Practice Final Exam

Problem 1. Find the general solution of the following differential equations.

1. $y y^{\prime}=x\left(1+y^{2}\right)$
2. $(1+x) y^{\prime}+y=\cos x$.
3. $x(x+y) y^{\prime}+y(3 x+y)=0$.
4. $y^{\prime}=\sqrt{x+y+2}$.
5. $x y^{\prime}+6 y=3 x y^{\frac{4}{3}}$.
6. $(\cos x+\ln y) d x+\left(\frac{x}{y}+e^{y}\right) d y=0$.

Problem 2. A 400-gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine containing 1 lb of salt per gallon enters the tank at the rate of $5 \mathrm{gal} / \mathrm{s}$, and the well-mixed brine in the tank flows out at the rate of $3 \mathrm{gal} / \mathrm{s}$. How much salt will the tank contain when it is full of brine?

Problem 3. Find the general solution of the following higher-order differential equations.

1. $y^{\prime \prime}-3 y^{\prime}+2 y=0$.
2. $4 y^{\prime \prime}+4 y^{\prime}+y=0$.
3. $y^{\prime \prime}+6 y^{\prime}+10 y=0$.
4. $y^{(3)}+2 y^{\prime \prime}-y^{\prime}-2 y=0$.
5. $y^{(3)}+3 y^{\prime \prime}+3 y+y=0$.

Problem 4. Solve the following initial value problems.

1. $y^{(3)}=y ; y(0)=1, y^{\prime}(0)=y^{\prime \prime}(0)=0$.
2. $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-x} ; y(0)=1, y^{\prime}(0)=2$.

Problem 5. Let A and B be two 2×2 matrice. Prove that $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
Problem 6. Let A and B be two $n \times n$ matrice. Prove that $(A B)^{T}=B^{T} A^{T}$.

Problem 7. Solve the following systems of linear equations.

1. $\left\{\begin{aligned} 2 x+3 y+2 z & =3 \\ 4 x-5 y+5 z & =-7 . \\ -3 x+7 y-2 z & =5\end{aligned}\right.$.
2. $\left\{\begin{aligned} 2 x+3 y+2 z & =1 \\ x+0 y+3 z & =-7 . \\ 2 x+2 y+3 z & =3\end{aligned}\right.$

Problem 8. Consider the following system of linear equations

$$
\left\{\begin{array}{l}
k x+y+z=1 \\
x+k y+z=1 \\
x+y+k z=1
\end{array} .\right.
$$

For what value(s) of k does this have (i) a unique solution? (ii) no solution? (iii) infinitely many solutions?

Problem 9. For the matrix A given below, compute $\exp (A)$.

1. $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$.
2. $A=\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right)$ for some constants a, b, c.
3. $A=\left(\begin{array}{cc}3 & -10 \\ 1 & -4\end{array}\right)$.
4. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Problem 10. Solve the following homogeneous systems.

1. $\left\{\begin{array}{l}x^{\prime}=3 x+z \\ y^{\prime}=9 x-y+2 z \\ z^{\prime}=-9 x+4 y-z\end{array}\right.$.
2. $\mathbf{x}^{\prime}=\left(\begin{array}{llll}2 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right) \mathbf{x}$.

Problem 11. Solve the following initial value problem.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 6 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right) \mathbf{x}+e^{t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right), \quad \mathbf{x}(0)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

