Midterm 2 Practice Problems **Problem 1.** Let the sequence (x_n) be defined as $$x_n = \begin{cases} 1 + \frac{1}{n} & \text{if } n \text{ is odd;} \\ \frac{1}{n^2} & \text{if } n \text{ is even.} \end{cases}$$ Is (x_n) convergent? **Problem 2.** Suppose $\lim_{n\to\infty} x_n = a > 0$. Prove that there exists a $K \in \mathbb{N}$ such that $$\frac{a}{2} < x_n < 2a$$ for any $n \geq K$. **Problem 3.** 1. Let the function f be defined as $$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$ Prove that f is continuous at 0. 2. Let the function f be defined as $$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$ Prove that f is discontinuous everywhere. **Problem 4.** Give examples of functions f and g such that f and g do not have limits at c, but fg has the limit at c. **Problem 5.** Suppose for any $x \in [-1,1], |f(x)| \le 2|x|$. Prove that f is continuous at 0. **Problem 6.** Let f be a continuous function on [0,1] such that $f(x) \in [0,1]$ for any $x \in [0,1]$. Prove that there exists a $c \in [0,1]$ such that f(c) = c. **Problem 7.** 1. Let (x_n) be a sequence such that $|x_{n+1} - x_n| < 2^{-n}$ for any $n \in \mathbb{N}$. Prove that (x_n) is convergent. 1 2. Is the result still true if we only assume $|x_{n+1} - x_n| < \frac{1}{n}$ for any $n \in \mathbb{N}$? **Problem 8.** Let f and g be continuous functions on (a,b) such that f(r)=g(r) for each rational number $r \in (a,b)$. Prove f(x)=g(x) for all $x \in (a,b)$. - **Problem 9.** 1. Let f be a continuous function on $[0, \infty)$. Prove that if f is uniformly continuous on $[k, \infty)$ for some k > 0, then f is uniformly continuous on $[0, \infty)$. - 2. Prove \sqrt{x} is uniformly continuous on $[0, \infty)$. **Problem 10.** Let f be a continuous function on [0,1] such that $f(x) \in \mathbb{Q}$ for any $x \in [0,1]$. Prove that f is constant.