MAT 319 - Foundations of Analysis

Final

Stony Brook University

Spring 2021
May 18, 2021

COMPLETION OF PROBLEM 1 IS MANDATORY

You do not have to print this exam. You can use your own paper or write on a tablet.
There are 7 problems on 7 pages (plus the cover sheets) in this exam.
Answer all questions below. You must show all of your work and provide complete justifications for all of your claims. Insufficient justifications will not receive full credit.

Leave all answers in exact form (that is, do not approximate π, square roots, and so on).
This is an open book exam. You may consult your textbook, lecture notes and homework, but no other source like cell phones, calculators or other electronic devices (unless directed to do so). Submission of solutions written by someone else, or found in some other textbook, or found on the internet is a violation to academic integrity. You may not collaborate with each other.

First, write your answers on paper or record your answers using electronic means (e.g., a tablet and a digital pen). If you write on paper, take clear photos/scans of your solutions. Submit your work to Gradescope. Only in case there is an outage, you may email your work to dimitrios.ntalampekos@stonybrook.edu.

You have 2 hours and 15 minutes to complete this exam. The exam starts at 11:15am.

You have 15 extra minutes to scan and upload the completed exam, so the exam is due at $1: 45 \mathrm{pm}$.

Penalties for delayed submissions:

1. Submissions between $1: 45 \mathrm{pm}-2: 00 \mathrm{pm}$ are subject to 10% penalty.
2. Submissions between $2: 00-2: 15 \mathrm{pm}$ are subject to 20% penalty.
3. Penalty increases by 10% every 15 minutes. Submissions past $2: 45 \mathrm{pm}$ will not be accepted.
[2 pts] Problem 1. Completion of this problem is mandatory.

If you do not print the exam, then write and sign the following academic integrity statement before proceeding with the exam. If you do not complete this problem your exam will not be graded.
[1 pts] (i) I certify that all the work I will do in this exam will be my own, and that I will not consult with other people or sources of any kind during this exam, other than the textbook and notes I have previously made.

Name: \qquad
Student ID: \qquad
Signature: \qquad
[1 pts]
(ii)

SIGN THE ACADEMIC INTEGRITY STATEMENT AND SCAN ID

[10 pts] Problem 2. (Include all steps in your solution. No credit for only stating the solution.)
[5 pts] (i) Find the limit of the sequence

$$
\left(\frac{5 n^{2}-2}{1+n^{2}}\right)
$$

and then prove that the sequence converges to that number using only the definition of the limit.
[5 pts] (ii) Compute the following limit if it exists and otherwise explain why it does not exist. If you apply some theorem, then explain why it can be applied.

$$
\lim _{x \rightarrow 0^{+}}(\ln (x+1))^{x}
$$

SIGN THE ACADEMIC INTEGRITY STATEMENT AND SCAN ID

[10 pts] Problem 3. (Include all steps in your solution. No credit for only stating the solution.)
[5 pts] (i) Let $g:(2,3) \rightarrow \mathbb{R}$ be a function with $g(x) \neq 0$ for all $x \in(2,3)$. If

$$
\lim _{x \rightarrow 2^{+}} g(x)=\infty
$$

then using only the definition of the limit show that

$$
\lim _{x \rightarrow 2^{+}} \frac{1}{g(x)}=0
$$

[5 pts] (ii) Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function such that

$$
\lim _{x \rightarrow b^{-}} f(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

Prove that the range of f is all real numbers. That is, show that for every $k \in \mathbb{R}$ there exists $c \in(a, b)$ such that $f(c)=k$.
Hint: Use a theorem about continuous functions.

SIGN THE ACADEMIC INTEGRITY STATEMENT AND SCAN ID

[10 pts] Problem 4. (Include all steps in your solution. No credit for only stating the solution.)
[5 pts] (i) Show that the function

$$
g(x)=\frac{1}{5 x+2}
$$

is uniformly continuous on the interval $[0, \infty)$. In your proof you may use the definition of uniform continuity or some theorem proved in class that implies uniform continuity.
[5 pts] (ii) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function with $f(0)=1$ and

$$
f^{\prime}(x)=\frac{1}{1+f(x)^{2}}+\frac{5}{2+3 x^{2}}
$$

for every $x \in \mathbb{R}$. Show that the inverse function f^{-1} exists (on an appropriate interval that you do not have to specify) and compute $\left(f^{-1}\right)^{\prime}(1)$.

SIGN THE ACADEMIC INTEGRITY STATEMENT AND SCAN ID

[10 pts] Problem 5. (Include all steps in your solution. No credit for only stating the solution.)
[5 pts] (i) Consider the function

$$
f(x)=\left|x^{2}-1\right|
$$

where $x \in \mathbb{R}$. Is this function continuous at $x=1$? Moreover, is it differentiable at $x=1$? Prove your claims either using some theorem or using the definitions.
[5 pts] (ii) Explain why the function $f(x)=\left|x^{2}-1\right|, x \in[-2,3]$, has an absolute maximum and an absolute minimum and then find them.
Hint: What are the potential points of maximum or minimum?

SIGN THE ACADEMIC INTEGRITY STATEMENT AND SCAN ID

[10 pts] Problem 6. (Include all steps in your solution. No credit for only stating the solution.)
[5 pts] (i) Consider the function $f(x)=\ln x, x>0$. For each $n \in \mathbb{N}$, find a formula for the n-th derivative $f^{(n)}(x)$ and prove your prediction using induction.
[5 pts] (ii) Using Taylor's theorem for the function f with center at the point 1, approximate the number $\ln 2$ up to an error of 10^{-1}. Explain carefully. You can leave your answer as a sum of finitely many rational numbers.

SIGN THE ACADEMIC INTEGRITY STATEMENT AND SCAN ID

[10 pts] Problem 7. (Include all steps in your solution. No credit for only stating the solution.)
[5 pts] (i) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a Riemann integrable function with $f(x) \geq 0$ for all $x \in[0,1]$, and f is not identically the zero function. Is it true that

$$
\int_{0}^{1} f(x) d x>0 ?
$$

Provide a brief explanation without proof.
[5 pts] (ii) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a given Riemann integrable function with $\int_{0}^{1} f(x) d x=7$ and with $|f(x)| \leq 10$ for every $x \in[0,1]$. Using only the definition, prove that the function

$$
g(x)=\left\{\begin{array}{l}
f(x), \quad 0 \leq x<1 \\
319, \quad x=1
\end{array}\right.
$$

is Riemann integrable on $[0,1]$ and find the value of $\int_{0}^{1} g(x) d x$.

