
MAT 324 – Real Analysis
Fall 2016

Midterm – October 25, 2016
Solutions

NAME:

Please turn off your cell phone and put it away. You are NOT allowed to use a
calculator.

Please show your work! To receive full credit, you must explain your reasoning and
neatly write the steps which led you to your final answer. If you need extra space, you
can use the other side of each page.

Academic integrity is expected of all students of Stony Brook University at all times,
whether in the presence or absence of members of the faculty.
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Problem 1: (21 points) Let E a null subset of R.

a) Use the definition of a null set to show that the set −E = {−x | x ∈ E} is null.

Solution. The set E is null, so for every ε > 0 there exists a cover E ⊂ ∪∞j=1Ij, of

open intervals Ij, such that
∞∑
j=1

m(Ij) < ε. Note that
⋃∞

j=1(−Ij) is a cover for the set

−E. This follows directly from the definition of the set −E. One can easily check that

m(Ij) = m(−Ij), so
∞∑
j=1

m(−Ij) < ε. This shows that −E is null. �

b) Consider f : [0,∞)→ R, f(x) =
√
x. Is f−1(E) measurable? Explain.

Solution. Note that f is bijective and f−1(x) = x2, f−1 : [0,∞) → [0,∞). The
function f is continuous, so it is measurable. The set E is null, but it may not be
Borel (note that not all null sets are Borel!). So we cannot draw the conclusion that
f−1(E) is measurable from these observations. However, by definition,

f−1(E) = {x2 | x ∈ E, x ≥ 0},

so f−1(E) ⊂ F , where F is defined in part c). By part c) F is null, which implies that
f−1(E) is null and hence Lebesgue measurable. We are left to prove part c).

One could also prove directly that f−1(E) is null using the definition of a null set as
in part a); the proof would be exactly the same as in part c) below. �

c) Let F = {x2 | x ∈ E}. Show that F is null.

Solution. Suppose F ⊂ [−N,N ] for some large N , say N > 100. Observe that
|x| ≤ N for all x ∈ F . Let ε > 0 be small enough, say ε < N/2. Let E ⊂

⋃∞
j=1 Ij be an

open cover of the null set E, as in part a), such that
∞∑
j=1

m(Ij) < ε. Then F ⊂
⋃∞

j=1 I
2
j .

If Ij = (aj, bj), then I2j = (a2j , b
2
j) or I2j = (b2j , a

2
j), depending whether aj, bj are positive

or negative. In any case I2j is an interval. Suppose without loss of generality that
0 < aj < bj (the other cases are treated similarly). Then

m(I2j ) = b2j − a2j = (bj − aj)(bj + aj) < 4Nm(Ij).

Note that if Ij is an interval that is part of the cover for E, then Ij ⊂ [−
√
N−ε,

√
N+ε].

So |aj| and |bj| are ≤ 2
√
N + 2ε < 2N , which justifies the inequality above. These

inequalities are not optimal and other similar bounds work. It follows that

∞∑
j=1

m(I2j ) < 4N
∞∑
j=1

m(Ij) < 4Nε,

which can be made arbitrarily small. This shows that F is null.

If F is unbounded then we write F =
⋃∞

N=100 (F ∩ [−N,N ]). This is an increasing
union of bounded null sets, so it is null. �
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Problem 2: (20 points) Does there exist a Lebesgue measurable set E ⊂ R such that

m(E ∩ I) ≥ 0.99 ·m(Ec ∩ I),

for every interval I? Either give an example of such a set, or prove that it does not exist.

Solution. Any measurable set E with m(Ec) = 0 verifies this inequality. For example, one
could take E = R, for which Ec = ∅. We explain below why these examples arise naturally.

From the definition of a measurable set, we have m(I) = m(E ∩ I) +m(Ec ∩ I) for every
interval I. Using the inequality from the hypothesis, we find

m(I) = m(E ∩ I) +m(Ec ∩ I) ≥ 1.99m(Ec ∩ I).

However, if m(Ec) > 0 then, we know from HW that for every constant 0 < α < 1 there
exists an interval I such that m(Ec ∩ I) ≥ αm(I). In particular, for α = 0.99, there exists
an interval I such that m(Ec ∩ I) > 0.99m(I). But then

m(I) ≥ 1.99m(Ec ∩ I) > 1.99 · 0.99m(I) > 1.5m(I),

which is a contradiction. So we are left with the case m(Ec) = 0, for which the inequality is
satisfied. �
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Problem 3: (25 points) Let E be a measurable set with m(E) <∞. Let f : E → [0, 1] be
an integrable nonnegative function. For each n ≥ 0 define the sets

E2n,j =

{
x ∈ E | j

2n
< f(x) ≤ j + 1

2n

}
, for j = 0, 1, . . . , 2n − 1.

and the functions

fn(x) =
2n−1∑
j=0

j + 1

2n
χE2n,j

(x).

a) Explain why fn is a measurable function and why fn(x) ≥ f(x) for all x ∈ E.

Solution. The function f is integrablem, so it is measurable. Therefore each set
E2n,j is measurable. The function fn is a finite sum of measurable functions, so it is
measurable (in fact, it is a simple function). By construction, on the set E2n,j, we
have f(x) ≤ j+1

2n
= fn(x). Also, for fixed n, the sets E2n,j, for j = 0, 1, . . . , 2n − 1, are

pairwise disjoint. Let E0 = {x ∈ E | f(x) = 0}. The E − E0 =
⋃2n−1

j=0 E2n,j. On the
set E0 we have fn(x) = f(x) = 0. In conclusion, fn(x) ≥ f(x) for all x ∈ E. �

b) Prove that (fn)n≥1 is decreasing, that is, fn+1(x) ≤ fn(x) pointwise for every x ∈ E.

Solution. From the observations in part a), it is enough to prove that fn+1(x) ≤ fn(x)
for x ∈ E2n,j, for j = 0, 1, . . . , 2n − 1. Note that

E2n,j = E2n+1,2j ∪ E2n+1,2j+1.

If x ∈ E2n+1,2j then fn+1(x) = 2j+1
2n+1 = j+1/2

2n
and fn(x) = j+1

2n
, from the definition

of the functions fn and fn+1. We have fn+1(x) < fn(x). If x ∈ E2n+1,2j+1 then
fn+1(x) = 2j+2

2n+1 = j+1
2n

= fn(x). It follows that fn+1(x) ≤ fn(x) for x ∈ E. �
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(Problem 1 continued)

c) Prove that ∫
E

f dm = lim
n→∞

2n−1∑
j=0

j + 1

2n
m(E2n,j).

Solution. First note that (fn)n≥1 is a decreasing sequence of nonnegative measurable
functions. By construction of the function fn, observe that 0 ≤ fn − f(x) ≤ 1

n
, so

fn(x)→ f(x) as n→∞. The first term of the sequence is integrable. Indeed,

f1(x) =
1

2
χE2,0(x) + χE2,1(x)

and
∫
E
f1 dm = 1

2
m(E2,0) +m(E2,1) < 2m(E) <∞.

We can apply MCT (for a decreasing sequence, as in the HW) and obtain∫
E

f dm =

∫
E

lim
n→∞

fn(x) dm = lim
n→∞

∫
E

fn dm = lim
n→∞

2n−1∑
j=0

j + 1

2n
m(E2n,j).

The last equality is just the definition of the integral of a simple function. �
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Problem 4: (22 points) Compute the following limit if it exists and justify the calculations.
If the limit does not exist explain why it does not exist.

a) lim
n→∞

∫ 100

0

(
1− n cosx

1 + n2
√
x

)
dx

Solution. Note that 1 + n2
√
x > n

√
x for all n ≥ 1. We have∣∣∣∣1− n cosx

1 + n2
√
x

∣∣∣∣ ≤ 1 +
n

1 + n2
√
x
< 1 +

n

n
√
x

= 1 + x−1/2.

The function 1 + x−1/2 is integrable on [0, 100] since∫ 100

0

1 + x−1/2 dx = (x+ 2x1/2)

∣∣∣∣100
0

= 120.

We can therefore apply DCT and get

lim
n→∞

∫ 100

0

(
1− n cosx

1 + n2
√
x

)
dx =

∫ 100

0

lim
n→∞

(
1− n cosx

1 + n2
√
x

)
dx = 100.

�

b) lim
n→∞

∫ 100

0

ne−nx

1 + xn
dx

Solution. We make a change of variables y = nx and get∫ 100

0

ne−nx

1 + xn
dx =

∫ 100n

0

e−y

1 +
(
y
n

)n dy =

∫ ∞
0

e−y

1 +
(
y
n

)nχ[0,100n]
(y) dy.

The sequence of functions fn(y) =
e−y

1 +
(
y
n

)nχ[0,100n]
(y), n ≥ 1, is bounded above by

g(y) = e−yχ[0,∞), which is nonnegative and Riemann integrable since∫ ∞
0

e−y dy = −e−y
∣∣∣∣∞
0

= 1.

Hence g is also Lebesgue integrable and we can apply DCT. We have

lim
n→∞

∫ ∞
0

fn(y) dy =

∫ ∞
0

lim
n→∞

e−y

1 +
(
y
n

)n dy =

∫ 1

0

e−y dy = 1− e−1.

We have use the fact that lim
n→∞

yn = ∞ if y > 1, but lim
n→∞

yn = 0, if 0 ≤ y < 1. Also,

recall that lim
n→∞

nn = 1. This gives

lim
n→∞

e−y

1 +
(
y
n

)n =


0 if y > 1

e−y/2 if y = 1
e−y if 0 ≤ y < 1.

In conclusion, lim
n→∞

∫ 100

0

ne−nx

1 + xn
dx = 1− e−1. �
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Problem 5: (12 points) Let f : [0, 1] → R be a function which is continuous everywhere
except on a null set E ⊂ [1

4
, 3
4
]. Compute the following limit and justify the calculations:

lim
n→∞

∫ 1

0

f(xn) dx.

Solution. The function is continuous a.e. so it is Riemann integrable and bounded.
Moreover, it is Lebesgue integrable, measurable, and the Riemann and Lebesgue integrals
agree. Let fn(x) = f(xn). Since f is bounded we have |fn(x)| < M , for all x ∈ [0, 1] and
all n ≥ 1. Each fn is continuous a.e. (as a composition of f , which is continuous a.e.,
and the continuous function xn), so it is measurable. We can apply DCT (or the uniform
boundedness principle) and conclude that

lim
n→∞

∫ 1

0

f(xn) dx =

∫ 1

0

lim
n→∞

f(xn) dx = f(0).

Note that f is continuous at x = 0.
The sequence (xn)n≥1 is decreasing on the interval [0, 1), but we don’t know whether

fn(x) = f(xn) is monotone (either increasing or decreasing). Also we don’t know whether f
is nonnegative or not, so we cannot apply MCT directly. �
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