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8 Characters for Complex Bundles and their Connections

James Simons†and Dennis Sullivan‡

Abstract

Given a complex vector bundle E over a base manifold X with connection ∇ we construct
invariants called characters in terms of integrals over manifolds with boundary:

∇ character values
C-linear connection C/Z
unitary connection R/Z

independent of connection Q/Z

In logical order: the first result, Theorem AT (Algebraic Topology), shows theQ/Z-characters
derived from C/Z-characters are in a bijective correspondence with complex K-theory. The sec-
ond result, Theorem DG (Differential Geometry), shows the C/Z (or R/Z) characters are in a
bijective correspondence with differential K-theory defined using complex (or real) valued differ-
ential forms. Differential K-theory may be defined as the Grothendieck group of Chern-Simons
equivalence classes of complex bundles with connection (respectively C-linear or unitary). The
third result, Theorem AN (Analysis): i) Expresses the unitary bijection in terms of the eta
invariants mod one of the spinc Dirac operators with coefficients in (E,∇) restricted to en-
riched closed odd-dimensional stably almost complex manifolds (SACs) in X , and ii)a) There
is an easy and natural push forward in differential K-theory (C-linear or unitary) for families of
even-dimensional SACs defined by pulling back the odd-dimensional SAC cycles in X which are
enriched using the direct sum connection, ii)b) in the unitary case the direct sum connection
is CS equivalent to a rescaling (adiabatic) limit of the Levi-Civita connection, and one thereby
computes the push forward (unitary case) as a limit of eta invariants mod one as the rescaling
tends to infinity.

This adds to the discussion in the literature of the question (communicated by Iz Singer) to
have an index theorem in differential K-theory for families.

History and Acknowledgement: The new aspect of Theorem AT is the construction and proof
of the bijection using integrals of characteristic forms, whereas the existence of such a bijection is
a variant of much earlier understanding [1]. The form of the K̂-character definition is a modified
form of “Differential Characters” [2] motivated by “The Characteristic Variety Theorem” [3].
We are indebted to [4] for completing [5] for the non-unitary, C-linear connections describing
differential K-theory with C-valued differential forms.

†Stony Brook University, Simons Foundation
‡CUNY Graduate Center, Stony Brook University
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Introduction

Let V be an odd-dimensional Stably Almost Complex (SAC) closed manifold mapping smoothly
F : V → X to a target manifold X. Suppose X is the base of a complex vector bundle E together
with a C-linear connection ∇. Suppose V is “enriched” by an independent C-linear connection
∇/V on its stable tangent bundle. We can form the Chern character, a total even form ch(E) on
X. We can also form on V the total even Todd form of V (see background in Section 0).

One can show [Section 1] that V bounds in the SAC sense a W in such a way that the bundle F ∗(E)
on V extends to a complex vector bundle E/W on W . One can impose a C-linear connection on
the stabilized tangent bundle of W compatible with that on V in a collar neighborhood of V , and
also a connection on E/W similarly compatible with that on F ∗(V ). Using these connections we
can extend Todd(V ) and F ∗(ch(E)) to total forms Todd(W ) and ch(E/W ) over all of W . Now
form the integral over W of the wedge product Todd(W )ch(E/W ) and reduce the value modulo
one. We refer to this as an “angle” in the complexified circle C/Z. This “angle” in C/Z may be
seen to be independent of the choice of W and the extended connections above. It depends only on
F : V → X and the enrichment of V . As the triple (V, F,∇/V ) varies one obtains many “angle”
invariants of (E,∇), the complex bundle with C-linear connection over X. The “angle” invariants
are thought of as a “character” function with values in the complexified circle C/Z defined on the
collection of odd-dimensional enriched SAC closed manifolds or cycles mapping into X.

One sees directly the “angle” invariants of (E,∇) over X are equal as “characters” to the “angle”
invariants of (E,∇′) if ∇ and ∇′ are CS equivalent. This means the odd-dimensional Chern Simons
forms whose exterior d is the difference between the corresponding Chern character forms are not
only closed so that the Chern character forms of (E,∇) and (E,∇′) are exactly the same, but
these CS forms are also exact. This statement of equality of “angle invariants” for CS equivalent
connections follows from Stokes’ theorem.

One may also change the pair (E,∇) by direct summing with the trivial connection on the trivial
bundle or by changing by a strict isomorphism of bundles with connection, without changing the
values of the character function associated with (E,∇).

The goal of this paper is twofold. Firstly, to prove the converse of these equalities of “angle” invari-
ants. Namely, the “angle” invariant characters actually determine (E,∇) up to the equivalences
just mentioned. Secondly, to describe the properties of the character function on enriched SAC
cycles in X that are necessary and sufficient for such a function to arise as the “angle” invariants of
a complex bundle E with C-linear connection over X. These properties are described / contained
in the differential geometry statement Theorem DG in Section 3.

First goal: the form of the equivalences was exploited recently [5] to give a geometric description,
in the case of the generalized cohomology theory complex K-theory, of the extension introduced in
[6] of a contravariant functor called “generalized differential cohomology”. This is a derived fibre
product of the generalized cohomology functor h∗ with de Rham differential forms either real or
complex valued which are labeled by elements in h∗(pt). The fibre product is over the generalized
de Rham isomorphism canonically identifying h∗( ,R or C) with the de Rham cohomology of forms
(over R or C) with coefficients h∗(pt). The geometric description of [5] says differential complex
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K-theory defined by forms with values in R or C, denoted K̂, is represented by the Grothendieck
group of stable isomorphism classes of complex bundles with C-linear connections in the case of
C-valued forms and with unitary connections in the case of R-valued forms, up to CS equivalence
(structured bundles) under direct sum. The proof of the odd form lemma in [5] depended on the
existence of inverses up to CS equivalance for the bundles with connection. These inverses were
provided for unitary connections in [5]. For C-linear connections, the inverses were provided in [4].
We are indebted to Leon Takhtajan for explaining how [4] completes the C-linear results of [5]. In
particular, Corollary 2 of [4] plus Proposition 2.5 of [5] implies Corollary 3 of [4] which produces
the required inverses. There is yet another proof for GL[N,C] of the required inverse property of
bundles with connection in [7].

A helpful organizing tool (Section 3) in the proof of the differential geometry statement Theorem
DG is the “character” diagram of groups placing K̂ in the hexagons between the interlocking sine
wave Bockstein long exact sequence and the de Rham long exact sequence. Verifying the analogous
diagram for K̂ characters is the rest of the work in the proof of Theorem DG beyond Theorem AT
mentioned above and described more fully below.

Second goal: the pattern of the necessary and sufficient conditions on “angle” invariants to come
from a bundle with C-linear connection modifies the notion of “differential character” introduced
in [2]. These were functions C with values in R/Z on smooth cycles in X in the sense of algebraic
topology. These functions were additive under union of cycles. They were not homology invariant
but their values in R/Z changed under a homological deformation of a cycle by integrating a closed
real differential form with integral periods on X over the homology. Namely if z and z′ are cycles
in X then C(z)− C(z′) in R/Z is given by the integral of w(C) over any homology in X between
z and z′ reduced [mod one]. In particular a small smooth deformation produces a small change in
the value, thus the name differential character. This definition was motivated by the attempt to
define objects in the base related to the Chern-Simons forms in the bundle.

The modification of the notion of differential character to the main notion of differential K̂ character
employed here to describe the “angle” invariants goes as follows: replace algebraic topology cycle
in X as in [2] by smooth enriched odd-dimensional SAC cycle in X, and replace the variation
k-form w(C) of the differential character by a total even complex valued form W (C) representing
the Chern character of some complex vector bundle over X. Replace the variation formula for
differential characters by C(V ) − C(V ′) equals the integral mod Z of W (C) ∧ Todd M over M ,
where M is an enriched SAC mapped into X whose boundary is the formal difference of enriched
cycles V − V ′ in X. A new “product relation” beyond [2] appears because of the multiplicative
properties of the Todd form. This modification follows the pattern of the Characteristic Variety
Theorem [3].

Theorem DG gives a second geometric interpretation added to that of [5] for differential K-theory
of X in terms of differential K̂ characters defined on enriched SAC cycles in X. In the real case
using unitary connections, thanks to the APS theorem [8], this bijection is elegantly described by
forming the eta invariants mod one of the spinc Dirac operator of the odd-dimensional SAC cycle
with coefficients in the bundle E restricted to V to build the K̂ character of the bundle with unitary
connection.
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The proof scheme for Theorem DG uses the machinery of algebraic topology to arrive first at
a corresponding result, Theorem AT (Algebraic Topology), giving a complete theory of rational
“angles” associated to just the bundle E independent of the choice of connection. The rational
“angles” of order k in C/Z are associated with pairs (V,W ) where V is an odd SAC cycle in X
with a given way, W , to bound k copies of V in X. These rational angles are derived in Section 2,
in terms of the general “angles” associated with enriched SAC cycles in X probing bundles with
connections. As the enrichment connections vary continuously, the rational “angles” cannot vary
continuously without staying constant and thus become topological invariants of the bundle. They
are complete invariants and their precise necessary and sufficient conditions are specified using
Rational Hom(h( ,Q/Z),Q/Z). Here h is the remarkable homology theory discovered by Conner
and Floyd [9] using SAC cycles and homologies (i.e. SAC bordism classes) in X taken also modulo
the purely algebraic “product relation” mentioned above. The fact that this algebraic quotient does
not destroy the exactness property of a homology theory is the crucial point of the argumentation
here. This is the Algebraic Topology theorem, Theorem AT, described in Section 2 and used in
Section 3.

One interesting corollary of the Topology discussion is

Corollary: A cohomology class c in Heven(X,Q) is the Chern character of a complex bundle over

X if and only for every closed even-dimensional SAC mapping to X, V
f
−→ X,

∫
f∗ c Todd V is an

integer. A similar statement holds for the transgressed ch in U , odd-dimensional closed SACs in
X, elements in Hodd(X,Q) and maps X → U .

The first application of Theorem DG is a very easy explicit construction of a wrong way map in
differential KC-theory for a fibration with C-linear connection over a base X with fibres closed
even-dimensional SAC manifolds enriched by C-linear connections. If T denotes the total space
there is a map of enriched SAC cycles from X to those in T by taking the pullback SAC cycle.
There is a nuance here, but then applying K̂ characters reverses the direction to give a wrong
way map from the differential K-theory of T to the differential K-theory of X (all over C). See
[14]. The nuance here is the enrichment of the pullback cycle. Since the fibration is enriched with
a connection on the vertical subbundle, one may use the direct sum connection (see Section 4)
to enrich the pullback cycles. Then a differential K̂ character on T will induce a differential K̂
character on the base using the multiplicative nature of Todd forms and Chern character forms to
define the required variation form. (See Section 4.)

There is also the statement:

Corollary 1 of Proof of Theorem DG:

kernel(K̂X
ch
−→ ∧evenintegrality) is isomorphic to Hom(Ω̄C

odd,C/Z), a complex torus of dimension the
sum of the odd Betti numbers of X.

The final discussion brings in analysis and the eta invariants of the Atiyah-Patodi-Singer [8] theory
relating Topology, Geometry, and Analysis of a SAC manifold with boundary, but now restricted
to using unitary connections on the bundles and Levi-Civita connections on manifolds.
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As mentioned above, the “angle invariant” in R/Z for a unitary connection constructed using the
filling W is just the spectral invariant on V defined using the spinc Dirac operator reduced modulo
one. Here it is important though that the connection on V be the Levi-Civita connection so that
the asymptotic heat kernel analysis of the APS Theorem is valid.

Fortunately but not obviously, there is an extension of this calculation relating real “angles” to
eta invariants mod one giving an analytic calculation of the wrong way map in differential K-
theory in the case of unitary connections. There is a serious stumbling block though. For the APS
theory one again needs the asymptotic analysis based on using the Levi-Civita connection on the
total space T . For the wrong way map one needs the multiplicative property of the characteristic
forms associated to the direct sum connection on T in order to define the variation form in the
definition of K̂-character. Even though the metric on T can be taken to be the direct sum metric
the Levi-Civita connection is not the direct sum connection. See the Appendix to Section 5 for
the detailed discussion of the interesting difference. However in the Appendix one sees that by
scaling in such a way that the base becomes infinitely large compared to the fibre the limit of the
Levi-Civita connections upstairs exists (the adiabatic limit)1 and is fortunately CS equivalent2 to
the direct sum connection. This equivalence enables the analytic calculation of the wrong way map
in differential K-theory (unitary case) as a limit of eta invariants of the rescaled metrics. This is
the analytic theorem, Theorem AN, in Section 5.

Theorem AN is our response to Iz Singer’s question (on a flight with the authors seven years ago)
about having an analytic version of the index theorem in differential K-theory for families. There
have been other responses which use infinite-dimensional analysis [10] and [references in [11]].

§0. Background about connections, Chern-Weil characteristic forms,
and Chern-Simons forms

Let W
Π
−→ X be a real n-dim vector bundle over a smooth manifold. Let ∇ be a connection, and

R ∈ ∧2(X,End(W )) the curvature tensor.

A real valued polynomial on the Lie algebra of GL(n,R) is called invariant if it is fixed under
the adjoint action. If Pl(B) = tr(B

l), it is well known that the ring of invariant polynomials is
generated by P1, · · · , Pn. For a degree l invariant polynomial P , the Chern-Weil homomorphism
yields

P (

l
︷ ︸︸ ︷

R ∧R ∧ · · · ∧R) ∈ ∧2l(X), a closed form.

This map is a ring homomorphism, and the associated cohomology class of an element in its image
is independent of the choice of connection. This is made apparent by 1.1) and 1.2) below.

1We learned of the adiabatic limit connection from the work of Cheeger [12] and Freed [17].
2The equality of the Chern character forms was known before [communication of Dan Freed] but CS equivalence

is a stronger condition.
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If ∇0 and ∇1 are two connections on W with curvature forms R0 and R1, and ∇t is a smooth curve
of connections joining ∇0 to ∇1, and Rt its curvature, set

Bt =
d

dt
(∇t) ∈ ∧1(X,End(W )).

For P invariant of deg l,

1.1) P (R1 ∧ · · · ∧R1)− P (R0 ∧ · · · ∧R0) = d(TP(∇0,∇1)) where

1.2) TP(∇0,∇1) = l

∫ 1

0
P (Bt ∧

l−1
︷ ︸︸ ︷

Rt ∧ · · · ∧Rt) mod ∧2l−1exact. (Chern-Simons forms)

It may be shown that TP is independent of the curve joining ∇0 to ∇1, and thus TP(∇0,∇1) is
well defined. We also have

1.3) PQ(R ∧ · · · ∧R) = P (R ∧ · · · ∧R) ∧Q(R ∧ · · · ∧R)

1.4) T (PQ)(∇0,∇1) = TP(∇0,∇1) ∧Q(R0 ∧ · · · ∧R0) +TQ(∇0,∇1) ∧ P (R1 ∧ · · · ∧R1).

The first, because the Chern-Weil map is a ring homomorphism, and the second by calculation
(recall TP is defined mod exact).

Definition: ∇0 and ∇1 are called CS equivalent if TP(∇0,∇1) is exact for all invariant P . This
is easily shown to be an equivalence relation.

Since {Pl} generates the ring of invariant polynomials, 1.3) and 1.4) show

Proposition 1.5: ∇0 and ∇1 are equivalent if and only if TPl(∇
0,∇1) is exact for all l ≤ n.

Remark: The discussion for C-linear connections and complex-valued Chern-Weil and Chern-
Simons is similar.

§1. Construction I for Stably Almost Complex Manifolds (SACs)

Proposition 1: Any complex vector bundle E over Σ, a closed odd-dimensional SAC, can be filled
in. Namely, there is an even-dimensional SAC, W with ∂W = Σ, and a complex bundle EW over
W extending E.

Proof : The SAC bordism of a point, ΩC
∗ (pt) is torsion free and is concentrated in even degrees [a

celebrated result of the 60’s]. So is the homology of BUn the classifying space of isomorphism classes
of complex bundles of rank n. The SAC bordism of BUn , Ω

C
∗ (BUn), is the limit of the Atiyah-

Hirzebruch spectral sequence which begins with H∗(BUn,Ω
C
∗ (pt)) and which for any homology

theory collapses when tensored with Q. Thus it already collapses in this case and ΩC
∗BUn is torsion

free and concentrated in even degrees. This proves Proposition 1.
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Construction I below defines a pairing < ∇Σ; Σ
f
−→ X|E → X;∇E > in C/Z where Σ

f
−→ X is a

closed odd-dimensional SAC in X, E → X is a complex vector bundle over X, ∇Σ is a C-linear
connection on the stable tangent bundle of Σ, and ∇E is a C-linear connection on E over X.

Construction I: By Proposition 1 we can fill in Σ by W and extend EΣ = E/Σ to EW over W .
Similarly we can extend ∇Σ to ∇W on the stable tangent bundle of W and ∇E/Σ to the extended
bundle EW over W . We suppose there is a product neighborhood near ∂W where the extended
connections are product-like. On W there are two even-dimensional differential forms ch(EW ,∇),
the Chern character form defined by (EW ,∇), and Todd W , the characteristic form associated to
the universal total Todd class which is constructed from ∇W . (To be precise, we use the Todd
form, as defined in the Remark below, associated with the inverse of the stable tangent bundle.)

Define the pairing

< ∇Σ; Σ
f
−→ X|E → X;∇E > inC/Z

by
∫

W ch(EW ) · ToddW reduced modulo 1.

Proposition 2: The value of the integral of W mod one only depends on the SAC cycle in X,

Σ
f
−→ X “enriched” by the connection ∇Σ and the complex vector bundle E → X “enriched” by its

connection ∇E.

Proof : If we had chosen a different filling W̄ ,EW̄ so that ∂W̄ = Σ and EW̄/Σ = EΣ and different
“enrichment” ∇W̄ and ∇EW̄ extending the enrichments on Σ we can form the union of these two
choices along Σ, namely W ∪Σ W̄ and EW ∪EΣ

EW̄ and also glue the enrichments. The difference
of the two integrals which are the two definitions of the pairing is the entire integral over the closed
manifold W ∪Σ W̄ . This integral is well known to be an integer. (See the next remark for some
history.) This proves Proposition 2.

Remark 1: Here we fix the definition of the Todd class and recall how the integrality of
∫

V ch(E)ToddV
was understood for closed even-dimensional SACs V .

Imagine V embedded in a large sphere S with a complex structure on its normal bundle V provided
with a unitary structure. Pull back V to the normal disk bundle N to obtain a complex bundle E
on N . For each point v of N not in the zero section of ν there is an isomorphism between the two
halves of the exterior algebra bundle associated to E, ∧evenE ↔ ∧oddE defined by (wedging with
v) plus (contracting with v).

This defines an element in the complex K-theory of the pair Keven
C (disk bundle, sphere bundle)

which we pull back to the big sphere S by the collapsing map S ↔ disk bundle / sphere bundle.

The Chern character of this pullback element in the sphere is an integer [Bott, Milnor, Adams].
One calculates in the universal example over BU that ch(∧even − ∧odd) in the cohomology of the
universal Thom space MU satisfies

ch(∧even − ∧odd) = U · Todd,

where U is the Thom class, for some universal class Todd (defined by this equation). This reveals
the integrality above.
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Previously, in his celebrated treatise, Hirzebruch calculated Todd in terms of the multiplicative
series x/ex − 1, motivated by Todd’s work on the arithmetic genus (or holomorphic Euler charac-
teristics of algebraic varieties). This series shows the multiplicative property of the Todd formula.

The integrality made precise by Adams, Bott, and Milnor circa 1960 inspired Atiyah and Singer to
build Dirac operators and to develop the index theorem. (Recounted to one of the authors by Iz
Singer (late 60’s)) We revisit this later.

Remark 2: There are several properties of the pairing < ∇Σ,Σ
f
−→ X|E → X,∇E > in C/Z.

i) Since the Todd form is multiplicative for the direct sum of bundles with connections, if Σ→ X
is multiplied by V → pt then

< ∇,Σ× V → X|EX ,∇E >= ToddV < ∇Σ, V → X|EX ,∇ > .

ii) Fixing EX ,∇E and varying the cycle the function φ(∇, V → X) =< ∇, V → X|EX ,∇ >

satisfies: there is a closed form C on X so that whenever V
f
−→ X = ∂(W

F
−→ X) then φ(∇, V

f
−→

X) =
∫

W F ∗C Todd W (mod one).

Remark 3: It follows that the closed form C of property ii) has integral periods in the sense that

for every closed W
F
−→ X

∫

W
F ∗C Todd W belongs to Z,

and that C is unique given the values in C/Z for SAC cycles. (We denote such forms C in Section
3 by ∧evenintegrality.)

iii) If we fix EX but change the connection from ∇ to ∇′, then if CS(∇,∇′) denotes the Chern
Simons difference form so that dCS(∇,∇′) = ch∇− ch∇′, then

< ∇Σ,Σ
f
−→ X|EX ,∇ > − < ∇E ,Σ

f
−→ X|EX ,∇′ >=

∫

V
f∗CS(∇,∇′)Todd V.

In particular, if CS(∇,∇′) = exact, the difference is zero.
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§2. Algebraic Topology invariants in Q/Z of complex vector bundles
derived from the pairing < ∇Σ,Σ→ X|E → X,∇E > in C/Z

Recall that the Z/2 graded functor Ω̄C
∗ (X) = ΩC

∗ (X) ⊗ΩC
∗(X) Z where the SAC bordism Z-graded

modules over SAC bordism of a point are collapsed to a Z/2-graded functor by setting V · x = 0
if ToddV = 0. This was introduced by Conner and Floyd and recall their theorem [9] implying
the unexpected fact that Ω̄C

∗ (∗) is a Z/2-graded homology theory. Since Ω̄C
∗ (X) is a homology

theory we can form Ω̄C
∗ (X,Z/n) which can also be defined by SAC Z/n-manifolds via the formula

Ω̄C
∗ (X,Zn) = ΩC

∗ (X,Z/n⊗Ω∗ptZ (see below). Then we can define the homology theory Ω̄C
∗ (X,Q/Z)

as the

lim
→
n

Ω̄C
∗ (X,Z/n).

The first theorem, (whose terms are explained more fully in the Remark) is

Theorem AT (Algebraic Topology): Complex K-theory is isomorphic based on C/Z characters
to Rational Hom(Ω̄C

∗ (X,Q/Z),Q/Z), whose elements are called Q/Z characters.

Remark: We will use the pairing of Section 1

< ∇Σ,Σ→ X|E → X,∇E > ∈ C/Z

in the proof, to define Z/n pairings for Σ a Z/n SAC bordism class of Z/n-manifolds in X.

< Σ→ X|E → X > ∈ Z/n

will form an inverse limit. This limit is uncountable, but the rationality condition will characterize
the image we seek.

Remark: For a homology theory h∗

C ∈ Rational Hom (h∗( ,Q/Z),Q/Z)

means by definition the boxed commutative diagram:

β
−→ h∗(X,Z) → h∗(X,Q) → h∗(X,Q/Z)

β
−→

↓ CZ ↓ CQ ↓ C

0 → Z → Q → Q/Z → 0

where the upper row is the Bockstein sequence for h∗. C determines CQ uniquely when CQ exists
(see below).

9
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Figure 1: Z/n manifold in X, n = 3

Now we turn to the proof of Theorem AT using the pairing < ∇Σ; Σ → X|E → X;∇E > ∈ C/Z,
and the Z/n-manifold definition of Ω̄C

∗ (X,Z/n). (See Remark below for an explanation of the
Z/n-manifold definition of Ω∗C(X,Z/n).)

Definition 1: A Z/n-manifold is a pair (V, βV ) where boundary V is the disjoint union of n
copies of a closed manifold βV , (read “Bockstein of V ”). We say the Z/n-manifold (V, βV ) is the
boundary of (W,βW ) if βV is the boundary of βW , and V union n-copies of βW glued on the
n boundary components βV is a closed manifold which is the boundary of W . Word picture: a
Z/n-manifold looks like a book with n-pages attached along a binding βV but whose edges are all
glued together to form V .

Construction II: Given an even-dimensional SAC-Z/n manifold in X, (V, βV )→ X and a com-
plex bundle E → X, we construct an element in C/Z of order n as follows: write βV = ∂Q and
extend E/V = EV to EQ over Q using Proposition 1 of Section 1. Enrich these objects with
connections as in Section 1. For dim V even, consider the expression

∗) 1
n

∫
ch EV Todd V −

∫

Q ch EQ Todd Q

defining an element in C/Z after reducing mod Z.

10



Proposition 2:

a) The element defined in ∗), denoted by < V
f
−→ X|E → X > is an element of order n in C/Z and

is independent of the choices ∇V , ∇E, and Q,∇Q.

b) If the Z/n-manifold V → X in X bounds as a Z/n manifold in X then ∗) is zero in C/Z.

c) < U → pt× V
f
−→ X|E → X >= Todd U < V

f
−→ X|E → X > .

Proof : For part a), multiply ∗) by n and look at the boundary R of Figure 1c. This expression is
the integral of (ch E Todd R) where R is the closed manifold (V union n-copies of Q) = R. This
is an integer. So n · (∗) = 0 in C/Z.

ChangingQ to another filling of βV changes the second term in ∗) by an integer as in Construction I.

Changing the connection can be done continuously. Elements of order n cannot move continuously.
This proves a).

To prove b), note the integer defined by [∗) times n] is actually zero since R = ∂W . Thus dividing
by n, it is still zero as a real number. Thus its reduction mod Z is zero.

c) follows from the definitions, and the multiplicative properties of the Todd form. �

Corollary: For every n we have character invariants defined using the C/Z characters,

Keven
C (X)

< | >
−−−→ Hom(Ω̄C

even(X,Z/n),Z/n)

where Ω̄C
(∗) is the Conner-Floyd homology theory (Z/2-graded) defined by

Ω̄C
(∗)(X) = ΩC

∗ (X) ⊗ΩC
∗pt

Z.

Proposition 3: Elements on Ω̄(∗)(X,Z/n) have order n. Ω̄(∗)(X,Z/n) is a multiplicative theory,
(which means one can multiply cycles in X and in Y to get cycles in X × Y ).

Proof : We prove the second statement first for ΩC
(∗)(X,Z/n) (without the “bar”). The cartesian

product of two Z/n-manifolds (like the product of two smooth manifolds with boundary) has a
codimension two locus L that needs attention. The neighborhood of the locus L has the form
L × cn × cn where cn is the cone on n points (denoted (n)). Now cn × cn is the cone on the join
(n)∗(n). But (n)∗(n) defines an element in ΩC

1 (pt,Z/n) which is zero as seen by the exact sequence

(ΩC
1 (pt)

n
−→ ΩC

1 (pt) → ΩC
1 (pt,Z/n) → ΩC

0
n
−→ ΩC

0 ) =

(0 → 0 → ΩC
1 (pt,Z/n) → Z

n
−→ Z).

Remark: For a general theory, elements in h1(pt) can create a difficulty at this point of the
argument for Proposition 3, e.g. n = 2 and KO∗. [Communication of Luke Hodgkin].
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Continuing, choose a two dimensional Z/n SAC manifold Cn with boundary, whose boundary is
n ∗ n. Use it to repair the neighborhood of the locus L as follows: remove L× cn × cn and replace
it by L× Cn glued along the boundary = L× ((n) ∗ (n)).

Map the repaired cartesian product of cycles to the cartesian product of cycles by projecting Cn to
the cone on its boundary. This defines (by repairing bordisms likewise) the multiplicative structure:
a map, ΩC

∗ (X,Z/n)⊗ ΩC
∗ (Y,Z/n)→ ΩC

∗ (X × Y,Z/n).

Since the zero manifold [n points] bounds in Z/n bordism of a point, that ΩC
∗ (X,Z/n) is a Z/n

module follows from the map defining the multiplicative structure. This completes the first part
of the proof of Proposition 3. The rest of the proof identifying the Z/n Conner-Floyd theory with
that defined by Z/n-manifolds is in the Appendix to Section 2.

§2. Appendix (Homology Theory)

Continuing the proof of Proposition 3:

Let Mn denote the Z/n-Moore space, the circle with one two cell attached by degree n. If h∗ is a
homology theory, then hk(X,Z/n) for X connected may be defined as

hk+1(X ∧Mn,Z) where X ∧Mn ≡ X ×Mn/X ∨Mn.

Note the Bockstein exact sequence

β
−→ h∗X

n
−→ h∗X → h∗(X,Z/n)

β
−→

follows by applying h∗ to the cofibration

X ∧ S
1∧n
−−→ X ∧ S1 → X ∧Mn

obtaining the long exact sequence of a cofibration.

That ΩC
∗ (X,Z/n) defined by SAC Z/n-manifolds agrees with this definition is proved by construct-

ing this exact sequence directly for Z/n-manifolds getting a map and using the 5-lemma. This
completes the discussion for Proposition 3.

Now we can prove Proposition 4:

Proposition 4: For the homology theory,

Ω̄C
∗ (X) ≡ ΩC

∗ (X) ⊗ΩC
∗(pt)

Z,

we have

Ω̄C
∗ (X,Z/n) = ΩC

∗ (X,Z/n) ⊗ΩC
∗(pt)

Z,

where ΩC
∗ (X,Z/n) is defined by SAC Z/n-manifolds.
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Proof of Proposition 4:

Ω̄C
∗ (X,Z/n) ≡ Ω̄C

∗+1(X ∧Mn) ≡ ΩC
∗+1(X ∧Mn)⊗ΩC

∗(pt)
Z = ΩC

∗+1(X,Z/n)⊗ΩC
∗(pt)

Z

by the above. This is one crucial place where Ω̄ being homology theory is used.

Continuing Proof of Theorem AT: We combine the mod n character invariants of Construc-

tion II and the fact that Ω̄C
∗ (X,Z/n) are Z/n modules, i.e. each element has order n.

K∗C(X,Z)
pairing
−−−−→ lim

←
n

Hom(Ω̄C
∗ (X,Z/n),Zn), from the Corollary to Proposition 2

= lim
←
n

Hom(Ω̄C
∗ (X,Z/n),Q/Z), using the Z/n-module property

= Hom(lim
→
n

Ω̄C
∗ (X,Z/n),Q/Z)

= Hom(ΩC
∗ (X,Q/Z),Q/Z),

because we have Z/n-modules, which implies by the universal properties of the finite completion
functor3 ∧, a commutative diagram

K∗C(X,Z)
∧
−→ K∗C(X, Ẑ)

<|>∧

−−−→ Hom(Ω̄C
∗X,Q/Z,Q/Z)

Id l l Id

K∗C(X,Z)
<|>
−−→ Hom(Ω̄C

∗X,Q/Z,Q/Z).

< | >∧ is a map of cohomology theories which on a point maps Ẑ → Hom(Q/Z,Q/Z) by an
isomorphism. Thus < | >∧ is an isomorphism.

Remark: Hom(Ω̄∗C(X,Z/n),Zn) is a cohomology theory since Zn is an injective Z/n module.
The inverse limit of finite cohomology theories is also a cohomology theory. Putting these to-
gether yields Hom(Ω̄∗C(X,Q/Z),Q/Z), is a cohomology theory. A second way is Q/Z is divisible
so Hom(homology theory, Q/Z)4 satisfies exactness and thus all the axioms to be a cohomology
theory.

We also have K∗CX
<|>Z

−−−→ Hom(Ω̄C
∗ ,Z) defined by: for any closed even-dimensional SAC V

f
−→ X,

form the integer
∫

V ch E ToddV where E is any complex bundle over X. One knows < | >Z ⊗Q
is an isomorphism of (K∗CX)⊗Q with Hom(Ω̄C

∗ (X,Q),Q).

Furthermore, for any complex bundle E, the diagram

3
∧ replaces an Abelian group by the inverse limit of its finite quotients.

4We referred to this construction as the “Pontryagin dual” cohomology theory [13] which we learned about from
Don Anderson who never published it to my knowledge. It is now referred to by specialists as the “Anderson dual”.
It’s a great construction.
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Ω̄C
∗ (X,Q) → Ω̄C

∗ (X,Q/Z)

< |E >Q↓ ↓< |E >Q/Z = diagram

Q → Q/Z

commutes.

The map K∗C → {diagram} is a map of cohomology theories (see next Remark) which for a point is

Q
mod1
−−−→ Q/Z

n ∈ Z 7−→ ↓ n ↓ n ,

Q
mod1
−−−→ Q/Z

an isomorphism. Thus it is an isomorphism of functors. This proves Theorem AT. �

Remark: Diagrams are easily identified (using iso < | >∧) with the kernel of

(K∗C(X)⊗Q)⊕K∗C(X, Ẑ)
∆
−→ K∗C(X, Ẑ)⊗Q

where ∆ is the difference of the natural maps. By the fibre construction and the exactness of

0 → kernel → ( )⊕ ( ) → K∗C(X, Ẑ)⊗Q → 0

we get that diagrams form a cohomology theory. See [14].

§3. The maps from differential K-theories to K̂-characters are bi-

jections (C-linear and unitary cases)

The C-linear case in detail:

Definition: A K̂-character on X is an additive over disjoint union function from (enriched closed
odd-dimensional SACs mapping toX) to (C/Z) satisfying properties i) and ii) of Remark 2 following
Construction I in Section 1, using C-valued differential forms.

Proposition 3: The construction of a K̂-character for a complex vector bundle (E,∇) over X
with C-linear connection in Section 1 only depends on the equivalence class of (E,∇) in differential
K-theory, K̂(X) defined using C-valued differential forms.

Proof : By Remark 2 property iii) of Section 1, if CS(∇,∇′) is exact, the K̂-characters of (E,∇)
and (E,∇′) are equal. Since chE is additive, we can pass to the Grothdieck group of (E,∇) up to
CS equivalence, which is the definition of K̂(X). �
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Theorem DG (Differential Geometry): The natural map produced by Construction I of Sec-

tion 1, K̂X → K̂-characters with values in C/Z, is an isomorphism, where K̂X is defined by
C-linear connections and C-valued differential forms.

Proof : From [5] backstopped by [4] for the odd form lemma in the C-linear case, we have the
diagram

0 0

�
��✒ ❅

❅❅❘

Kodd
C (X) ∧odd/∧oddintegrality

✲ ∧evenintegrality

d

�
��✒ ❅

❅❅❘
i2

�
��✒ ❅

❅❅❘
ĉh

�
��✒ ❅

❅❅❘

Hodd(X,C) K̂even
(X) Heven(X,C)

❅
❅❅❘ �

��✒ ❅
❅❅❘
i1 δ2

�
��✒ ❅

❅❅❘
ch

�
��✒

ker ĉh ✲ Keven
C (X)

❅
❅❅❘ �

��✒

0 0
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See also remarks in the Introduction about the C-linear connections and differential K-theory
defined using C-valued forms. From Construction I of Section 2, we get natural maps of this
diagram into the diagram (whose exactness will be demonstrated)

0 0

�
��✒ ❅

❅❅❘

Rational Hom

(Ω̄odd(X,Q/Z),Q/Z)
∧odd/∧oddintegrality

✲
∧evenintegrality

d
�
��✒ ❅

❅❅❘
i2

�
��✒ ❅

❅❅❘
ĉh

�
��✒ ❅

❅❅❘

Hom(Ω̄oddX,C) K̂even-characters Hom(Ω̄evenX,C)

❅
❅❅❘

mod1

�
��✒ ❅

❅❅❘
i1 δ2

�
��✒ ❅

❅❅❘
ch

�
��✒

Hom(Ω̄C
oddX,C/Z)

δ2 · i1✲
Rational Hom

(Ω̄even(X,Q/Z),Q/Z)

❅
❅❅❘ �

��✒

0 0

Note: ∧evenintegrality and ∧oddintegrality are those closed forms C whose cohomology classes satisfy inte-

grality conditions, namely
∫

M T (M) C is an integer dim M even or odd respectively.

Notational Diagram:

8♠✒✑
✓✏

7✒✑
✓✏ ✲

2✒✑
✓✏�

��✒ ❅
❅❅❘ �

��✒ ❅
❅❅❘ �

��✒

6♠✒✑
✓✏

1✒✑
✓✏

5♠✒✑
✓✏�

��✒ ❅
❅❅❘ �

��✒ ❅
❅❅❘

3✒✑
✓✏

✲ 4♠✒✑
✓✏

Note to Reader: The double circles mean we enter the proof knowing we have isomorphisms at
these locations. We have to fight hard for positions 1 and 3, but only a little for positions 7 and 2.

Here Ω̄C
∗ denotes the Z/2-graded functor introduced by Connor and Floyd

Ω̄C
∗ (X,Z) = ΩC

∗ (X,Z)⊗ΩC
∗(pt)

Z = ΩC
∗ (X,Z)/(V · x− Todd V · x)
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where the ring of integers Z is a ΩC
∗ (pt) module via the ring homomorphism ΩC

∗ (pt)→ Z provided
by the Todd genus and “Rational Hom” is discussed again momentarily. Note: we also write Ω̄C

∗ (X)
for Ω̄C

∗ (X,Z), and Ω̄C
∗ (X,Q/Z) for ΩC

∗ (X,Q/Z) ⊗ΩC
∗(pt)

Z.

The proof of Theorem DG depends on

Theorem 2: For X a finite complex Keven
C (X) is a finitely generated Abelian group whose torsion

is identified by Constructions I and II to Hom(torsion Ω̄C
odd(X,Z),C/Z) and whose quotient by

torsion is identified to Hom(Ω̄C
even(X,Z),Z). Also the same statements hold reversing even and

odd.

Proof : In the Appendix to Section 2, one shows using Z/n-manifolds and Construction II that one
has a bijection between K∗(X) and Rational Hom(Ω̄∗(X,Q/Z),Q/Z) for ∗ even or odd. Recall an
element C in Rational Hom( , ) is an element C in Hom which is part of a commutative diagram

β
−→ Ω̄C

even(X)
⊗Q
−−→ Ω̄C

even(X)⊗Q → Ω̄C
even(X,Q/Z)

β
−→ Ω̄C

odd(X,Z)

↓ CZ ↓ CQ ↓ C

0 → Z → Q → Q/Z → 0.

(Similarly interchanging even and odd.)

If CQ exists given C, CQ must be unique. This follows since the difference of two would map to
zero in Q/Z so it would factor through Z ⊂ Q which is impossible since the domain is a Q vector
space.

Also the unique CQ that fits with C determines CZ. Thus C determines CQ and CQ determines
CZ.

Conversely given any CZ it determines CQ by CQ = CZ⊗CQ, which in turn determines C partially
on kernel β. Since Q/Z is divisible (and thus an “injective Z-module”) any such partial C extends
(non-uniquely) to a full C. This proves the second part of Theorem 2.

Note if given C, CQ were zero, then C factors through image β which is the torsion of Ω̄C
odd(X,C).

This proves the first part of Theorem 2. �

Corollary: A cohomology class c in Heven(X,Q) is the Chern character of a complex bundle over

X if and only for every closed even-dimensional SAC mapping to X, V
f
−→ X,

∫
f∗ c Todd V is an

integer. A similar statement holds for the transgressed ch in U , odd-dimensional closed SACs in
X, elements in Hodd(X,Q) and maps X → U .

Proof : This is just unraveling the statement of the second part of Theorem 2. The odd case follows
using the suspension isomorphism h∗(X) = h∗+1(ΣX) applied to K∗C and Ω̄C

∗ (X,Q/Z). �
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Proof of Theorem DG: In the upper diagram, the diagonal sequences and the outer sequences
are exact by [5]. By the Corollary to Theorem 2, the maps at positions 7© and 2© are isomorphisms.
It follows that 0→ 3©→ 1©→ 2©→ 0 is exact for the middle diagram.

Claim: For the middle diagram, the upper sequence 8©→ 6©→ 3©→ 4©→ 5© is exact.

Proof of Claim is below.

Corollary of Claim: The map is an isomorphism at position 3©.

Proof of Corollary of Claim: By the Appendix to Section 2, the map is an isomorphism at 4©

and 8©. It is an isomorphism at 6© and 5© by direct inspection. Thus it is an isomorphism at 3©

by the 5-lemma.

Second Corollary of Claim: The completion of the proof of Theorem DG. Apply the 5-lemma
to 0→ 3©→ 1©→ 2©→ 0. QED for Theorem DG. �

Proof of Claim: By the second part of Theorem 2 the odd case, the image of 8©→ 6© in the middle
diagram is Hom(Ω̄oddX,Z) ⊂ Hom(Ω̄oddX,C). This is the kernel of 6©→ 3©. So we have exactness
at 6©. The image of 6©→ 3© is the component of the identity of the locally compact Abelian group
Hom(Ω̄C

oddX,C/Z). The quotient by the image is isomorphic to Hom(torsion Ω̄C
oddX,C/Z). This

quotient injects into 4© by the first part of Theorem 2. So we have exactness at 3©. The image of
3©→ 4© is the torsion of 4© again by Theorem 2. This torsion is the kernel of 4©→ 5© by the proof
of Theorem 2. So we have exactness at 4©.

Corollary 1 of Proof of Theorem DG:

kernel(K̂X
ch
−→ ∧evenintegrality) is isomorphic to Hom(Ω̄C

odd,C/Z), a complex torus of dimension the
sum of the odd Betti numbers of X.

Corollary 2 of Proof of Theorem DG: The diagonal and outer sequences of the K̂-character
diagram are exact.

Note: Replacing C/Z by R/Z, C-linear connections by unitary connections, and complex valued
forms by real valued forms gives the proof of Theorem DG in that case mutatis mutandis.

§4. The Wrong Way Map on K̂-characters for a Smooth SAC Fam-
ily with Complex Linear Connection on the Vertical Stable Tangent
Spaces together with a Horizontal Connection

An enriched SAC cycle on the base determines an enriched SAC cycle in the total space by pullback.
The stable tangent bundle of the pullback cycle in the total space has a natural direct sum splitting
and the direct sum connection, where in the base directions we use the pullback of the connection
on the cycle in the base and in the vertical directions the induced complex connection. Now we
restrict attention to even-dimensional SAC fibers over the base of the family.

18



Definition of Wrong Way Map on K̂-characters: Given a function t on enriched SAC cycles
on the total space, we get a function b on enriched SAC cycles in the base by the obvious formula:

b(base cycle) ≡ t(pulled-back cycle).

Proposition: If t satisfies the properties of a K̂-character on the total space then b satisfies the

properties of a K̂-character on the base.

Proof : The Todd form of the pullback cycle in the total space is the wedge product of (the Todd
form of the cycle in the base) with (the Todd form of the vertical).

The same will be true for the Todd form of the pullback of a SAC enriched bordism deformation
of the cycle in the base.

If C(t) denotes the variation form of a K̂-character on T , define C(b) by the integration along the
fibres of the product of C(t) with the vertical Todd form on the total space.

If W fills in the base cycle V and W̄ is the pullback fill in of the pulled-back cycle V̄ , then the
integral of Todd W̄ ·C(t) over W computed by integrating along the fibres is seen to be the integral
C(b) over W . This follows since if I denotes integration along the fibres and Π is the projection,

I(Todd W̄ ∧ C(t)) = I(Π∗ Todd W ∧ Todd(vertical) ∧ C(t))

= Todd W ∧ I(Todd(vertical) ∧C(t))

= Todd W ∧ C(b). �

§5. The Riemannian and Unitary Case and Eta Invariants of (X,E,∇)

We will use the APS theorem [8] to compute (V, F ) where F : V → X is an enriched SAC cycle
in X. The invariant will be the eta invariant of the spinc Dirac operator on V with coefficients in
F ∗E reduced mod one. Now we assume the connection ∇ is unitary.

First, a SAC bundle E has a canonically associated complex line bundle whose first Chern class
reduces mod 2 to the second Stiefel-Whitney class of E.

Proof : The top exterior power of a complex vector space U is canonically isomorphic to the top
exterior power of U ⊕C. So we have a line bundle (functorially) associated with any SAC bundle.
Call this line bundle L. The first Chern class of L is the first Chern class of E which reduces mod
2 to the second Stiefel-Whitney class of E. �

Second, applying this to the actual tangent bundle T (V ) of a SAC sycle, form T (V ) ⊗ L and its
complex Clifford algebra bundle associated to a metric on T (V ) and a U(1) metric on L. There
is a complex bundle S which is fibrewise the irreducible complex Cifford module for the Clifford
algebra on T (V )⊗ L well-defined up to module isomorphism.
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Proof : One knows this representation fact is equivalent to having a specific spinc lift of the SO(n)
structure on T (V ), where spinc is the fibre product of the diagram

SO(n)
“w2”−−−→ RP∞ ←֓ RP 1 = U(1).

We have just seen using L that we have a homotopy commutative diagram

V
c1(L)
−−−→ K(Z, 2) = BU(1)

T (V ) ↓ ↓ reduction mod 2

BSO(n)
w2−→ K(Z2, 2).

So given a homotopy class of homotopies making it actually commutative we have a lift V → Bspinc

which is a fibre product of this diagram. Here BG means classifying space for G.

This homotopy class of homotopies comes from the (rigidly) commutative diagram of structures,

BSO(n)
✲ BSO

✲
w2

K(Z/2, 2)

tangent

❅
❅❅❘

V ✏✏✏✏✏✏✏✏✏✏✶

L

❅
❅
❅
❅
❅
❅
❅❅❘

inclusion

❄

mod 2

SAC
�
��✒

BU
✲

c1
BU(1)

✲
=

K(Z, 2)

One can now form the spinc Dirac operator on the complex spinors, the sections of S. This operator
combines the Clifford multiplications with covariant derivatives of the induced unitary connection
on S (see [8]).

By the discussion in [8], one has the spectral eta invariants of this operator with coefficients in any
unitary bundle when the dimension of V is odd. By the celebrated theorem in [8], this real number
defined by eigenvalues of Dirac with coefficients, zeta functions thereof and analytic continuation
to zero differs by an integer from the integral of (Todd W · ch E) over W where W is SAC, ∇ on
E is unitary, Dirac has coefficients in E and boundary (W ) = V .

Corollary: (Eta form of Theorem DG)

The complex angle invariants in C/Z for the complex bundle E over X with unitary connection lie
in R/Z and can be defined directly for odd-dimensional SAC cycles F : V → X in X enriched by
Levi-Civita connections on TV and a unitary connection on the canonical complex line bundle L
over V using the eta invariant reduced mod 1 of the spinc Dirac operator with coefficients in F ∗E
to define a bijection

differential K-theory
eta
←→ differential K̂-characters.

(real forms) (values in R/Z)
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Similarly, we can give an eta computation of the push forward.

Using the result of the Appendix to Section 5 we will be able to work with both connections on
the Riemannian fibration together with a unitary connection on the line bundle L associated to the
SAC structure in the vertical tangent bundle.

The direct sum connection by definition computes the push forward for bundles with unitary
connection. The eta invariants of the spinc Dirac operator relative to the rescaled Levi-Civita
connections on the total space converge to these push forward values as the base becomes infinitely
large relative to the fibre.

This proves the Analytic Theorem:

Theorem AN: The invariants of the push forward of (E,∇) for E SAC and ∇ unitary are
computed by the limits of eta invariants mod one of the rescaled Levi-Civita connections as they
converge to their adiabatic limit.

Appendix to §5 : Adiabatic Limits in Riemannian Fibrations

1. Two Connections

If Π : F → M is a fibration of riemannian manifolds such that Π is a Riemannian submersion,
two natural connections are present in T (F ). The first is the Riemannian connection, ∇r, and
the second, ∇⊕, is a direct sum connection on the vertical tangent bundle and its orthogonal
complement.

Under a stretching of the base by multiplying its metric by a constant λ, and carrying this through
to the metric on F so that Π remains a Riemannian submersion, ∇r changes to a connection denoted
by ∇λr. ∇⊕ however remains fixed.

In this Appendix we show that lim
λ→∞

∇λr = ∇̃r is a well defined connection, and also show that ∇̃r

and ∇⊕ are equivalent. This, in the sense that the CS terms relating the characteristic forms of
the two connections are all exact. We refer to Section 0 for notation.

2. Riemannian Fibrations

Let F
Π
−→ M be a smooth fibration over a smooth manifold, the fibers of which are Riemannian

manifolds. x ∈ T (F ) will be called vertical if Π∗(x) = 0. The collection of vertical vectors forms a
sub-bundle V ⊆ T (F ). Clearly V|Fm = T (Fm). V is a Riemannian vector bundle, and we shall use
<,> to denote the inner product on its fibers.

Now suppose we are given H ⊆ T (F ) a complementary sub-bundle to V. I.e. T (F ) ∼= V ⊕ H.
Elements of H will be called horizontal, as will vector fields on F all of whose elements are
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horizontal. Clearly a vector field J on M may be lifted to a unique horizontal field Π∗(J) on F .
Such horizontal fields on F will be called special. The following is well known.

Lemma 2.1: Let H, I be special horizontal fields on F , and X a vertical field.

a) [H,X] is vertical

b) [H, I] = Π∗([Π∗(H),Π∗(I)]) + vertical

Proof : Because H is special, the 1-parameter flow induced by H takes fibers to fibers. a) is the
infinitesimal version of this observation. To see b), let f ∈ C∞(M). For p ∈ F , the fact that H, I
are special shows

[H, I](p)(Π∗(f)) = [Π∗(H),Π∗(I)](Π(p))(f)
=⇒

Π∗([H, I]) = Π∗(Π
∗([Π∗(H),Π∗(I)])) which implies b). �

The Riemannian connection on the tangent bundles of the fibers of F may be extended to an inner
product preserving connection, ∇V , on V over all of F as follows:

Let X,Y,Z be vertical vector fields on F , and H a special horizontal field. Let ∇ denote the
Riemannian connection on the fibers. Set

2.2) < ∇VXY,Z > = < ∇XY,Z >

< ∇VHY,Z > = 1
2{< [H,Y ], Z > − < [H,Z], Y > +H(< Y,Z >)}.

Direct calculation shows that ∇V is a well defined connection on V, and that ∇V preserves <,>.

Let us now suppose that M itself is a Riemannian manifold. Since H ∼= Π∗(T (M)), the metric
and the Riemannian connection on T (M) induce an inner product and connection on H, denoted
respectively by <,> and ∇H. Set

∇⊕ = ∇V ⊕∇H.

By making V and H orthogonal, <,> becomes a positive definite inner product on T (F ), on which
it induces the Riemannian connection ∇r. We wish to compare ∇r and ∇⊕, two metric preserving
connections on T (F ). Letting Skew(T (F )) denote skew symmetric endomorphisms, we set

B = ∇r −∇⊕ ∈ ∧1(F,Skew(T (F ))).

Let X,Y,Z be vertical vector fields and H, I, J special horizontal fields.
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Proposition 2.3: Assume we are working in a neighborhood where the inner products of all the
above pairs are constant. Then

1) < BXY,Z > = 0

2) < BHY,Z > = 0

3) < BXY,H > = 1
2{< [H,X], Y > + < X, [H,Y ] >}

4) < BHY, I > = −1
2 < [H, I], Y >

5) < BXI, Z > = −1
2{< [I,X], Z > + < X, [I, Z] >}

6) < BHI, Z > = 1
2 < [H, I], Z >

7) < BXI, J > = −1
2 < [I, J ],X >

8) < BHI, J > = 0

Proof : We recall the Koszul formula for the Riemannian connection, as applied to the case of
triples of vector fields, the pair-wise inner products of which are constant.

2.4) < ∇W1
W2,W3 >=

1

2
{< [W1,W2],W3 > + < [W3,W1],W2 > + < [W3,W2],W1 >}

To show 1) we note that

< BXY,Z >=< ∇r
XY,Z > − < ∇VXY,Z > .

By definition of ∇V , it was the extension of the Riemannian connection on the fibers of F to all
of T (F ). Since the Riemannian connection on a submanifold is simply its orthogonal projection to
the sub-tangent bundle, < ∇r

XY,Z >=< ∇VXY,Z >.

2) follows immediately by comparing 2.2) to 2.4) and using the fact that inner products of our
fields are constant.

3) follows from 2.4) by noting that ∇⊕ preserves each of V and H, as does 4) via a) of Lemma 2.1.

5) and 6) follow from 3) and 4) respectively, using the skew symmetric action of the values of B.

To show 7), we note that ∇H is the pull-back under Π of the Riemannian connection of T (M), and
thus, since Π∗(X) = 0, ∇HX = 0. The rest follows from 2.4) and a) of Lemma 2.1.

To show 8), we use b) of Lemma 2.1, and use 2.4) on both T (F ) and T (M). Together, that shows
that < ∇HHI, J >=< ∇r

HI, J >. �
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3. The Adiabatic Connection

We now stretch M by considering the 1-parameter family of metrics <,>λ= λ <,>, where
λ ∈ [1,∞). Lifting this to F we see for X,Y vertical and H, I horizontal

3.1) < X,Y >λ=< X,Y >, < X,H >λ= 0, < H, I >λ= λ < H, I > .

Since ∇V is independent of a metric on M , and since the Riemannian connection on T (M) is
unchanged under a constant conformal change of metric, ∇⊕ = ∇V ⊕∇H is invariant as λ changes.
The Riemannian connection on T (F ) does change, however, and and we denote this family of
connections by {∇λr}.

Theorem 3.2: Set ∇̃r = lim
λ→∞

∇λr. Then, ∇̃r is well defined, and ∇̃r is equivalent to ∇⊕.

Proof : Let Bλ = ∇λr −∇⊕ ∈ ∧1(F,End(T (F ))). From 3.1) and Proposition 2.3) we see

1) < Bλ
XY,Z > = 0

2) < Bλ
HY,Z > = 0

3) < Bλ
XY,H > = 1

λ < Bλ
XY,H >λ = 1

λ < BXY,H >

4) < Bλ
HY, I > = 1

λ < Bλ
HY, I >λ = 1

λ < BHY, I >

5) < Bλ
XI, Z > = < BXI, Z >

6) < Bλ
HI, Z > = < BHI, Z >

7) < Bλ
XI, J > = 1

λ < Bλ
XI, J >λ = 1

λ < BXI, J >

8) < Bλ
HI, J > = 0

Setting B̃ = lim
λ→∞

Bλ, we see from the above

3.3) B̃s|V = 0 and B̃s(H) = (Bs|H)V

where s is any tangent vector to F , and ( )V means projection into V. Thus

3.4) ∇̃r = ∇⊕ + B̃

implying ∇̃r is well defined.

Let [B̃, B̃] ∈ ∧2(F,End(T (F ))) be defined as usual, i.e. [B̃, B̃](x, y) = [Bx, By]. By 3.3)

3.5) [B̃, B̃] = 0.
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Let d denote exterior differentiation with respect to ∇⊕ of forms on F taking values in End(T (F )).
Since ∇⊕ preserves V and H, 3.3) shows, for any s,u tangent to F

3.6) dB̃s,u|V = 0 and dB̃s,u(H) ⊆ V.

For t ∈ [0, 1], let γ(t) = ∇⊕ + tB̃, a curve of connections joining ∇⊕ to ∇̃r.

Let Rt denote the curvature tensor of γ(t). By the usual formula

Rt = R+ tdB̃ + t2[B̃, B̃]

and by 3.5)

3.7) Rt = R+ tdB̃.

Since d
dt(γ(t)) = B̃, following 1.2) in §0, TP l(∇

⊕, ∇̃r) consists of integrals of terms of the form

tr(B̃s1R
t
s2,s3 · · ·R

t
s2l−2,s2l−1

).

Since Rsi,sj preserves V and H, by 3.3), 3.6) and 3.7) we see that the endomorphism inside the
parentheses is either 0 or takes H → V and V → 0. In either case its trace is 0. Thus,

TP l(∇
⊕, ∇̃r) = 0

and thus by Proposition 1.5 in Section 0, ∇⊕ ∼ ∇̃r. �
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