
MAT 324 – Real Analysis
Fall 2014

Midterm – October 23, 2014

NAME:

Please turn off your cell phone and put it away. You are NOT allowed to use a
calculator.

Please show your work! To receive full credit, you must explain your reasoning and
neatly write the steps which led you to your final answer. If you need extra space, you
can use the other side of each page.

Academic integrity is expected of all students of Stony Brook University at all times,
whether in the presence or absence of members of the faculty.
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Problem 1: (25 points) Let E1, E2, . . . , E2014 be measurable subsets of [0, 1].

a) Suppose m(Ek) > 1− 1

2k
for each 1 ≤ k ≤ 2014. Show that m

(
2014⋂
k=1

Ek

)
> 0.

Solution. Note that

m

(
2014⋃
k=1

Ec
k

)
≤

2014∑
k=1

m(Ec
k) =

2014∑
k=1

(1−m(Ek)) = 2014−
2014∑
k=1

m(Ek),

by subadditivity and taking complements. Therefore

m

(
2014⋂
k=1

Ek

)
= 1−m

(
2014⋃
k=1

Ec
k

)
≥ 1−2014+

2014∑
k=1

m(Ek) =
2014∑
k=1

m(Ek)−2013 >
1

22015
> 0.

The last inequality follows from the fact that for each Ek we have m(Ek) > 1− 1
2k

so

2014∑
k=1

m(Ek) >
2014∑
k=1

(
1− 1

2k

)
= 2013 +

1

22015
. �

b) Suppose almost every x from the interval [0, 1] belongs to at least 3 of these subsets.
Prove that there exists at least one set Ek with 1 ≤ k ≤ 2014 such that m(Ek) ≥ 3

2014
.

Hint: The function f(x) =
2014∑
k=1

χEk
(x) has the property that f(x) ≥ 3 a.e.

Solution. We follow the hint and set f(x) =
2014∑
k=1

χEk
(x). Since almost every x from

the interval [0, 1] belongs to at least 3 sets Ek we have that f(x) ≥ 3 almost everywhere.
The function f is a simple function with finite support, hence it is measurable and

integrable and
∫
[0,1]

f dm =
2014∑
k=1

m(Ek). Suppose that m(Ek) <
3

2014
. Then

3 ≤
∫
[0,1]

f dm =
2014∑
k=1

m(Ek) < 2014 · 3

2014
= 3,

so 3 < 3, which is a contradiction. Hence there exists at least one set Ek such that
m(Ek) ≥ 3

2014
. �
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Problem 2: (20 points) Does there exist a Lebesgue measurable subset E of R such that
for every interval (a, b) we have

m (E ∩ (a, b)) =
b− a

2
?

Either construct such a set or prove it does not exist.

Solution 1. Suppose such a set E exists. Then E ∩ (0, 2) is a bounded measurable set
with m(E ∩ (0, 2)) = 1. Let 0 < ε < 1. By the outer regularity property applied to E ∩ (0, 2)
there exists an open set O such that E ∩ (0, 2) ⊂ O and m(O − E ∩ (0, 2)) < ε. It follows
that m(O) < m(E ∩ (0, 2)) + ε = 1 + ε. The set O is open so it can be written as a disjoint
union of intervals O =

⋃∞
k=1 Ik, with Ik = (ak, bk).

By hypothesis we have that m(E ∩ Ik) = m(Ik)
2

for all k ≥ 1. Hence

m(E ∩O) = m

(
E ∩

∞⋃
k=1

Ik

)
≤

∞∑
k=1

m(E ∩ Ik) =
1

2

∞∑
k=1

m(Ik) =
m(O)

2
<

1 + ε

2
.

However E ∩ (0, 2) ⊂ O so E ∩ (0, 2) ⊂ E ∩O and 1 = m(E ∩ (0, 2)) ≤ m(E ∩O) < 1+ε
2

. We
have obtained that 1 < 1+ε

2
which gives 1 < ε. Contradiction! So there is no set E which

verifies the hypothesis. �

Solution 2. This solution reduces the problem to the discussion from class. From the
hypothesis we know that m (E ∩ (−n, n)) = n−(−n)

2
= n → ∞ as n → ∞. So the measure

m(E ∩ R) = m(E) =∞, hence E has to be unbounded.
However, En = E ∩ (−n, n) is bounded for every n. We claim that

m (En ∩ (a, b)) ≤ b− a
2

for every interval (a, b). There are four cases to consider, depending on how the interval
(a, b) intersects the interval (−n, n). If (a, b) ⊂ (−n, n) then E ∩ (−n, n)∩ (a, b) = E ∩ (a, b)
and m(E ∩ (a, b)) = b−a

2
. If (a, b) ∩ (−n, n) = (n, b) (this is possible if a < n < b) then

m(E ∩ (−n, n) ∩ (a, b)) = m(E ∩ (n, b)) = b−n
2
≤ b−a

2
. Similarly if (a, b) ∩ (−n, n) = (a,−n)

then m(E ∩ (−n, n) ∩ (a, b)) = m(E ∩ (a,−n)) = −n−a
2
≤ b−a

2
since −n < b. Finally, if

(−n, n) ⊂ (a, b) then m(E ∩ (−n, n) ∩ (a, b)) = m(E ∩ (−n, n)) = n ≤ b−a
2

since the length
of (a, b) is greater than the length of (−n, n), which is 2n.

It now follows thatm(En) = 0. Since n was arbitrary we get that E is null. Contradiction!
So there is no such set E with this property. �

Recall that in class we have shown the following (but the proof was not required):
Fact : Let 0 < a < 1 and suppose E is a bounded measurable set such that

m(E ∩ I) ≤ am(I)

for every interval I. Then m(E) = 0. A particular case is a = 1
2
.
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Problem 3: (25 points) Let E be a measurable set and f : E → R Lebesgue integrable on
E. Define Ek =

{
x ∈ E | |f(x)| < 1

k

}
for k ≥ 1.

a) Show that each Ek is a measurable set.

Solution. The function f is measurable (since it is integrable) and

Ek = f−1((−∞, 1

k
)) ∩ f−1((−1

k
,∞))

is a measurable set. By definition, since f is measurable f−1((−∞, 1
k
)) and f−1((− 1

k
,∞))

are both measurable sets. �

b) Determine whether {Ek} is an increasing or decreasing collection of sets.

Solution. Since |f(x)| < 1
k+1

implies |f(x)| < 1
k

we have that Ek+1 ⊂ Ek, so {Ek} is
an increasing collection of sets. �

c) Show that lim
k→∞

∫
Ek

|f | dm = 0.

Solution. Let fk = |f | · χEk
for k ≥ 1. Then fk is a decreasing sequence of non-

negative measurable functions (product of two measurable functions) from part b).
Note that each characteristic function χEk

is measurable from part a). Also, if f is
measurable, then |f | is measurable. We have

∫
E
|f | dm < ∞ since f is integrable.

Since Ek ⊂ E this gives that
∫
E1
f1 dm <∞. By the Monotone Convergence Theorem

(the decreasing version from homework),

lim
k→∞

∫
Ek

|f | dm = lim
k→∞

∫
E

|f | · χEk
dm = lim

k→∞

∫
E

fk dm =

∫
E

lim
k→∞

fk dm = 0,

since fk ↘ 0 as k →∞. This is true because f(x) = 0 for x ∈
∞⋂
k=1

Ek. �
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Problem 4: (30 points) Compute the following limit if it exists and justify the calculations.
If the limit does not exist explain why it does not exist.

a) lim
n→∞

∫ 1

0

√
n√
x
· χ[0, 1

n
] dx

Solution. The function is nonnegative so the Lebesgue and Riemann integrals are
the same, provided that the Riemann integral exists (as an improper integral in this
case). We have∫ 1

0

√
n√
x
· χ[0, 1

n
] dx =

∫ 1
n

0

√
n√
x
dx = 2

√
n
√
x

∣∣∣∣ 1n
0

= 2

√
n√
n

= 2.

Hence the limit is 2. �

b) lim
n→∞

∫ ∞
a

n sin(
√
x)

1 + n2x2
dx, where a > 0

Solution. We have∣∣∣∣n sin(
√
x)

1 + n2x2

∣∣∣∣ ≤ ∣∣∣∣ n

1 + n2x2

∣∣∣∣ < ∣∣∣∣ n

n2x2

∣∣∣∣ =
1

nx2
≤ 1

x2
,

since n ≥ 1 and 1 + n2x2 > n2x2. The function 1
x2

is Lebesgue integrable on [a,∞) for
a > 0 since ∫ ∞

a

1

x2
dx =

−1

x

∣∣∣∣∞
a

=
1

a
<∞.

As before, the function we are integrating is nonnegative so the Lebesgue and Riemann

integrals are the same. Let fn(x) = n sin(
√
x)

1+n2x2
for n ≥ 1. We have shown that |fn(x)| < 1

x2

and 1
x2

is Lebesgue integrable. Moreover, fn(x)→ 0 as n→∞ pointwise for every x.
By the Dominated Convergence Theorem it follows that

lim
n→∞

∫ ∞
a

n sin(
√
x)

1 + n2x2
dx = 0.

�
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