Homework 1 (due 09/05)

MAT 324: Real Analysis

Problem 1. Let $A \subset \mathbb{R}$ be a countable set. Show that A is a null set by proving that for each $\varepsilon>0$ there exist open intervals $I_{n}, n \in \mathbb{N}$, such that $A \subset \bigcup_{n=1}^{\infty} I_{n}$ and $\sum_{n=1}^{\infty} \ell\left(I_{n}\right)<\varepsilon$.

Problem 2. Let \mathcal{C} be the middle-thirds Cantor set constructed in the textbook. Show that \mathcal{C} is compact, uncountable, and a null set.

Problem 3.

(i) Show that if $A \subset \mathbb{R}$ is an arbitrary set and $B \subset \mathbb{R}$ is a null set then $m^{*}(A \backslash B)=m^{*}(A)$. Conversely, show that if $B \subset \mathbb{R}$ is a set with the property that $m^{*}(A \backslash B)=m^{*}(A)$ for all sets $A \subset \mathbb{R}$, then B is a null set.
(ii) Show that if $A_{1}, A_{2} \subset \mathbb{R}$ and $m^{*}\left(A_{1} \cap A_{2}\right)=m^{*}\left(A_{1} \cup A_{2}\right)$, then $m^{*}\left(A_{1}\right)=m^{*}\left(A_{2}\right)$. Does the converse hold?
(iii) Show that if $A \subset \mathbb{R}$ is a bounded set then $m^{*}(A)<\infty$. Does the converse hold?
(iv) Show that if $A \subset \mathbb{R}$ has non-empty interior then $m^{*}(A)>0$.

Problem 4. Let A be the subset of $(0,1]$ consisting of all numbers whose (non-terminating) base-4 expansion (see Problem 5) does not have the digit 2. Find $m^{*}(A)$.

Hint: Note that the subset of $(0,1]$ consisting of numbers whose first digit in their (non-terminating) base-4 expansion is different from 2 is $(0,2 / 4] \cup$ $[3 / 4,1]$, so $A \subset(0,2 / 4] \cup(3 / 4,1]$ (why?). Hence, $m^{*}(A) \leq 1 / 2+1 / 4=3 / 4$ (why?). Using induction find a sequence r_{n} with $\lim _{n \rightarrow \infty} r_{n}=0$ such that $m^{*}(A) \leq r_{n}$ for all $n \in \mathbb{N}$.

Problem 5 (Optional). Show that every number in $(0,1]$ has a unique nonterminating base-p expansion, where p is a positive integer. In other words, for each $x \in(0,1]$ show that there exist unique numbers $k_{n} \in\{0,1, \ldots, p\}$, $n \in \mathbb{N}$, such that

$$
x=\sum_{n=1}^{\infty} \frac{k_{n}}{p^{n}}
$$

and such that k_{n} is non-zero for infinitely many $n \in \mathbb{N}$.
Remark: The above equality can also be expressed as $x=0 . k_{1} k_{2} k_{3} \ldots$ in base p. Which number does $0.111 \ldots$ in binary expansion (i.e, $p=2$) represent?
Hint: Let k_{1} be the largest integer such that $k_{1} / p<x$ (note that $0 \leq$ $\left.k_{1}<p\right)$; then let k_{2} be the largest integer such that $k_{1} / p+k_{2} / p^{2}<x$, and proceed inductively. Show then that with this definition of k_{n} we have $x=\sum_{n=1}^{\infty} k_{n} / p^{n}$.

Problem 6 (Optional). For each $n \in \mathbb{N}$ consider a sequence $\left\{a_{n k}\right\}_{k \geq 1}$ of non-negative real numbers. Explain why the double sum

$$
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n k}
$$

always converges and it is a non-negative number, possibly infinite. Let $\left\{b_{j}\right\}_{j \geq 1}$ be a rearrangement of $\left\{a_{n k}\right\}_{k, n \geq 1}$; that is, for each $j \in \mathbb{N}$ there exists a unique pair $(n, k) \in \mathbb{N} \times \mathbb{N}$ such that $b_{j}=a_{n k}$ and conversely for each pair $(n, k) \in \mathbb{N} \times \mathbb{N}$ there exists a unique $j \in \mathbb{N}$ such that $a_{n k}=b_{j}$. Show that

$$
\sum_{j=1}^{\infty} b_{j}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n k}=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{n k} .
$$

In particular, any rearrangement of $\left\{a_{n k}\right\}_{n, k \geq 1}$ gives the same sum. Does the same hold if the numbers $a_{n k}$ are not assumed to be non-negative, even assuming that all series converge?
Hint: Think of an example where $a_{n k}$ is $-1,0$, or 1 .
Problem 7 (Optional). Show that the Cantor staircase function $f:[0,1] \rightarrow$ $[0,1]$, as defined in the lecture, is continuous, increasing, satisfies $f(0)=0$, $f(1)=1$, and it is constant in each interval lying in the complement of the middle-thirds Cantor set. Therefore, all the increase of the function f occurs in a "negligible" set, the Cantor set, which is a null set.

Problem 8 (Optional). Let $[a, b] \subset \mathbb{R}$ be a bounded interval, and suppose that J_{1}, \ldots, J_{m} are open intervals whose union covers $[a, b]$. Show that

$$
\ell([a, b])=b-a \leq \sum_{i=1}^{m} \ell\left(J_{i}\right) .
$$

