Homework 1 (due 09/05)

MAT 324: Real Analysis

Problem 1. Let $A \subset \mathbb{R}$ be a countable set. Show that A is a null set by proving that for each $\varepsilon>0$ there exist open intervals $I_{n}, n \in \mathbb{N}$, such that $A \subset \bigcup_{n=1}^{\infty} I_{n}$ and $\sum_{n=1}^{\infty} \ell\left(I_{n}\right)<\varepsilon$.
Solution. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ be an enumeration of A. Fix $\varepsilon>0$ and define $I_{n}=\left(a_{n}-\varepsilon / 2^{n+2}, a_{n}+\varepsilon / 2^{n+2}\right)$ for $n \in \mathbb{N}$. Then $A \subset \bigcup_{n=1}^{\infty} I_{n}$ and

$$
\sum_{n=1}^{\infty} \ell\left(I_{n}\right)=\sum_{n=1}^{\infty} 2 \frac{\varepsilon}{2^{n+2}}=\varepsilon / 2<\varepsilon
$$

Problem 2. Let \mathcal{C} be the middle-thirds Cantor set constructed in the textbook. Show that \mathcal{C} is compact, uncountable, and a null set.
Solution. $\mathcal{C}=\bigcap_{n=1}^{\infty} C_{n}$, where each set C_{n} is the union of 2^{n} disjoint closed intervals of length 3^{n}. The intersection of closed sets is always closed, so \mathcal{C} is closed. Moreover, $\mathcal{C} \subset[0,1]$, so it is bounded. Therefore, by the Heine-Borel theorem we conclude that \mathcal{C} is compact.

The set \mathcal{C} is covered by C_{n}, which is a union of disjoint intervals, so by the definition of m^{*} we have

$$
m^{*}(\mathcal{C}) \leq \ell\left(C_{n}\right)=\frac{2^{n}}{3^{n}}
$$

This holds for all $n \in \mathbb{N}$, so if we take limits as $n \rightarrow \infty$, we find $m^{*}(\mathcal{C})=0$.
An alternative way to represent \mathcal{C} is all numbers in $[0,1]$ that have a ternary expansion using only the digits 0 and 2 . Suppose that \mathcal{C} were countable, so there would be an enumeration $\mathcal{C}=\left\{x_{1}, x_{2}, \ldots\right\}$. We write the ternary expansion of each x_{n} :

$$
x_{n}=0 . x_{n 1} x_{n 2} x_{n 3} \ldots,
$$

where $x_{n k} \in\{0,2\}$ for each $k \in \mathbb{N}$. Now define a number

$$
y=0 . b_{1} b_{2} b_{3} \ldots
$$

as follows. If $x_{n n=0}$, then set $b_{n}=2$ and if $x_{n n=2}$, set $b_{n}=0$. The number y has to lie in the Cantor set. However, it is not equal to any of the numbers x_{n} (Why? Couldn't x_{n} have two different ternary representations?). This is a contradiction.

Problem 3.

(i) Show that if $A \subset \mathbb{R}$ is an arbitrary set and $B \subset \mathbb{R}$ is a null set then $m^{*}(A \backslash B)=m^{*}(A)$. Conversely, show that if $B \subset \mathbb{R}$ is a set with the property that $m^{*}(A \backslash B)=m^{*}(A)$ for all sets $A \subset \mathbb{R}$, then B is a null set.
(ii) Show that if $A_{1}, A_{2} \subset \mathbb{R}$ and $m^{*}\left(A_{1} \cap A_{2}\right)=m^{*}\left(A_{1} \cup A_{2}\right)$, then $m^{*}\left(A_{1}\right)=m^{*}\left(A_{2}\right)$. Does the converse hold?
(iii) Show that if $A \subset \mathbb{R}$ is a bounded set then $m^{*}(A)<\infty$. Does the converse hold?
(iv) Show that if $A \subset \mathbb{R}$ has non-empty interior then $m^{*}(A)>0$.

Solution.

(i) Note that $A \backslash B \subset A$, so $m^{*}(A \backslash B) \leq m^{*}(A)$. On the other hand, $A=(A \backslash B) \cup(B \cap A)$ so by the subadditivity of m^{*} and the fact that $B \cap A \subset B$ we have
$m^{*}(A) \leq m^{*}(A \backslash B)+m^{*}(B \cap A) \leq m^{*}(A \backslash B)+m^{*}(B)=m^{*}(A \backslash B)$.
For the converse, one can use $A=B$:

$$
m^{*}(B)=m^{*}(B \backslash B)=m^{*}(\emptyset)=0
$$

(ii) $A_{1} \cap A_{2} \subset A_{1} \subset A_{1} \cup A_{2}$. Hence,

$$
m^{*}\left(A_{1} \cap A_{2}\right) \leq m^{*}\left(A_{1}\right) \leq m^{*}\left(A_{1} \cup A_{2}\right)
$$

Since $m^{*}\left(A_{1} \cap A_{2}\right)=m^{*}\left(A_{1} \cup A_{2}\right)$, we have everywhere equality above, so $m^{*}\left(A_{1}\right)=m^{*}\left(A_{1} \cap A_{2}\right)$. In the same way, $m^{*}\left(A_{2}\right)=m^{*}\left(A_{1} \cap A_{2}\right)$, so we obtain the desired conclusion
The converse does not hold. For $A_{1}=[0,1]$ and $A_{2}=[1,2]$ we have $A_{1} \cap A_{2}=\{1\}$, so $m^{*}\left(A_{1} \cap A_{2}\right)=\ell(\{1\})=0$ and $m^{*}\left(A_{1} \cup A_{2}\right)=$ $m^{*}([0,2])=\ell([0,2])=2$.
(iii) Let A be bounded. Then there exists a bounded interval $I=(m, M)$ such that $A \subset I$; for example, one can take $m=\inf A$ and $M=$ $\sup A$, which are both finite numbers. By the definition of m^{*} we have $m^{*}(A) \leq \ell(I)<\infty$.
The converse does not hold. Consider the set $A=\bigcup_{n=1}^{\infty}\left[n, n+1 / 2^{n}\right]$, which is unbounded. However, by the subadditivity of m^{*} we have

$$
m^{*}(A) \leq \sum_{n=1}^{\infty} m^{*}\left(\left[n, n+1 / 2^{n}\right]\right)=\sum_{n=1}^{\infty} 1 / 2^{n}=1<\infty
$$

(iv) Suppose that A has non-empty interior. This implies that there exists an open interval $I \subset A$ (why?). By monotonicity, we have

$$
0<m^{*}(I) \leq m^{*}(A)
$$

so $m^{*}(A)>0$.
Problem 4. Let A be the subset of $(0,1]$ consisting of all numbers whose (non-terminating) base-4 expansion (see Problem 5) does not have the digit 2. Find $m^{*}(A)$.

Hint: Note that the subset of $(0,1]$ consisting of numbers whose first digit in their (non-terminating) base-4 expansion is different from 2 is $(0,2 / 4] \cup$ $[3 / 4,1]$, so $A \subset(0,2 / 4] \cup(3 / 4,1]$ (why?). Hence, $m^{*}(A) \leq 1 / 2+1 / 4=3 / 4$ (why?). Using induction find a sequence r_{n} with $\lim _{n \rightarrow \infty} r_{n}=0$ such that $m^{*}(A) \leq r_{n}$ for all $n \in \mathbb{N}$.

Solution. For each $n \in \mathbb{N}$ let A_{n} be the set of numbers of the form $0 . a_{1} \ldots a_{n} \ldots$ where $a_{1}, \ldots, a_{n} \in\{0,1,3\}$. We claim that the set A_{n} is the union of 3^{n} disjoint intervals of length $1 / 4^{n}$ and that $\ell\left(A_{n}\right)=3^{n} / 4^{n}$ for each $n \in \mathbb{N}$. The set A_{n} is the union of intervals of the form $\left(0 . a_{1} \ldots a_{n-1} 0,0 . a_{1} \ldots a_{n-1} 1\right]$, $\left(0 . a_{1} \ldots a_{n-1} 1,0 . a_{1} \ldots a_{n-1} 2\right]$, and $\left(0 . a_{1} \ldots a_{n-1} 2,0 . a_{1} \ldots a_{n-1} 3\right]$. Each of these intervals has length $1 / 4^{n}$ and the total number of them (as $a_{1} \ldots, a_{n-1}$ range over $0,1,3)$ is 4^{n}.

Since $A \subset A_{n}$, by the definition of m^{*} we have

$$
m^{*}(A) \leq \ell\left(A_{n}\right)=3^{n} / 4^{n}
$$

Letting $n \rightarrow \infty$ we obtain $m^{*}(A)=0$.
Remark: note the similarity between this construction and the construction of the Cantor set.

Problem 5 (Optional). Show that every number in $(0,1]$ has a unique nonterminating base-p expansion, where p is a positive integer. In other words, for each $x \in(0,1]$ show that there exist unique numbers $k_{n} \in\{0,1, \ldots, p\}$, $n \in \mathbb{N}$, such that

$$
x=\sum_{n=1}^{\infty} \frac{k_{n}}{p^{n}}
$$

and such that k_{n} is non-zero for infinitely many $n \in \mathbb{N}$.
Remark: The above equality can also be expressed as $x=0 . k_{1} k_{2} k_{3} \ldots$ in base p. Which number does $0.111 \ldots$ in binary expansion (i.e, $p=2$) represent?
Hint: Let k_{1} be the largest integer such that $k_{1} / p<x$ (note that $0 \leq$ $\left.k_{1}<p\right)$; then let k_{2} be the largest integer such that $k_{1} / p+k_{2} / p^{2}<x$, and proceed inductively. Show then that with this definition of k_{n} we have $x=\sum_{n=1}^{\infty} k_{n} / p^{n}$.

Problem 6 (Optional). For each $n \in \mathbb{N}$ consider a sequence $\left\{a_{n k}\right\}_{k \geq 1}$ of non-negative real numbers. Explain why the double sum

$$
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n k}
$$

always converges and it is a non-negative number, possibly infinite. Let $\left\{b_{j}\right\}_{j \geq 1}$ be a rearrangement of $\left\{a_{n k}\right\}_{k, n \geq 1}$; that is, for each $j \in \mathbb{N}$ there exists a unique pair $(n, k) \in \mathbb{N} \times \mathbb{N}$ such that $b_{j}=a_{n k}$ and conversely for each pair $(n, k) \in \mathbb{N} \times \mathbb{N}$ there exists a unique $j \in \mathbb{N}$ such that $a_{n k}=b_{j}$. Show that

$$
\sum_{j=1}^{\infty} b_{j}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n k}=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{n k} .
$$

In particular, any rearrangement of $\left\{a_{n k}\right\}_{n, k \geq 1}$ gives the same sum. Does the same hold if the numbers $a_{n k}$ are not assumed to be non-negative, even assuming that all series converge?
Hint: Think of an example where $a_{n k}$ is $-1,0$, or 1 .
Problem 7 (Optional). Show that the Cantor staircase function $f:[0,1] \rightarrow$ $[0,1]$, as defined in the lecture, is continuous, increasing, satisfies $f(0)=0$, $f(1)=1$, and it is constant in each interval lying in the complement of the middle-thirds Cantor set. Therefore, all the increase of the function f occurs in a "negligible" set, the Cantor set, which is a null set.

Problem 8 (Optional). Let $[a, b] \subset \mathbb{R}$ be a bounded interval, and suppose that J_{1}, \ldots, J_{m} are open intervals whose union covers $[a, b]$. Show that

$$
\ell([a, b])=b-a \leq \sum_{i=1}^{m} \ell\left(J_{i}\right) .
$$

