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1 Overview
We construct two canonical lattice models of 3D incompressible hydrodynamics on
triply periodic three space with periods in each direction the same power of two.

This is based on a "lattice vector calculus" for a special collection of bigger k-
cubes inside the cubical decomposition of periodic three space of grid step h. By
considering all lattice points plus all edges, faces and cubes of edge size 2h one finds
a new discrete version of vector calculus which works nicely. One should note these
elements overlap consisting as they do of eight different cubical decompositions of
edge size 2h all related by translations in the various directions by h.

This idea for the lattice hydrodynamics begins with the known impossibility to
have a finite dimensional version of vector calculus that includes a discrete version
or model of differential forms with exterior d and the exterior product which si-
multaneously satisfies graded commutativity, associativity and the product rule for
exterior d.

This means the same discretization method applied to different but equivalent
versions of NSE at the continuum level might well be fundamentally different when
the identities used to prove the equivalence at the continuum level do not all hold
for the discretization being used.

We do not derive the lattice model by directly discretizing some particular writing
of the NSE, but rather we first simply write momentum transfer and creation or
destruction in small cubical regions of fixed edge size 2h. This yields the “momentum
model” discussed in detail below. Numerical experiments indicate the nonlinear term
in this model pumps numerical energy into the system. Using two scales, coarse and
fine, numerical reliability is being improved.

A second model based on the same lattice vector calculus but using the vorticity
transport principle when the viscosity is zero leads to the "vorticity model". This
interpretation requires a discrete version of the Lie bracket of vector fields mentioned
below. The "vorticity" model satisfies, the energy dissipation rate is given by the
negative energy norm of the vorticity and seems to be more stable numerically
than the "momentum" model. (from numerical studies of the two models with
D.An,P.Rao and A.Kwon to appear. The physicist Alexandro Cabrero gave one
the courage to ignore the momentum principle and use the vorticity transport as a
principle instead.)

Besides the critical perspective on discretization mentioned above the new point
and the main point is to express the algorithms in terms of an optimal algebraic
background for the canonical operations of combinatorial topology that are discrete
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analogues of the continuum ones exterior d on forms and the divergence operator
on multi-vector fields. This optimal setting is the “discrete lattice vector calculus”on
the melange of big cubes mentioned above.

This "lattice vector calculus" has discrete analogs of d and the exterior product
on the discrete analogue of differential forms denoted δ and "wedge" acting on the
cochains.

The "lattice vector calculus" also has discrete analogs of the exterior product of
multi-vector fields and its divergence operator ∂ (using any volume form up to scale)
whose discrete analogue is the exterior product and its boundary operator denoted
"wedge" and ∂ acting on chains.

These products satisfy by construction graded commutativity and associativity
but δ does not satisfy the product rule , that is, it is not a first order derivation,
as is its continuum analogue d. Thus the product rule for δ acting on the exterior
product of cochains is deformed.

Also ∂ is not a second order derivation of its exterior product as is its continuum
analogue, where the deviation from being a first order derivation of the exterior
product defines a Lie bracket on multivector fields, including the Lie bracket of
vector fields.

One takes the deviation of ∂ from being a derivation on the exterior product of
chains, called the bracket and denoted [ , ] to be the discrete version of the Lie
bracket of vector fields , one chains being the discrete analogue of vector fields,
given our volume form. ∂ is by a derivation of the bracket [ , ] on chains because
∂∂ equals zero. This bracket [ , ] defined to be the deviation of ∂ from being a
derivation of the exterior product of chains, which in the continuum satisfies the
Jacobi identity, now only satisfies Jacobi up to chain homotopy.

Each of these discrepancies is treated by methods of algebraic topology and
estimates which justify the discretization of the wedge product of forms and the
proposed discretization of the Lie bracket of vector fields in work with R. Lawrence
and N. Ranade which will appear in the volume honoring the memory of Sir Michael
Atiyah.

Besides the discrete operators coboundary and boundary of algebraic topol-
ogy, the poincare dual cell operator plays the role of the Hodge star operator.
When cochains and chains are identified using the natural basis the two operators
are adjoint and related by conjugation by hodge star.

Exen though the calculus limit is not taken, the derived ODE , “momentum
model” for the lattice velocity vector field written in the lattice vector calculus is
exactly the Leray form of NSE having the derivative outside the nonlinear term.

The “vorticity model” in this vector calculus language becomes the other familiar
form of NSE with the derivative on the inside of the nonlinear term.

So regarding conservation laws at the coarse scale of computation one must
choose in this lattice vector calculus between 1) the momentum model with conser-
vation of momentum but with energy being put in by the nonlinear term and 2) the
vorticity model where there is dissipation of energy proportional to the energy of
vorticity but no explicit momentum conservation.
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2 Introduction to the"momentum model"

Figure 1: How Cubes Intersect

We construct a particular lattice “momentum” model of 3D incompressible fluid mo-
tion with viscosity parameter. The construction follows the momentum derivation
of the continuum model using combinatorial topology instead of taking the calculus
limit.The lattice consists of two interpenetrating face centered cubic lattices which
is the crystal structure of NaCl. The lattice defines sodium extreme point cubes
with their faces, edges and vertices and chlorine extreme point cubes with their
faces, edges and vertices. In this way the lattice of sites organizes a chain complex
L of four vector spaces built from overlapping uniform cubes, faces, edges and sites
giving a multi-layered covering of periodic three space. There are two nilpotent
operators on L, a duality involution, each of odd degree, and a combinatorial Lapla-
cian. The result of the momentum derivation is an ODE on one degree of L which
is a combinatorial version of the continuum model.

∂{VL}
∂t

= {∗δ( VF · vF )}+ δP − ν∆{VL}, with ∂ {VL} = 0. (1)

The combinatorics of the combined lattice L enables a balancing of local and global
degrees of freedom required to build the “momentum”model. The derived ODE is
exactly that form of NSE used in the classic paper of Leray. [2] The “vorticity model”
which uses the part of lattice vector calculus using vector fields contracted against
differential forms will be discussed later. The reference [1] concerns an additional
approach to models motivated by the infinite heirarchy of cumulant equations arising
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from the nonlinearity and its potential relation to quite modern algebraic topology.
The goal of work in progress is to use the model both to derive theory and to compute
meaningfully at a given scale those phenomena that can be naively observed.

3 The ideas of the construction and definitions
L denotes the vertices of a regular cubical lattice of edge size h and of even period in
three orthogonal directions (x, y, z) which are directed. We imagine a fluid uniformly
filling and moving through periodic three space.

The lattice vector field, VL: for each site or vertex q of L, VL(q) is a three
space vector at the vertex q which represents the average velocity of wind or current
taken over the cube centered at q with side length 2h. Namely the integral of
velocity times 1

8h3 . We are assuming the density of particles in the fluid is unity.
The face velocity vectors and face normal components, VF , vF : For each

face F of side length 2h, VF is VL at the center point of F and vF is the component
of VF perpendicular to the oriented F in the direction defined by the right hand rule.

The model proposal: We are interested for each oriented F in the instanta-
neous transfer of momentum across the face. This is equal to the product of VF and
vF .

The derivative outside the nonlinear term: Since VF · vF is a function
on oriented faces of side length 2h , we can form δ(VF · vF ), the coboundary of this
vector valued function on oriented faces . This means a vector valued function whose
value on an oriented cube (of side length 2h) which is the sum over its faces of the
function on faces, which are oriented by the outward pointing right hand rule. This
being the Stokes theorem in the combinatorial topology context. So this gives the
net amount of momentum crossing the boundary of the cube.

The nonlinear term as a lattice vector field: ∗δ(VF · vF ) is a lattice vector
field, namely a tangent vector valued function on sites, obtained by placing the value
of the coboundary for the cube at the center of the cube with a sign that depends
on the agreement or not of the orientation of the cube with the chosen orientation
of space.

The nonlinear term as a one chain: {∗δ(VF · vF )} : The { } of a lattice
vector field with (x, y, z) components (a, b, c) at site q is the one chain obtained by
attaching these values to the three edges with center q and length 2h in the (x, y, z)
directions oriented in their positive sense.This is the bijection between lattice fields
and one chains, formalised in the Theorem below.

4 Lattice Vector calculus
Volume preserving: We are modeling fluids that uniformly fill periodic three
space. We say a lattice vector field VL(q) is volume preserving iff the 1-chain
{VL} from the definition just stated in the previous section has zero boundary,
denoted ∂. This means if the edges of length 2h are re-oriented so the coefficient
of {VL} is non negative, then at each vertex the sum of the outgoing coefficients is
equal to the sum of the incoming coefficients. This accords with Kirchoff’s laws.
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Divergence operator: The divergence of a lattice vector field VL is ∂{VL} ,
where { } is given in the last paragraph of the previous section.

Gradient of a lattice scalar field: For a scalar function of vertices f the
gradient f is the 1-cochain whose value on an oriented edge of length 2h is the
difference of the values at its two endpoints.

Laplacian of f : The Laplacian of a scalar function f of vertices or sites of L
is the composition ∆f = ∂δf . The value of ∆f at q is the sum of the values of f at
sites 2h away from q minus six times the value of f at q.

Curl of a lattice vector field: If VL is a lattice vector field, then curlVL is the
unique lattice vector field that satisfies {curlVL} = ∗δ{VL}.

Note: The choice of the edge length 2h will be formalized in the spaces and
operators of the next section.

5 Lattice topology, the Laplacian and the Hodge
decomposition

For global considerations we will formalize in terms of vector spaces the choice
used above to consider only (and all) positive dimensional cells, i.e. edges, faces and
cubes, of side length 2h.

Let L0 denote the vector space generated by the vertices or sites of L. Note they
are separated by h not by 2h. Then L1, L2,and L3 are defined respectively to be the
vector spaces generated by all the oriented edges, faces and cubes of side length 2h
and not h.

Actually orientation gives twice as many generators as required . This is remedied
by imposing the geometric relations (cell, orientation) = - (cell, opposite orienta-
tion).

Note, as in the figure above, these generators can overlap. Also at each site there
are exactly three edges of length 2h whose midpoint is that site. Thus dimension L1

= three · dimension L0. This feature of the choice of side length 2h allows one to
confound a lattice vector field with a one chain, which means a linear combination
of oriented edges of length 2h. Thus the chain groups decompose as a direct sum
over the sites of the exterior algebras on the tangent space of three space at that
site. Similarly, the cochains decompose as a direct sum of the exterior algebras of
the cotangent spaces at the sites.

This is the main advantage of this model. Indeed, more generally all of the
algebra of vector calculus resides at each site. For example, the direct sums of the
exterior spaces on the tangent space and the exterior spaces on the cotangent spaces
are independently graded commutative associative algebras and become enriched by
the boundary and coboundary operators of combinatorial topology. And there are
contraction operators between the exterior algebra of chains and the exterior algebra
of cochains. Furthermore we have,

Theorem 5.1. 1. There are isomorphisms ∗ : L0 ↔ L3 and ∗ : L1 ↔ L2.

2. If T denotes the tangent space to any point of three space there is a canonical
isomorphism : L0 ⊗ T ↔ L1 , sending V to {V }.defined in section 2.
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3. There are maps ∂ : Li → Li−1 and δ : Li → Li+1 satisfying ∂ ◦∂ = 0, δ ◦ δ = 0
and ∗ ◦ δ = ∂ ◦ ∗ , ∗ ◦ ∂ = δ ◦ ∗.

4. Define ∆ in positive degrees to be ∂ ◦ δ + δ ◦ ∂ which extends the previous
definition in degree zero. There is then the “orthogonal” decomposition of each
Li as Li = im∂⊕ imδ⊕kernel∆. This, as a lemma about chain complexes with
adjoint operators for an inner product is due to Hodge.

Remark 5.2. We note the kernel of ∆ has rank eight in degrees 0 and 3 and rank
twenty four in degrees 1 and 2. See Note in the Proof. “Orthogonal” means relative
to the cellular basis, which is orthonormal.

Proof. The graph made of bonds of length h can be two colored because of the even
periodicity in all three directions. For a cell of degree one or degree three of side
length 2h, there is a center point of one color and 2 or 8 vertices in the boundary of
the opposite color. For a two cell these corner vertices have the same color as the
center point. In general these extreme point vertices of the cells define the vertices
of the cell decomposition of the boundary of the cell used to compute the operators
∂ and δ as is usual in combinatorial topology and Stokes Theorem. Thus a square
of side 2h has 4 edges of length 2h in its algebraic boundary and a cube of side 2h
has six faces of edge length 2h in its algebraic boundary, etc.

The duality operator ∗ relates cells of complementary dimension that intersect
transversally at their center point. The Hodge decomposition is simple and inter-
esting linear algebra valid for any finite dimensional chain complex with positive
definite inner product with rational or real coefficients and where the second oper-
ator is defined to be the adjoint of the operator defining the chain complex. The
kernel of the Laplacian is isomorphic to the homology ( or cohomology) of the com-
plex and defines the “harmonic representatives”. Harmonic representatives are both
cycles and cocycles, that is, they belong to the intersection of the kernels of the two
operators. This follows in the traditional and interesting way, using the positivity of
the inner product after expanding out (∆V,V). Note the cohomology of L is eight
copies of the cohomology of the three torus.

The identities are checked pictorially. The signs in the duality isomorphisms are
determined by comparing to a global orientation of space. Note the ordering of dual
cells is not important in this comparison because in our odd dimensional space one
cell of a dual pair is even dimensional. Otherwise, in even dimensions the order
counts half of the time.

Note for the Remark: Since one cells have length 2h there are eight linearly
independent homology classes of vertices. Thus the Laplacian in degree zero has a
rank eight kernel.

6 The “potential term” and the “friction term”
The term δP in the lattice ODE is meant to cancel the “volume distortion” of the
“non linear term” {∗δ(VF · vF )}. So one wants

−∆P = −∂(δP ) = ∂{∗δ(VF · vF )}
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In the decomposition of Hodge, ∆ preserves the first two factors and is invertible
there. Thus we can solve the above and keep the volume preserving property moving
forward in time.

In computation it is well known this part is more costly by a factor proportional
to the inverse of the scale of the scale to the sixth power. Actually closer to the
fifth power because we have a sparse matrix inversion problem. Whereas the cost of
all of the other terms being local are proportional to the inverse of the cube of the
scale.

Remark 6.1. The mathematician Daniel An has observed in this model one gains a
factor of eight in the limitation on scale imposed by the computational budget. This,
because the Poisson step in solving for the pressure is done independently on each
of the eight 3-cycles or systems of partioning cubes of the model.

For the friction term of the ODE promised above, −ν∆{VL}, one assumes the
fluid has a linear response to strain which is isotropic. This leads in the volume
preserving case to a term proportional to the Laplacian of velocity as explained for
example in Landau-Lifschitz “Hydrodynamics”.

Combining all of this we get the ODE equation in words, reading first the LHS
and then the RHS from right to left: “The rate of change of momentum M of a fluid
of uniform density assumed to be unity (so M = VL ) inside a cube of side length
2h is made up of three parts:

i the change of momentum due to internal friction, ν∆{VL}.

ii the change of momentum δM inside the cube created by a potential force of
the fluid acting on itself. The potential P satisfies P = ∆−1(∂{∗δ(VF .vF )}).

iii the change of momentum inside the cube due to a net transfer of momentum
across the surface of the cube, {∗δ( VF · vF )}.
Thus,

∂{VL}
∂t

= {∗δ( VF · vF )}+ δP − ν∆{VL}, with ∂ {VL} = 0. (2)
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