Homework 2 (due 09/12)

MAT 324: Real Analysis

Problem 1.

(i) Let £ = {J,2; En. Show that m*(E) = 0 if and only if m*(E,) =0
for all n € N.

(ii) Show that the outer measure is translation invariant: for each A C R
and t € R we have
m(A) = m* (A + 1),

where A+t={z+t:zec A}

Solution. (i) If m*(E,) = 0 for all n € N, then by the subadditivity we have

E) <) m*(En) =
n=1

If m*(E) = 0, then by the monotonicity, since E, C E, we have m*(E,) <
m*(E) =0 for each n € N
(ii) If {I,,}nen are intervals such that A C (J;-, I, then the intervals
{I,, + t}nen cover A+ t. Hence,

(At < ze 0= U
n=1

This holds for all intervals {I,,},en as above so by the definition of outer
measure we have m*(A+t) < m*(A). The same argument shows the reverse
inequality. O

Problem 2.

(i) Show that a countable intersection of measurable sets is measurable.



(ii) Suppose that A, B C R are such that m*(AAB) = 0. Here, AAB =
(A\ B)U(B\ A). Show that A € M if and only if B € M.

Solution. (i) Let E,, € M, n € N. Then
N En. = (U Eﬁ)
n=1 n=1

and the latter is measurable (why?).
(ii) Let G C R be an arbitrary set and suppose that A € M, so

m*(G) =m*(GNA)+m*(GnA°.
We wish to show that
m*(G) =m*(G N B)+m"(GnN B°).

Using the assumption, one can show (how?) that m*(G N B) = m*(G N A)
and m*(G N B¢) = m*(G' N A°) so the conclusion follows. O

Problem 3. Show that if A, B € M with A C B and m(A) < oo, then
m(B\ A) = m(B) — m(A).
Does the statement hold if m(A) = oo?

Solution. Note that B = (B \ A) U A, because A C B. By the additivity of
the measure, we have

m(B) =m(B\ A) + m(A).

Since m(A) < oo, we have m(B \ A) = m(B) — m(A); note that this even
holds if m(B) = co. We only have to avoid having expressions of the form

oo — oo. Indeed, if m(A) = co then the statement fails. For example, let
A =10,00) and B =R. Then m(B) — m(A) does not make sense. O

Problem 4. Suppose that A, B € M. Show that
m(AUB)+m(ANB) =m(A) +m(B).

Solution. Note that AUB = (A\ (ANDB))U(B\(ANB))U(ANB). All sets
involved are measurable and disjoint, so by the additivity of the measure we
have

m(AUB) =m(A\ (ANB))+m(B\ (AN B))+m(ANB).



If m(AN B) = oo then m(A) > m(AN B) = oo so the required statement
holds and we have nothing to prove. Suppose that m(A N B) < co. Using
the previous problem we have

m(AUB) =m(A) —m(ANB)+m(B) —m(ANB)+m(ANB)
=m(A) +m(B) — (AN B)

as desired. 0

Problem 5. Let F, € M, n € N. Is it true that

o

m (ﬂ En> = lim m(E,)?
n=1

What if we further assume that FE, C FE,y; for each n € N7 What if we

even further assume that the limit in the right hand side exists and is a
finite number?

Solution. In general the statement is not true. For example, let E,, = [n,n+
1]. Then the intersection is empty, but m(E,) = 1.

Even if we assume that E, C E,11 the statement fails. For example, let
E, = [n,00). Then (72, E, = 0 so its measure is 0. On the other hand,
m(Ey) = 00, so limy,_oo m(E,) = oo # 0.

Finally, if we assume that lim, o m(E,) < oo, then the statement is
true. See the proof of Theorem 2.19(ii) in the book. O]

Problem 6. Let £ € M. Show that
m(E) =sup{m(K): K C F and K is compact}.

Solution. We have proved that if £ € M, then for each € > 0 there exists
an open set O D E such that m(O\ E) < ¢.

Since E € M, we have E¢ € M. Hence, for each ¢ there exists an open
set O D E° such that m(O \ E€) < e. Note that O\ E°=0ONE = E\ O°
Therefore, we have m(E\K) < e. The set K := O¢ is closed and is contained
in E (why?). It follows that for each € > 0, there exists a closed set K C E
such that m(K) < m(E) = m(E \ K) + m(K) < ¢ + m(K). This shows
(why?) that

m(E) =sup{m(K): K C E and K is closed}.

Finally, we want to replace “closed” by “compact”. Let ¢ > 0 and
consider a closed set K C E with m(K) < m(E) < m(K) + ¢/2. For each



n € N, define K,, = K N[—n,n] and note that K, is compact (why?). Also,
observe that K, C K, and {J,~; K, = K. Therefore by Theorem 2.19(i)

we have
m(K) = lim m(K,).

n—o0

In case m(E) < oo, then m(K) < oo (why?), so this implies that there
exists a sufficiently large n such that m(K) < m(K,) + /2. Therefore,
K, C K C E and

m(Ky) <m(K) <m(E) <m(K)+e/2 <m(K,)+e/2+¢/2 =m(K,)+e.

Thus, we have “approximated” the measure of E by the measure of a com-
pact set K, i.e.,

m(E) =sup{m(K): K C E and K is compact}.

If m(E) = oo, then we must also have m(K) = oo (why?). If it fol-
lows that lim,, . m(K,) = oo, so m(K,) becomes arbitrarily large as n
increases, and in particular it approaches the measure of E. It also follows
in this case that

m(E) = oo =sup{m(K): K C E and K is compact}.

(Recall that sup Z = oo if and only if there exists a sequence z, € Z with
limy, 00 25, = 00.) O

Problem 7. Construct a Cantor-like set C(a)) C [0,1] as follows. Fix a
number « € (0,1) and let Cy = [0, 1]. In order to obtain the set Ci, remove
from Cy the “middle” open interval of length «; for example, if « = 1/3 as in
the standard Cantor set, then we remove (1/3,2/3). We write C; = I1 U I3.
From each of the intervals Iil, 1 = 1,2, we remove a “middle” open interval
of length «- ¢(I}) and obtain in this way the set Cy. In the n-th step we have
a set C, that is the union of 2" disjoint intervals I, i = 1,...,2", and in
order to obtain C,41 we remove from each of them a “middle” open interval
of length o - £(I]"). Let

C(e) = [ Cn-
n=0

Compute m(C(a)).
Hint: Using induction, find a formula for m(|[0, 1]\ C,) depending on a and
n. Then pass to the limit.



Solution. At the first step, we see that m(C;) = 1 —a and m([0,1]\C1) = a.
Intuitively, at each step we are keeping a proportion (1 — «) of the measure
and we are throwing away a proportion « of the measure. Inductively, one
can show (how?) that

m(Cn1) = (1 = )m(Cp)

for each n € N. Therefore, m(C,,) = (1 —«)". Since C(a) C C,, for all n € N,
we have

m(C(a)) < (1 —a)"

for all n € N, which implies that m(C(a)) = 0.
Remark: Surprisingly, even if we throw away 1/1000-th of the set at every
step, we still get a set of measure 0. ]

Problem 8 (Optional). Modify the construction of C(«) of Problem 7 as
follows. Instead of removing a fixed proportion « at each step, remove vari-
able proportions. That is, C'1 is obtained from Cjy by removing a “middle”
interval of length a;. Then C5 is obtained from C; by removing from each
of the two intervals of C1 a middle interval of proportion a9, and so on. In
this way, we obtain another Cantor-like set C({ay }nen) that depends on the
sequence of proportions that we choose. Show that the proportions can be
chosen so that this Cantor-like set has positive measure.

Problem 9 (Optional). Let O C R be an open set. Show that there exist
disjoint open intervals I;, i € A, such that

0=|JI.
€A
Moreover, the index set A is finite or countable.

Problem 10 (Optional). Let £ € M with m(E) > 0. Then for any o €
(0,1) there exists an interval I such that

m(ENI)>am(I).

Remark: If o = 0.999, for example, this says that we can always “zoom
in” the set F at a small interval I and see that E takes up a lot of space
within that interval. An alternative formulation is m(I'\E) < (1—a)m(I) =
0.001m(I), so E covers almost all of I.



