
Homework 1 (due 09/05)

MAT 324: Real Analysis

Problem 1. Let A ⊂ R be a countable set. Show that A is a null set by
proving that for each ε > 0 there exist open intervals In, n ∈ N, such that
A ⊂

⋃∞
n=1 In and

∑∞
n=1 `(In) < ε.

Solution. Let A = {a1, a2, . . . } be an enumeration of A. Fix ε > 0 and
define In = (an − ε/2n+2, an + ε/2n+2) for n ∈ N. Then A ⊂

⋃∞
n=1 In and

∞∑
n=1

`(In) =

∞∑
n=1

2
ε

2n+2
= ε/2 < ε.

Problem 2. Let C be the middle-thirds Cantor set constructed in the text-
book. Show that C is compact, uncountable, and a null set.

Solution. C =
⋂∞

n=1Cn, where each set Cn is the union of 2n disjoint closed
intervals of length 3n. The intersection of closed sets is always closed, so C is
closed. Moreover, C ⊂ [0, 1], so it is bounded. Therefore, by the Heine-Borel
theorem we conclude that C is compact.

The set C is covered by Cn, which is a union of disjoint intervals, so by
the definition of m∗ we have

m∗(C) ≤ `(Cn) =
2n

3n
.

This holds for all n ∈ N, so if we take limits as n→∞, we find m∗(C) = 0.
An alternative way to represent C is all numbers in [0, 1] that have a

ternary expansion using only the digits 0 and 2. Suppose that C were count-
able, so there would be an enumeration C = {x1, x2, . . . }. We write the
ternary expansion of each xn:

xn = 0.xn1xn2xn3 . . . ,

where xnk ∈ {0, 2} for each k ∈ N. Now define a number

y = 0.b1b2b3 . . .
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as follows. If xnn=0, then set bn = 2 and if xnn=2, set bn = 0. The number y
has to lie in the Cantor set. However, it is not equal to any of the numbers
xn (Why? Couldn’t xn have two different ternary representations?). This
is a contradiction.

Problem 3.

(i) Show that if A ⊂ R is an arbitrary set and B ⊂ R is a null set then
m∗(A \B) = m∗(A). Conversely, show that if B ⊂ R is a set with the
property that m∗(A \B) = m∗(A) for all sets A ⊂ R, then B is a null
set.

(ii) Show that if A1, A2 ⊂ R and m∗(A1 ∩ A2) = m∗(A1 ∪ A2), then
m∗(A1) = m∗(A2). Does the converse hold?

(iii) Show that if A ⊂ R is a bounded set then m∗(A) < ∞. Does the
converse hold?

(iv) Show that if A ⊂ R has non-empty interior then m∗(A) > 0.

Solution.

(i) Note that A \ B ⊂ A, so m∗(A \ B) ≤ m∗(A). On the other hand,
A = (A \B)∪ (B ∩A) so by the subadditivity of m∗ and the fact that
B ∩A ⊂ B we have

m∗(A) ≤ m∗(A \B) +m∗(B ∩A) ≤ m∗(A \B) +m∗(B) = m∗(A \B).

For the converse, one can use A = B:

m∗(B) = m∗(B \B) = m∗(∅) = 0.

(ii) A1 ∩A2 ⊂ A1 ⊂ A1 ∪A2. Hence,

m∗(A1 ∩A2) ≤ m∗(A1) ≤ m∗(A1 ∪A2).

Since m∗(A1∩A2) = m∗(A1∪A2), we have everywhere equality above,
so m∗(A1) = m∗(A1 ∩ A2). In the same way, m∗(A2) = m∗(A1 ∩ A2),
so we obtain the desired conclusion

The converse does not hold. For A1 = [0, 1] and A2 = [1, 2] we have
A1 ∩ A2 = {1}, so m∗(A1 ∩ A2) = `({1}) = 0 and m∗(A1 ∪ A2) =
m∗([0, 2]) = `([0, 2]) = 2.
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(iii) Let A be bounded. Then there exists a bounded interval I = (m,M)
such that A ⊂ I; for example, one can take m = inf A and M =
supA, which are both finite numbers. By the definition of m∗ we have
m∗(A) ≤ `(I) <∞.

The converse does not hold. Consider the set A =
⋃∞

n=1[n, n + 1/2n],
which is unbounded. However, by the subadditivity of m∗ we have

m∗(A) ≤
∞∑
n=1

m∗([n, n + 1/2n]) =

∞∑
n=1

1/2n = 1 <∞.

(iv) Suppose that A has non-empty interior. This implies that there exists
an open interval I ⊂ A (why?). By monotonicity, we have

0 < m∗(I) ≤ m∗(A)

so m∗(A) > 0.

Problem 4. Let A be the subset of (0, 1] consisting of all numbers whose
(non-terminating) base-4 expansion (see Problem 5) does not have the digit
2. Find m∗(A).
Hint: Note that the subset of (0, 1] consisting of numbers whose first digit
in their (non-terminating) base-4 expansion is different from 2 is (0, 2/4] ∪
[3/4, 1], so A ⊂ (0, 2/4] ∪ (3/4, 1] (why?). Hence, m∗(A) ≤ 1/2 + 1/4 = 3/4
(why?). Using induction find a sequence rn with limn→∞ rn = 0 such that
m∗(A) ≤ rn for all n ∈ N.

Solution. For each n ∈ N let An be the set of numbers of the form 0.a1 . . . an . . .
where a1, . . . , an ∈ {0, 1, 3}. We claim that the set An is the union of 3n dis-
joint intervals of length 1/4n and that `(An) = 3n/4n for each n ∈ N. The
set An is the union of intervals of the form (0.a1 . . . an−10, 0.a1 . . . an−11],
(0.a1 . . . an−11, 0.a1 . . . an−12], and (0.a1 . . . an−12, 0.a1 . . . an−13]. Each of
these intervals has length 1/4n and the total number of them (as a1 . . . , an−1
range over 0, 1, 3) is 4n.

Since A ⊂ An, by the definition of m∗ we have

m∗(A) ≤ `(An) = 3n/4n.

Letting n→∞ we obtain m∗(A) = 0.
Remark: note the similarity between this construction and the construction
of the Cantor set.
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Problem 5 (Optional). Show that every number in (0, 1] has a unique non-
terminating base-p expansion, where p is a positive integer. In other words,
for each x ∈ (0, 1] show that there exist unique numbers kn ∈ {0, 1, . . . , p},
n ∈ N, such that

x =
∞∑
n=1

kn
pn

and such that kn is non-zero for infinitely many n ∈ N.
Remark: The above equality can also be expressed as x = 0.k1k2k3 . . .
in base p. Which number does 0.111 . . . in binary expansion (i.e, p = 2)
represent?
Hint: Let k1 be the largest integer such that k1/p < x (note that 0 ≤
k1 < p); then let k2 be the largest integer such that k1/p + k2/p

2 < x,
and proceed inductively. Show then that with this definition of kn we have
x =

∑∞
n=1 kn/p

n.

Problem 6 (Optional). For each n ∈ N consider a sequence {ank}k≥1 of
non-negative real numbers. Explain why the double sum

∞∑
n=1

∞∑
k=1

ank

always converges and it is a non-negative number, possibly infinite. Let
{bj}j≥1 be a rearrangement of {ank}k,n≥1; that is, for each j ∈ N there
exists a unique pair (n, k) ∈ N × N such that bj = ank and conversely for
each pair (n, k) ∈ N × N there exists a unique j ∈ N such that ank = bj .
Show that

∞∑
j=1

bj =

∞∑
n=1

∞∑
k=1

ank =

∞∑
k=1

∞∑
n=1

ank.

In particular, any rearrangement of {ank}n,k≥1 gives the same sum. Does
the same hold if the numbers ank are not assumed to be non-negative, even
assuming that all series converge?
Hint: Think of an example where ank is −1, 0, or 1.

Problem 7 (Optional). Show that the Cantor staircase function f : [0, 1]→
[0, 1], as defined in the lecture, is continuous, increasing, satisfies f(0) = 0,
f(1) = 1, and it is constant in each interval lying in the complement of
the middle-thirds Cantor set. Therefore, all the increase of the function f
occurs in a “negligible” set, the Cantor set, which is a null set.

4



Problem 8 (Optional). Let [a, b] ⊂ R be a bounded interval, and suppose
that J1, . . . , Jm are open intervals whose union covers [a, b]. Show that

`([a, b]) = b− a ≤
m∑
i=1

`(Ji).
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