backslash K)+m(K) \leq \varepsilon+m(K)$. This shows (why?) that

$$
m(E)=\sup \{m(K): K \subset E \text { and } K \text { is closed }\} .
$$

Finally, we want to replace "closed" by "compact". Let $\varepsilon>0$ and consider a closed set $K \subset E$ with $m(K) \leq m(E) \leq m(K)+\varepsilon / 2$. For each
$n \in \mathbb{N}$, define $K_{n}=K \cap[-n, n]$ and note that K_{n} is compact (why?). Also, observe that $K_{n} \subset K_{n+1}$ and $\bigcup_{n=1}^{\infty} K_{n}=K$. Therefore by Theorem 2.19(i) we have

$$
m(K)=\lim _{n \rightarrow \infty} m\left(K_{n}\right) .
$$

In case $m(E)<\infty$, then $m(K)<\infty$ (why?), so this implies that there exists a sufficiently large n such that $m(K) \leq m\left(K_{n}\right)+\varepsilon / 2$. Therefore, $K_{n} \subset K \subset E$ and
$m\left(K_{n}\right) \leq m(K) \leq m(E) \leq m(K)+\varepsilon / 2 \leq m\left(K_{n}\right)+\varepsilon / 2+\varepsilon / 2=m\left(K_{n}\right)+\varepsilon$.
Thus, we have "approximated" the measure of E by the measure of a compact set K_{n}, i.e.,

$$
m(E)=\sup \{m(K): K \subset E \text { and } K \text { is compact }\}
$$

If $m(E)=\infty$, then we must also have $m(K)=\infty$ (why?). If it follows that $\lim _{n \rightarrow \infty} m\left(K_{n}\right)=\infty$, so $m\left(K_{n}\right)$ becomes arbitrarily large as n increases, and in particular it approaches the measure of E. It also follows in this case that

$$
m(E)=\infty=\sup \{m(K): K \subset E \text { and } K \text { is compact }\} .
$$

(Recall that $\sup Z=\infty$ if and only if there exists a sequence $z_{n} \in Z$ with $\lim _{n \rightarrow \infty} z_{n}=\infty$.)

Problem 7. Construct a Cantor-like set $\mathcal{C}(\alpha) \subset[0,1]$ as follows. Fix a number $\alpha \in(0,1)$ and let $\mathcal{C}_{0}=[0,1]$. In order to obtain the set \mathcal{C}_{1}, remove from \mathcal{C}_{0} the "middle" open interval of length α; for example, if $\alpha=1 / 3$ as in the standard Cantor set, then we remove $(1 / 3,2 / 3)$. We write $\mathcal{C}_{1}=I_{1}^{1} \cup I_{2}^{1}$. From each of the intervals $I_{i}^{1}, i=1,2$, we remove a "middle" open interval of length $\alpha \cdot \ell\left(I_{i}^{1}\right)$ and obtain in this way the set \mathcal{C}_{2}. In the n-th step we have a set \mathcal{C}_{n} that is the union of 2^{n} disjoint intervals $I_{i}^{n}, i=1, \ldots, 2^{n}$, and in order to obtain \mathcal{C}_{n+1} we remove from each of them a "middle" open interval of length $\alpha \cdot \ell\left(I_{i}^{n}\right)$. Let

$$
\mathcal{C}(\alpha)=\bigcap_{n=0}^{\infty} \mathcal{C}_{n}
$$

Compute $m(C(\alpha))$.
Hint: Using induction, find a formula for $m\left([0,1] \backslash \mathcal{C}_{n}\right)$ depending on α and n. Then pass to the limit.

Solution. At the first step, we see that $m\left(\mathcal{C}_{1}\right)=1-\alpha$ and $m\left([0,1] \backslash \mathcal{C}_{1}\right)=\alpha$. Intuitively, at each step we are keeping a proportion $(1-\alpha)$ of the measure and we are throwing away a proportion α of the measure. Inductively, one can show (how?) that

$$
m\left(\mathcal{C}_{n+1}\right)=(1-\alpha) m\left(\mathcal{C}_{n}\right)
$$

for each $n \in \mathbb{N}$. Therefore, $m\left(\mathcal{C}_{n}\right)=(1-\alpha)^{n}$. Since $\mathcal{C}(\alpha) \subset \mathcal{C}_{n}$ for all $n \in \mathbb{N}$, we have

$$
m(\mathcal{C}(\alpha)) \leq(1-\alpha)^{n}
$$

for all $n \in \mathbb{N}$, which implies that $m(\mathcal{C}(\alpha))=0$.
Remark: Surprisingly, even if we throw away $1 / 1000$-th of the set at every step, we still get a set of measure 0 .

Problem 8 (Optional). Modify the construction of $\mathcal{C}(\alpha)$ of Problem 7 as follows. Instead of removing a fixed proportion α at each step, remove variable proportions. That is, C_{1} is obtained from C_{0} by removing a "middle" interval of length α_{1}. Then C_{2} is obtained from C_{1} by removing from each of the two intervals of C_{1} a middle interval of proportion α_{2}, and so on. In this way, we obtain another Cantor-like set $\mathcal{C}\left(\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}\right)$ that depends on the sequence of proportions that we choose. Show that the proportions can be chosen so that this Cantor-like set has positive measure.

Problem 9 (Optional). Let $\mathcal{O} \subset \mathbb{R}$ be an open set. Show that there exist disjoint open intervals $I_{i}, i \in \Lambda$, such that

$$
\mathcal{O}=\bigcup_{i \in \Lambda} I_{i} .
$$

Moreover, the index set Λ is finite or countable.
Problem 10 (Optional). Let $E \in \mathcal{M}$ with $m(E)>0$. Then for any $\alpha \in$ $(0,1)$ there exists an interval I such that

$$
m(E \cap I)>\alpha m(I)
$$

Remark: If $\alpha=0.999$, for example, this says that we can always "zoom in" the set E at a small interval I and see that E takes up a lot of space within that interval. An alternative formulation is $m(I \backslash E)<(1-\alpha) m(I)=$ $0.001 m(I)$, so E covers almost all of I.

