
Homework 1 (due 09/05)

MAT 324: Real Analysis

Problem 1. Let A ⊂ R be a countable set. Show that A is a null set by
proving that for each ε > 0 there exist open intervals In, n ∈ N, such that
A ⊂

⋃∞
n=1 In and

∑∞
n=1 `(In) < ε.

Problem 2. Let C be the middle-thirds Cantor set constructed in the text-
book. Show that C is compact, uncountable, and a null set.

Problem 3.

(i) Show that if A ⊂ R is an arbitrary set and B ⊂ R is a null set then
m∗(A \B) = m∗(A). Conversely, show that if B ⊂ R is a set with the
property that m∗(A \B) = m∗(A) for all sets A ⊂ R, then B is a null
set.

(ii) Show that if A1, A2 ⊂ R and m∗(A1 ∩ A2) = m∗(A1 ∪ A2), then
m∗(A1) = m∗(A2). Does the converse hold?

(iii) Show that if A ⊂ R is a bounded set then m∗(A) < ∞. Does the
converse hold?

(iv) Show that if A ⊂ R has non-empty interior then m∗(A) > 0.

Problem 4. Let A be the subset of (0, 1] consisting of all numbers whose
(non-terminating) base-4 expansion (see Problem 5) does not have the digit
2. Find m∗(A).
Hint: Note that the subset of (0, 1] consisting of numbers whose first digit
in their (non-terminating) base-4 expansion is different from 2 is (0, 2/4] ∪
[3/4, 1], so A ⊂ (0, 2/4] ∪ (3/4, 1] (why?). Hence, m∗(A) ≤ 1/2 + 1/4 = 3/4
(why?). Using induction find a sequence rn with limn→∞ rn = 0 such that
m∗(A) ≤ rn for all n ∈ N.
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Problem 5 (Optional). Show that every number in (0, 1] has a unique non-
terminating base-p expansion, where p is a positive integer. In other words,
for each x ∈ (0, 1] show that there exist unique numbers kn ∈ {0, 1, . . . , p},
n ∈ N, such that

x =
∞∑
n=1

kn
pn

and such that kn is non-zero for infinitely many n ∈ N.
Remark: The above equality can also be expressed as x = 0.k1k2k3 . . .
in base p. Which number does 0.111 . . . in binary expansion (i.e, p = 2)
represent?
Hint: Let k1 be the largest integer such that k1/p < x (note that 0 ≤
k1 < p); then let k2 be the largest integer such that k1/p + k2/p

2 < x,
and proceed inductively. Show then that with this definition of kn we have
x =

∑∞
n=1 kn/p

n.

Problem 6 (Optional). For each n ∈ N consider a sequence {ank}k≥1 of
non-negative real numbers. Explain why the double sum

∞∑
n=1

∞∑
k=1

ank

always converges and it is a non-negative number, possibly infinite. Let
{bj}j≥1 be a rearrangement of {ank}k,n≥1; that is, for each j ∈ N there
exists a unique pair (n, k) ∈ N × N such that bj = ank and conversely for
each pair (n, k) ∈ N × N there exists a unique j ∈ N such that ank = bj .
Show that

∞∑
j=1

bj =

∞∑
n=1

∞∑
k=1

ank =

∞∑
k=1

∞∑
n=1

ank.

In particular, any rearrangement of {ank}n,k≥1 gives the same sum. Does
the same hold if the numbers ank are not assumed to be non-negative, even
assuming that all series converge?
Hint: Think of an example where ank is −1, 0, or 1.

Problem 7 (Optional). Show that the Cantor staircase function f : [0, 1]→
[0, 1], as defined in the lecture, is continuous, increasing, satisfies f(0) = 0,
f(1) = 1, and it is constant in each interval lying in the complement of
the middle-thirds Cantor set. Therefore, all the increase of the function f
occurs in a “negligible” set, the Cantor set, which is a null set.
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Problem 8 (Optional). Let [a, b] ⊂ R be a bounded interval, and suppose
that J1, . . . , Jm are open intervals whose union covers [a, b]. Show that

`([a, b]) = b− a ≤
m∑
i=1

`(Ji).
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