Practice Final Exam

Problem 1. Find the general solution of the following differential equations.

1. $yy' = x(1 + y^2)$ 2. $(1 + x)y' + y = \cos x$. 3. x(x + y)y' + y(3x + y) = 0. 4. $y' = \sqrt{x + y + 2}$. 5. $xy' + 6y = 3xy^{\frac{4}{3}}$. 6. $(\cos x + \ln y) dx + (\frac{x}{y} + e^y) dy = 0$.

Problem 2. A 400-gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine containing 1 lb of salt per gallon enters the tank at the rate of 5 gal/s, and the well-mixed brine in the tank flows out at the rate of 3 gal/s. How much salt will the tank contain when it is full of brine?

Problem 3. Find the general solution of the following higher-order differential equations.

- 1. y'' 3y' + 2y = 0.
- 2. 4y'' + 4y' + y = 0.
- 3. y'' + 6y' + 10y = 0.
- 4. $y^{(3)} + 2y'' y' 2y = 0.$
- 5. $y^{(3)} + 3y'' + 3y + y = 0.$

Problem 4. Solve the following initial value problems.

- 1. $y^{(3)} = y; y(0) = 1, y'(0) = y''(0) = 0.$
- 2. $y'' + 2y' + 2y = e^{-x}$; y(0) = 1, y'(0) = 2.

Problem 5. Let A and B be two 2×2 matrice. Prove that $det(AB) = det(A) \cdot det(B)$.

Problem 6. Let A and B be two $n \times n$ matrice. Prove that $(AB)^T = B^T A^T$.

Problem 7. Solve the following systems of linear equations.

1.
$$\begin{cases} 2x + 3y + 2z = 3\\ 4x - 5y + 5z = -7.\\ -3x + 7y - 2z = 5 \end{cases}$$

2.
$$\begin{cases} 2x + 3y + 2z = 1\\ x + 0y + 3z = -7.\\ 2x + 2y + 3z = 3 \end{cases}$$

Problem 8. Consider the following system of linear equations

$$\begin{cases} kx + y + z = 1\\ x + ky + z = 1\\ x + y + kz = 1 \end{cases}$$

For what value(s) of k does this have (i) a unique solution? (ii) no solution? (iii) infinitely many solutions?

Problem 9. For the matrix A given below, compute $\exp(A)$.

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
.
2. $A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$ for some constants a, b, c .
3. $A = \begin{pmatrix} 3 & -10 \\ 1 & -4 \end{pmatrix}$.
4. $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Problem 10. Solve the following homogeneous systems.

1.
$$\begin{cases} x' = 3x + z \\ y' = 9x - y + 2z \\ z' = -9x + 4y - z \end{cases}$$

2.
$$\mathbf{x}' = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \mathbf{x}.$$

Problem 11. Solve the following initial value problem.

$$\mathbf{x}' = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{x} + e^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$