Homework 2 (due 09/12)

MAT 324: Real Analysis

Problem 1.

(i) Let $E=\bigcup_{n=1}^{\infty} E_{n}$. Show that $m^{*}(E)=0$ if and only if $m^{*}\left(E_{n}\right)=0$ for all $n \in \mathbb{N}$.
(ii) Show that the outer measure is translation invariant: for each $A \subset \mathbb{R}$ and $t \in \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}(A+t)
$$

where $A+t=\{x+t: x \in A\}$.

Problem 2.

(i) Show that a countable intersection of measurable sets is measurable.
(ii) Suppose that $A, B \subset \mathbb{R}$ are such that $m^{*}(A \Delta B)=0$. Here, $A \Delta B=$ $(A \backslash B) \cup(B \backslash A)$. Show that $A \in \mathcal{M}$ if and only if $B \in \mathcal{M}$.

Problem 3. Show that if $A, B \in \mathcal{M}$ with $A \subset B$ and $m(A)<\infty$, then

$$
m(B \backslash A)=m(B)-m(A) .
$$

Does the statement hold if $m(A)=\infty$?
Problem 4. Suppose that $A, B \in \mathcal{M}$. Show that

$$
m(A \cup B)+m(A \cap B)=m(A)+m(B)
$$

Problem 5. Let $E_{n} \in \mathcal{M}, n \in \mathbb{N}$. Is it true that

$$
m\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right) ?
$$

What if we further assume that $E_{n+1} \subset E_{n}$ for each $n \in \mathbb{N}$? What if we even further assume that the limit in the right hand side exists and is a finite number?

Problem 6. Let $E \in \mathcal{M}$. Show that

$$
m(E)=\sup \{m(K): K \subset E \text { and } K \text { is compact }\} .
$$

Problem 7. Construct a Cantor-like set $\mathcal{C}(\alpha) \subset[0,1]$ as follows. Fix a number $\alpha \in(0,1)$ and let $\mathcal{C}_{0}=[0,1]$. In order to obtain the set \mathcal{C}_{1}, remove from \mathcal{C}_{0} the "middle" open interval of length α; for example, if $\alpha=1 / 3$ as in the standard Cantor set, then we remove $(1 / 3,2 / 3)$. We write $\mathcal{C}_{1}=I_{1}^{1} \cup I_{2}^{1}$. From each of the intervals $I_{i}^{1}, i=1,2$, we remove a "middle" open interval of length $\alpha \cdot \ell\left(I_{i}^{1}\right)$ and obtain in this way the set \mathcal{C}_{2}. In the n-th step we have a set \mathcal{C}_{n} that is the union of 2^{n} disjoint intervals $I_{i}^{n}, i=1, \ldots, 2^{n}$, and in order to obtain \mathcal{C}_{n+1} we remove from each of them a "middle" open interval of length $\alpha \cdot \ell\left(I_{i}^{n}\right)$. Let

$$
\mathcal{C}(\alpha)=\bigcap_{n=0}^{\infty} \mathcal{C}_{n} .
$$

Compute $m(C(\alpha))$.
Hint: Using induction, find a formula for $m\left([0,1] \backslash \mathcal{C}_{n}\right)$ depending on α and n. Then pass to the limit.

Problem 8 (Optional). Modify the construction of $\mathcal{C}(\alpha)$ of Problem 7 as follows. Instead of removing a fixed proportion α at each step, remove variable proportions. That is, C_{1} is obtained from C_{0} by removing a "middle" interval of length α_{1}. Then C_{2} is obtained from C_{1} by removing from each of the two intervals of C_{1} a middle interval of proportion α_{2}, and so on. In this way, we obtain another Cantor-like set $\mathcal{C}\left(\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}\right)$ that depends on the sequence of proportions that we choose. Show that the proportions can be chosen so that this Cantor-like set has positive measure.

Problem 9 (Optional). Let $\mathcal{O} \subset \mathbb{R}$ be an open set. Show that there exist disjoint open intervals $I_{i}, i \in \Lambda$, such that

$$
\mathcal{O}=\bigcup_{i \in \Lambda} I_{i}
$$

Moreover, the index set Λ is finite or countable.
Problem 10 (Optional). Let $E \in \mathcal{M}$ with $m(E)>0$. Then for any $\alpha \in$ $(0,1)$ there exists an interval I such that

$$
m(E \cap I)>\alpha m(I)
$$

Remark: If $\alpha=0.999$, for example, this says that we can always "zoom
in" the set E at a small interval I and see that E takes up a lot of space within that interval. An alternative formulation is $m(I \backslash E)<(1-\alpha) m(I)=$ $0.001 m(I)$, so E covers almost all of I.

