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In the context of commutative differential graded algebras over Q, we show that an itera-20

tion of “odd spherical fibration” creates a “total space” commutative differential graded21

algebra with only odd degree cohomology. Then we show for such a commutative differ-22

ential graded algebra that, for any of its “fibrations” with “fiber” of finite cohomological23

dimension, the induced map on cohomology is injective.24

1. Introduction25

In geometry, one would like to know which rational cohomology classes in a base26

space can be annihilated by pulling up to a fibration over the base with finite27

dimensional fiber. One knows that if [x] is a 2n-dimensional rational cohomology28

class on a finite dimensional CW complex X , there is a (2n − 1)-sphere fibration29

over X so that [x] pulls up to zero in the cohomology groups of the total space.30

In fact there is a complex vector bundle V over X of rank n whose Euler class is31

a multiple of [x]. Thus this multiple is the obstruction to a nonzero section of V ,32

and vanishes when pulled up to the part of V away from the zero section, which33

deformation retracts to the unit sphere bundle.34

Rational homotopy theory provides a natural framework to study this type35

of questions, where topological spaces are replaced by commutative differential36
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graded algebras (commutative DGAs) and topological fibrations replaced by alge-1

braic fibrations. This will be the context in which we work throughout the paper.2

The reader can read more in [2, 4, 6] about the topological meaning of the results3

of this paper from the perspective of rational homotopy theory of manifolds and4

general spaces.5

The first theorem (Theorem 3.3) of the paper states that the above construction,6

when iterated, creates a “total space” commutative DGA with only odd degree7

cohomology.8

Theorem A. For each commutative DGA (A, d), there exists an iterated odd alge-9

braic spherical fibration (TA, d) over (A, d) so that all even cohomology [except10

dimension zero] vanishes.11

Our next theorem (Theorem 5.7) then limits the odd degree classes that can be12

annihilated by fibrations whose fiber has finite cohomological dimension.13

Theorem B. Let (B, d) be a connected commutative DGA such that H2k(B) = 0
for all 0 < 2k ≤ 2N . If ι : (B, d) → (B ⊗ ΛV, d) is an algebraic fibration whose
algebraic fiber has finite cohomological dimension, then the induced map

ι∗ :
⊕

i≤2N

Hi(B) →
⊕

i≤2N

Hi(B ⊗ ΛV )

is injective.14

It follows from the two theorems above that the iterated odd spherical fibra-15

tion construction is universal for cohomology classes that pull back to zero by any16

fibrations whose fiber has finite cohomological dimension.17

The paper is organized as follows. In Sec. 2, we recall some definitions from18

rational homotopy theory. In Sec. 3, we use iterated algebraic spherical fibrations19

to prove Theorem A. In Sec. 4, we define bouquets of algebraic spheres and analyze20

their minimal models. In Sec. 5, we prove Theorem B.21

2. Preliminaries22

We recall some definitions related to commutative differential graded algebras. For23

more details, see [2, 4, 6].24

Definition 2.1. A commutative differential graded algebra (commutative DGA)25

is a graded algebra B = ⊕i≥0B
i over Q together with a differential d : Bi → Bi+1

26

such that d2 = 0, xy = (−1)ijyx, and d(xy) = (dx)y + (−1)ix(dy), for all x ∈ Bi
27

and y ∈ Bj .28

Definition 2.2. (1) A commutative DGA (B, d) is called connected if B0 = Q.29

(2) A commutative DGA (B, d) is called simply connected if (B, d) is connected30

and H1(B) = 0.31
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(3) A commutative DGA (B, d) is of finite type if Hk(B) is finite dimensional for1

all k ≥ 0.2

(4) A commutative DGA (B, d) has finite cohomological dimension d, if d is the3

smallest integer such that Hk(B) = 0 for all k > d.4

Definition 2.3. A connected commutative DGA (B, d) is called a model algebra5

if as a commutative graded algebra it is free on a set of generators {xα}α∈Λ in6

positive degrees, and these generators can be partially ordered so that dxα is an7

element in the algebra generated by xβ with β < α.8

Definition 2.4. A model algebra (B, d) is called minimal if for each generator xα,
dxα has no linear term, that is,

d(B) ⊂ B+ ·B+, where B+ = ⊕k>0B
k.

Remark 2.5. For every connected commutative DGA (A, dA), there exists a min-9

imal model algebra (M(A), d) and a morphism ϕ : (M(A), d) → (A, dA) such that10

ϕ induces an isomorphism on cohomology. (M(A), d) is called a minimal model of11

(A, d), and is unique up to isomorphism. See p. 288 of [6] for more details, cf. [2, 4].12

Definition 2.6. (i) An algebraic fibration (also called relative model algebra) is
an inclusion of commutative DGAs (B, d) ↪→ (B ⊗ ΛV, d) with V = ⊕k≥1V

k a
graded vector space; moreover, V =

⋃
n=0 V (n), where V (0) ⊆ V (1) ⊆ V (2) ⊆

· · · is an increasing sequence of graded subspaces of V such that

d : V (0) → B and d : V (n) → B ⊗ ΛV (n− 1), n ≥ 1,

where ΛV is the free commutative DGA generated by V .13

(ii) An algebraic fibration is called minimal if

Im(d) ⊂ B+ ⊗ ΛV +B ⊗ Λ≥2V.

Let ι : (B, d) ↪→ (B ⊗ ΛV, d) be an algebraic fibration. Suppose B is connected.
Consider the canonical augmentation morphism ε : (B, d) → (Q, 0) defined by
ε(B+) = 0. It naturally induces a commutative DGA:

(ΛV, d̄) := Q ⊗B (B ⊗ ΛV, d).

We call (ΛV, d̄) the algebraic fiber of the given algebraic fibration.14

3. Iterated Odd Spherical Algebraic Fibrations15

In this section, we show that for each commutative DGA, there exists an iterated16

odd algebraic spherical fibration over it such that the total commutative DGA has17

only odd degree cohomology.18

Let (B, d) be a connected commutative DGA. An odd algebraic spherical fibra-
tion over (B, d) is an inclusion of commutative DGAs of the form

ϕ : (B, d) → (B ⊗ Λ(x), d),
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such that dx ∈ B, where x has degree 2k − 1 and Λ(x) is the free commutative1

graded algebra generated by x. The element e = dx ∈ B is called the Euler class of2

this algebraic spherical fibration.3

Proposition 3.1. Let (B, d) be a commutative DGA. For every even dimensional4

class β ∈ H2k(B) with k > 0, there exists an odd algebraic spherical fibration5

ϕ : (B, d) → (B ⊗ Λ(x), d) such that its Euler class is equal to β and the kernel of6

the map ϕ∗ : Hi+2k(B) → Hi+2k(B ⊗ Λ(x)) is Hi(B) · β = {a · β | a ∈ Hi(B)}.7

Proof. Let (B⊗Λ(x), d) be the commutative DGA obtained from (B, d) by adding
a generator x of degree 2k − 1 and defining its differential to be dx = β. We have
the following short exact sequence

0 → (B, d) → (B ⊗ Λ(x), d) → (B ⊗ (Q · x), d⊗ Id) → 0,

which induces a long exact sequence

· · · → H i−1(B ⊗ (Q · x)) → Hi(B) → Hi(B ⊗ Λ(x)) → Hi(B ⊗ (Q · x)) → · · · .
Applying the identification Hi+(2k−1)(B⊗(Q ·x)) ∼= Hi(B), we obtain the following
Gysin sequence

· · · → Hi(B) ∪e−−→ Hi+2k(B)
ϕ∗−−→ Hi+2k(B ⊗ Λ(x))

∂i+1−−−→ Hi+1(B) → · · · .
This finishes the proof.8

Definition 3.2. An iterated odd algebraic spherical fibration over (B, d) is algebraic9

fibration (B, d) ↪→ (B⊗ΛV, d) such that V k = 0 for k even. This fibration is called10

finitely iterated odd algebraic spherical fibration if dimV <∞.11

Now let us prove the main result of this section.12

Theorem 3.3. For each commutative DGA (A, d), there exists an iterated odd alge-13

braic spherical fibration (TA, d) over (A, d) such that all even cohomology [except14

dimension zero] vanishes.15

Proof. We will construct TA by induction. In the following, for notational sim-16

plicity, we shall omit the differential d from our notation.17

Let A0 = A. Suppose we have defined the iterated odd algebraic spherical18

fibration Am−1 over A. Fix a basis of H2k(Am−1) for each k > 0. Denote the union19

of all these bases by {ai}i∈I . Define Wm−1 to be a Q vector space with basis {xi}i∈I ,20

where |xi| = |ai| − 1. We define Am to be the iterated odd algebraic spherical21

fibration Am−1 ⊗ Λ(Wm−1) over Am−1 with dxi = ai for all i ∈ I. The inclusion22

map ι : Am−1 ↪→ Am induces the zero map ι∗ = 0 : H2k(Am−1) → H2k(Am) for23

all k > 0. By construction, Am is also an iterated odd algebraic spherical fibration.24

Finally, we define TA to be the direct limit of Am under the inclusions Am ↪→25

Am+1. Clearly, TA is an iterated odd algebraic spherical fibration over A. More26
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precisely, let V =
⋃∞

i=0Wi. We have TA = A⊗ΛV with the filtration of V given by1

V (n) =
⋃n

i=0Wi. Moreover, we have H2k(TA) = 0 for all 2k > 0. This completes2

the proof.3

Remark 3.4. If an element α ∈ H•(A) maps to zero in H•(TA), then there exists4

a subalgebra Sα of TA such that Sα is a finitely iterated odd algebraic spherical5

fibration over A and α maps to zero in H•(Sα).6

4. Bouquets of Algebraic Spheres7

In this section, we introduce a notion of bouquets of algebraic spheres. It is an8

algebraic analogue of usual bouquets of spheres in topology.9

Definition 4.1. For a given set of generators X = {xi} with xi having odd degree
|xi|, we define the bouquet of odd algebraic spheres labeled by X to be the following
commutative DGA

S(X) =

( ∧
xi∈X

Q[xi]

)/
〈xixj = 0 | all i, j〉

with the differential d = 0.10

Proposition 4.2. Let S(X) be a bouquet of odd algebraic spheres, and M(X) =11

(ΛV, d) be its minimal model. Then M(X) satisfies the following properties:12

(i) M has no even degree generators, that is, V does not contain even degree13

elements;14

(ii) each element in H≥1(M(X)) is represented by a generator, that is, an element15

in V .16

Proof. This is a special case of Koszul duality theory, cf. [5, Chaps. 3, 7 and 13].17

Since S = S(X) has zero differential, we may forget its differential and view it as a18

graded commutative algebra. An explicit construction of a minimal model of S is19

given as follows: first take the Koszul dual coalgebra S ¡ of S; then apply the cobar20

construction to S ¡, and denote the resulting commutative DGA by ΩS ¡. By Koszul21

duality, M(X) := ΩS ¡ is a minimal model of S.22

More precisely, set W =
⊕

i≥0Wi to be the graded vector space spanned by
X . Let sW (resp. s−1W ) be the suspension (resp. desuspension) of W , that is,
(sW )i−1 = Wi (resp. (s−1W )i = Wi−1). Let Lc = Lc(sW ) be the cofree Lie coalge-
bra generated by sW . More explicitly, let T c(sW ) =

⊕
n≥0(sW )⊗n be the tensor

coalgebra, and T c(sW )+ =
⊕

n≥1(sW )⊗n. The coproduct on T c(sW ) naturally
induces a Lie cobracket on T c(sW ). Then we have Lc(sW ) = T c(sW )+/T c(sW )+ ∗
T c(sW )+, where ∗ denotes the shuffle multiplication. With the above notation, we
have S ¡ ∼= Lc. The cobar construction of Lc is given explicitly by

Q → s−1Lc d−−→ Λ2(s−1Lc) → · · · → Λn(s−1Lc) → · · ·
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with the differential d determined by the Lie cobraket of Lc. Now the desired1

properties of M(X) follow from this explicit construction.2

Remark 4.3. In the special case of a bouquet of odd algebraic spheres where3

the cohomology of a commutative DGA model is that of a circle or the first Betti4

number is zero, this was discussed by Baues [1, Corollary 1.2] and by Halperin and5

Stasheff [3, Theorem 1.5].6

5. Main Theorem7

In this section, we show that if a commutative DGA has cohomology, up to a certain8

degree, isomorphic to that of a bouquet of odd algebraic spheres, then its minimal9

model is isomorphic to that of the bouquet of odd algebraic spheres, up to that10

given degree. Then we apply it to prove that if a commutative DGA has only odd11

degree cohomology up to a certain degree, then all nonzero cohomology classes up12

to that degree will never pull back to zero by any algebraic fibration whose fiber13

has finite cohomological dimension.14

Suppose B is a connected commutative DGA of finite type such thatH2k(B) = 015

for all 0 < 2k ≤ 2N . Let Xi be a basis of Hi(B) and X =
⋃2N+1

i=1 Xi. Let M =16

M(X) be the bouquet of odd algebraic spheres labeled by X from Definition 4.1.17

Then we have Hi(M) ∼= Hi(B) for all 0 ≤ i ≤ 2N . Let Mk ⊂M be the subalgebra18

generated by the generators of degree ≤ k.19

Lemma 5.1. Let k be an odd integer. Then Hk+2(Mk) = Hk+1(Mk) = 0.20

Proof. Hk+1(Mk) = 0 as Hk+1(Mk) → Hk+1(M) = 0 is injective.21

By Proposition 4.2 above, M has no even-degree generators. In particular, we22

have Mk = Mk+1. Moreover, H≥1(M) is spanned by odd-degree generators. From23

the first observation it follows that the map Hk+2(Mk) → Hk+2(M) is injective,24

and from the second that its range is 0.25

It follows that for an odd k, we have Mk+2 = Mk ⊗ Λ(V [k + 2]) as an algebra,26

where the vector space V = V1⊕V2 is placed at degree (k+2), with V1
∼= Hk+2(M)27

and V2 = Hk+3(Mk). The differential can be described as follows. It suffices to28

define d : V →Mk. We define d = 0 on V1. To define d on V2, let us choose a basis29

{ai}i∈I of Hk+3(Mk). Let {ãi}i∈I be the corresponding basis of V2. Then we define30

dãi = ai.31

Proposition 5.2. For each odd integer k ≤ 2N, there exists a morphism ϕk :32

Mk → B such that the induced map on cohomology Hi(Mk) ∼= Hi(M) → Hi(B) is33

an isomorphism for i ≤ k.34

Proof. We construct the maps ϕk by induction. By the previous lemma and the35

fact that M has no even degree generators, it suffices to define ϕk for odd integers36

k. The case where k = 1 is clear.37
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Now assume that we have constructed ϕn, with n an odd integer ≤ 2N − 3.1

We shall extend ϕn to a morphism ϕn+2 on Mn+2 = Mn ⊗ Λ(V [n+ 2]), where the2

vector space V = V1⊕V2 is placed at degree (n+2), with V1
∼= Hn+2(M) and V2 =3

Hn+3(Mn). It suffices to define ϕn+2 on V . Let {bj}j∈J be a basis ofHn+2(B). Since4

Hn+2(M) ∼= Hn+2(B), let {b̃j}j∈J be the corresponding basis of V1. We define ϕn+25

on V1 by setting ϕn+2(b̃j) = bj . Similarly, choose a basis {cλ}λ∈K of Hn+3(Mn),6

and let {c̃λ}λ∈K be the corresponding basis of V2. Since Hn+3(B) = 0, for each7

cλ ∈Mn, there exists θλ ∈ B such that ϕn(cλ) = dθλ. We define ϕn+2 on V2 by set-8

ting ϕn+2(c̃λ) = θλ. By construction, the induced map (ϕn+2)∗ on Hi agrees with9

(ϕn)∗ for i ≤ n+1 and (ϕn+2)∗ is an isomorphism onH2n+2. This finishes the proof.10

11

Now let MB be a minimal model of B and (MB)k be the subalgebra generated12

by the generators of degree ≤ k. Combining the above results, we have proved the13

following proposition.14

Proposition 5.3. The commutative DGAs (MB)2N−1 and M2N−1 are isomor-15

phic.16

Moreover, we have the following result, which is an immediate consequence of17

the construction in Proposition 5.2.18

Corollary 5.4. Let B be a connected commutative DGA such that H2i(B) = 0 for19

all 0 < 2i ≤ 2N . Let α be a nonzero class in H2k+1(MB) with 2k+ 1 < 2N . Then20

there exists a morphism ψ : MB → (Λ(η), 0) such that ψ∗(α) = [η], where η has21

degree 2k + 1 and Λ(η) is the free commutative graded algebra generated by η.22

Proof. From the description of the minimal model MB of B, it follows that MB23

has a set of generators such that all the cohomology groups up to degree (2N − 1)24

is generated by the cohomology classes of these generators; moreover we can choose25

these generators so that the given class α is represented by a generator, say, a. Then26

we define ψ by mapping a to η and the other generators to 0.27

An inductive application of the same argument above proves the following.28

Proposition 5.5. Suppose (C, d) is a connected commutative DGA with H2k(C) =29

0 for all 2k > 0. Let Xi be a basis of Hi(C) and XC =
⋃∞

i=1Xi. Then the bouquet30

of odd algebraic spheres M(XC) is a minimal model of (C, d).31

Applying the above proposition to the commutative DGA (TA, d) from Theo-32

rem 3.3 immediately gives us the following corollary.33

Corollary 5.6. With the same notation as above, the minimal model of (TA, d) is34

isomorphic to a bouquet of odd algebraic spheres.35
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Before proving the main theorem of this section, we shall prove the following1

special case first.2

Theorem 5.7. Let (Λ(x), d) be the commutative DGA generated by x of degree3

2k + 1 ≥ 1 such that dx = 0. For any algebraic fibration ϕ : (Λ(x), d) → (Λ(x) ⊗4

ΛV, d) whose algebraic fiber (ΛV, d̄) has finite cohomological dimension, the map5

ϕ∗ : Hj(Λ(x)) → Hj(Λ(x) ⊗ ΛV ) is injective for all j.6

Proof. The case where 2k + 1 = 1 is trivial. Let us assume 2k + 1 > 1 in the rest7

of the proof.8

Let ϕ : (ΛV, d) ↪→ (Λ(x)⊗ΛV, d) be any algebraic fibration whose algebraic fiber9

has finite cohomological dimension. It suffices to show that ϕ∗ : H2k+1(Λ(x)) →10

H2k+1(Λ(x) ⊗ ΛV ) is injective, since the induced map ϕ∗ on Hi is automatically11

injective for i �= 2k + 1.12

Now suppose to the contrary that

ϕ∗(x) = 0 in H2k+1(Λ(x) ⊗ ΛV ).

Then we have x = d(w · x + v) for some w, v ∈ ΛV . By inspecting the degrees on13

both sides, one sees that w = 0. Therefore, we have x = dv for some v ∈ ΛV . It14

follows that d̄v = 0.15

Now let n ∈ N be the smallest integer such that [vn] = 0 in H•(ΛV, d̄). Such an
integer exists since (ΛV, d̄) has finite cohomological dimension. Then there exists
u ∈ ΛV such that vn = d̄u. Equivalently, we have

vn = u0 · x+ du,

for some u0 ∈ ΛV . It follows that

0 = d2u = d(vn − u0 · x) = nvn−1 · x− (du0) · x.
Therefore, vn−1 = 1

ndu0, which implies that [vn−1] = 0 in H•(ΛV, d̄). We arrive at16

a contradiction. This completes the proof.17

Now let us prove the main result of this section.18

Theorem 5.8. Let (B, d) be a connected commutative DGA such that H2k(B) = 0
for all 0 < 2k ≤ 2N . If ι : (B, d) → (B ⊗ ΛV, d) is an algebraic fibration whose
algebraic fiber has finite cohomological dimension, then the induced map

ι∗ :
⊕

i<2N

Hi(B) →
⊕

i<2N

Hi(B ⊗ ΛV )

is injective.19

Proof. Let f : (MB, d) → (B, d) be a minimal model algebra of B.20
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Claim. For any algebraic fibration ι : (B, d) → (B⊗ΛV, d), there exist an algebraic
fibration ϕ : (MB, d) → (MB⊗ΛV, d) and a quasi-isomorphism g : (MB⊗ΛV, d) →
(B ⊗ ΛV, d) such that the following diagram commutes:

MB� �

ϕ

��

f �� B� �

ι

��
MB ⊗ ΛV

g �� B ⊗ ΛV.

We construct ϕ and g inductively. Consider the filtration V = ∪∞
n=0V (k) from1

Definition 2.6. Choose a basis {xi}i∈I0 of V (0). Let x = xi be a basis element. If2

dx = a ∈ B, then da = d2x = 0. It follows that there exists ã ∈ MB such that3

f(ã) = a + dc for some c ∈ B. We define an algebraic fibration ϕ0 : (MB , d) ↪→4

(MB ⊗ Λ(x), d) by setting dx = ã. Moreover, we extend f : (MB, d) → (B, d)5

to a morphism (of commutative DGAs) g0 : (MB ⊗ Λ(x), d) → (B ⊗ Λ(x), d) by6

setting g(x) = x+ c. By the Gysin sequence from Sec. 3, we see that g0 is a quasi-7

isomorphism. Now apply the same construction to all basis elements {xi}i∈I0 . We8

still denote the resulting morphisms by ϕ0 : (MB, d) → (MB ⊗ Λ(V (0)), d) and9

g0 : (MB ⊗ Λ(V (0)), d) → (B ⊗ Λ(V (0)), d).10

Now suppose we have constructed an algebraic fibration

ϕk : (MB ⊗ Λ(V (k − 1)), d) → (MB ⊗ Λ(V (k)), d)

and a quasi-isomorphism gk : (MB ⊗Λ(V (k)), d) → (B⊗Λ(V (k)), d) such that the
following diagram commutes:

MB ⊗ Λ(V (k − 1))� �

ϕk

��

gk−1 �� B ⊗ Λ(V (k − 1))� �

ι

��
MB ⊗ Λ(V (k))

gk �� B ⊗ Λ(V (k))

Let {yi}i∈Ik+1 be a basis of V (k + 1) that extends the basis {xi}i∈Ik
of V (k) ⊆11

V (k + 1). Apply the same construction above to elements in {yi}i∈Ik+1\{xi}i∈Ik
,12

but with B ⊗ Λ(V (k)) in place of B, and MB ⊗ Λ(V (k)) in place of MB.13

We define (MB ⊗ ΛV, d) to be the direct limit of (MB ⊗ Λ(V (k)), d) with14

respect to the morphisms ϕk : (MB ⊗ Λ(V (k − 1)), d). We define ϕ to be the15

natural inclusion morphism (MB, d) ↪→ (MB ⊗ΛV, d). The morphisms gk together16

also induce a quasi-isomorphism g : (MB ⊗ΛV, d) → (B⊗ΛV, d), which makes the17

diagram in the claim commutative. This finishes the proof of the claim.18

Now assume to the contrary that there exists 0 �= α ∈ H2k+1(B) with 2k+ 1 <
2N such that ι∗(α) = 0. Let α̃ ∈ H2k+1(MB) be the class such that f∗(α̃) =
α. In particular, we have ϕ∗(α̃) = 0. By Corollary 5.4, there exists a morphism
ψ : (MB, d) → (Λ(η), 0) such that ψ∗(α̃) = η. Now let

τ : (Λ(η), 0) → (Λ(η) ⊗ ΛV, d) = (Λ(η) ⊗MB (MB ⊗ ΛV ), d)
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be the push-forward algebraic fibration of ϕ : (MB, d) → (MB ⊗ ΛV, d). It follows
that

τ∗(η) = τ∗ψ∗(α̃) = (ψ ⊗ 1)∗ϕ∗(α̃) = 0

which contradicts Theorem 5.7. This completes the proof.1
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