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3D INCOMPRESSIBLE FLUIDS:

COMBINATORIAL MODELS, EIGENSPACE MODELS,

AND A CONJECTURE ABOUT WELL-POSEDNESS

OF THE 3D ZERO VISCOSITY LIMIT
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who exemplified diligence and beauty in mathematics

Part 1. Combinatorial Models for Computation

1. Introduction

We make combinatorial models of spatial calculus with special regard
for nonlinear structures. We apply this to incompressible fluid motion
in the zero viscosity limit in the 3-dimensional space made periodic. We
take advantage of a special duality property of the cubical partitions of
3-dimensional space. The nonlinear structure comes from the evolution
PDE of fluids

Ẏ = [X,Y ],

where X is a divergence free vector field (i.e., incompressible), Y =
curlX, and [ , ] is the Lie bracket which is our nonlinear structure.
This equation states that the vorticity of the fluid motion is transported
by the motion of the fluid.

We use the powerful tools of algebraic topology to somewhat open up
the structure of the nonlinear term. In order to use these tools it is neces-
sary to embed vector fields on a smooth manifold into the chain complex
of multivector fields with natural monomial grading and boundary op-
erator of degree −1. This structure appears by regarding multivector
fields as linear functionals on smooth differential forms. To do this it is
enough to choose any smooth probability measure that charges every
open set. The point is that the Lie bracket is now intertwined with this
chain complex structure as explained below.

2. The homotopy category of chain complexes

By a chain complex C we mean a family C = {Ci}i∈Z of real vector
spaces together with linear maps ∂ = ∂i : Ci → Ci−1 such that the
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composition ∂ ◦ ∂ : Ci → Ci−2 is zero. The i-th homology of the chain
complex C is defined to be quotient vector spaceHi(C) = Ker∂i/Im∂i+1.

A morphism of chain complexes (or a chain map) f : (Ci, ∂C) →
(Di, ∂D) is a family of linear maps fi : Ci → Di commuting with ∂
in the sense that fi−1 ◦ ∂C = ∂D ◦ fi. We say that two chain maps
h1, h2 : (Ci, ∂C) → (Di, ∂D) are chain homotopic and write h1 ∼ h2
if there exists a family of linear maps S = Si : Ci → Di+1 such that
h1 − h2 = ∂DS + S∂C .

Chain maps between chain complexes induce linear maps on homol-
ogy. In particular, note that two chain homotopic chain maps induce
the same map on homology. If a chain map induces an isomorphism on
homology we call it a quasi-isomorphism. We have the following

Proposition 2.1. A chain map f : (Ci, ∂C) → (Di, ∂D) is a quasi-
isomorphism if and only if there exists a chain map g : (Di, ∂D) →
(Ci, ∂C) so that fg ∼ IdD and gf ∼ IdC .

The homotopy category of chain complexes is the category whose
objects are chain complexes and whose morphisms are classes of chain
maps modulo the equivalence relation ∼.

3. Example of a nonlinear structure on a chain complex

Let M be a smooth manifold, and consider the graded vector space
V of multivector fields on M . More precisely, V is the vector space of
smooth sections of the exterior algebra bundle ∧∗(TM), where TM is
the tangent bundle ofM . V has a natural grading given by the grading of
∧∗(TM). In particular, elements of degree 0 on V are smooth functions,
and elements of degree 1 are smooth vector fields.

In the presence of a volume measure we have an isomorphism of
vector spaces µ : V ∼= Ω∗(M), where Ω∗(M) denotes the vector space
of differential forms on M . We can transport the exterior derivative on
differential forms by the isomorphism µ to obtain a linear map ∂ : V →
V of degree −1 that satisfies ∂ ◦ ∂ = 0 and thus equips V with the
structure of a chain complex. In particular, if X is a vector field, ∂X is
the function that describes the distortion of the volume measure by the
vector field X, i.e., the divergence of X relative to the volume measure.

The vector space Γ(TM) of smooth vector fields on M has the struc-
ture of a Lie algebra. This means there exists a linear map [, ] : Γ(TM)×
Γ(TM) → Γ(TM) which is bilinear, skew symmetric, and satisfies the
Jacobi identity. Intuitively, [X,Y ] is a vector field which describes the
infinitesimal change of Y along X. The bracket [, ] can be extended to
the the space V of multivector fields by the Leibniz rule to obtain a Lie
bracket [, ] : V × V → V . This Lie bracket is known in the literature as
the Schouten–Nijenhuis bracket. The boundary map ∂ is a derivation of
the bracket [ , ].
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Now we describe a construction that completely encodes the data
of (V, ∂, [ , ]) and its algebraic constraints into an algebraic structure
satisfying a single equation. Consider the graded vector space SV =
V ⊕S2V ⊕· · ·⊕SkV ⊕· · · , where SkV is the vector space generated by
length k alternating monomials of elements of V . Namely, a · b = −b · a
if both have odd degree. Otherwise a · b = b · a.

SV has the property that any linear map lk : SkV −→ V can be ex-
tended to a map lk : SV → SV by setting

lk(a1 ∧ · · · ∧ an) =
∑

(−1)ǫlk(ai1 ∧ · · · ∧ aik)

∧ a1 ∧ · · · ∧ âi1 ∧ · · · ∧ âik ∧ · · · ∧ an

where the above sum runs through all k-tuples of indices (i1, . . . , ik)
satisfying 1 ≤ i1 < · · · < ik ≤ n, the hat on top of an element means
you omit that element in the monomial, and (−1)ǫ is a sign determined
by the permutation moving the chosen to the left.

Applying this construction to the example of interest, we have that
the linear maps ∂ : S1V = V → V and [, ] : S2V → V can be extended
to linear maps ∂1 : SV → SV and ∂2 : SV → SV , respectively. Both
maps ∂1 and ∂2 are infinitesimally compatible with the coproduct on
SV defined by taking the sum of all possible splittings of a monomial
into two monomials. A map that is infinitesimally compatible with a
coproduct is called a coderivation.

Fact 3.1. ∂∞ = ∂1+∂2 : SV → SV is a coderivation and ∂∞◦∂∞ = 0.

∂∞ is a coderivation since it is the sum of two coderivations. The
second property follows from the following three equations:

1) ∂1 ◦ ∂1 = 0. This follows from the fact that the d ◦ d = 0, where d
is the exterior derivative on differential forms.

2) ∂1 ◦ ∂2 + ∂2 ◦ ∂1 = 0. This follows because ∂ is a derivation of the
Lie bracket of vector fields [, ]

3) ∂2 ◦ ∂2 = 0. This follows from the Jacobi identity for [, ].

The following fact motivates the main definition in the next section.

Fact 3.2. We can reconstruct (V, ∂, [, ]) and its good properties from
the map ∂∞ : SV → SV satisfying the above.

4. Theory of Lie infinity structures on a chain complex

Definition 4.1. An L∞-algebra structure on a chain complex (V, ∂)
is a coderivation ∂∞ = ∂1+∂2+∂3+· · · : SV → SV satisfying ∂∞◦∂∞ =
0 and ∂1 = ∂. The maps ∂k : SkV −→ V determining ∂k are called the
Taylor coefficients of ∂∞.
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Fact 4.2. If ∂∞ is an L∞-algebra structure on (V, ∂), then ∂2 :
S2V → V is a chain mapping for ∂1 and ∂3 : S3V → S is a chain
homotopy to provide ∂2 with its missing “Jacobi” identity.

In particular, the above fact implies that ∂2 satisfies the Jacobi iden-
tity on the homology vector space H∗(V, ∂).

Chain complexes with L∞-algebra structure form a category whose
morphisms are defined by mappings F = f1 + f2 + · · · : SV → SW
respecting the ∂∞’s and the coproducts (in other words, maps of differ-
ential graded cocomutative coalgebras). A morphism of chain complexes
with L∞ structures is also called an L∞-morphism. An L∞-morphism
F = f1 + f2 + · · · : SV → SW is determined by its components
fk : SkV −→ W , also called the Taylor coefficients of F .

We have the following two fundamental theorems.

Theorem 4.3. Let (V, ∂V ) and (W,∂W ) be two chain complexes with
L∞-algebra structures. If F = f1 + f2 + · · · : SV → SW is an L∞-
morphism such that f1 : (V, ∂V ) → (W,∂W ) is a quasi-isomorphism
then there exists an L∞-morphism G = g1 + g2 + · · · : SW → SV such
that g1 : (W,∂W ) → (V, ∂V ) is a quasi-isomorphism and the induced
maps (f1 ◦ g1)∗ : H∗(W,∂W ) → H∗(W,∂W ) and (g1 ◦ f1)∗ : H∗(V, ∂V ) →
H∗(V, ∂V ) are identity maps.

Remark 4.4. Actually, g is unique up to a nonlinear notion of chain
homotopy. This is proven (and formulated) in [4]. Also the map in the
next theorem is also well defined up to this same notion of nonlinear
chain homotopy.

Theorem 4.5. Let f : (C, ∂C) → (V, ∂V ) be a quasi-isomorphism of
chain complexes. Given an L∞-algebra structure ∂V

∞ on (V, ∂V ), there
exists an L∞-algebra structure ∂C

∞ on (C, ∂C ) together with an L∞-
morphism F = f1 + f2 + · · · : SC → SV such that f1 = f .

The first theorem says that L∞-morphisms that extend quasi-isomorphisms
can be inverted up to equivalence. The second says that we can trans-
port our nonlinear structure when considered as L∞-algebra structure
through quasi-isomorphisms of chain complexes.

5. Combinatorial nonlinear structure

Choose a scale and divide periodic 3-dimensional space into cubes
at that scale. A smoothing operator at that scale embeds the cellular
chain complex (C, ∂C) associated to the cubical decomposition into the
chain complex of multivector fields (V, ∂). Integration gives a map in the
opposite direction, and one composition is the identity. Such smoothing
also gives a chain homotopy S for the other composition. By Theorem 2,
the L∞-algebra structure ∂∞ = ∂1+∂2 on (V, ∂) induces an L∞-algebra
structure ∂C

∞ on (C, ∂C). There are algorithms to describe the Taylor
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coefficients of ∂C
∞ in terms of the chain homotopy S that are sums over

trees of operators constructed from the trees where interior edges are
decorated by S.

6. Duality of the cubical decomposition and the

combinatorial curl

The Poincarè dual decomposition of the cubical decomposition of
3-dimensional space is also a cubical decomposition of 3-dimensional
space. These are related by a translation.

The combinatorial curl of a 1-cycle in (C, ∂C ) is defined on generators
(edges) e by

1) forming the four square plaques that abut the edge e,
2) then taking the Poincaré dual to these and translating back. (See

Figure 1.)

The composition of the Poincaré dual cell construction [defined in gen-
eral for cell structures on manifolds] composed with the translation back
to the original decomposition [a possibility for the cubical decomposi-
tion] defines the combinatorial analogue of the continuum Hodge star
on forms and currents . It has good algebraic properties for our cubical
decomposition. We will work with the operator D, which is the commu-
tator of our boundary operator with this star operator. In the continuum
case this operator in dimension 1 is the sum of the divergence operator
and the curl operator. In our combinatorial setting it agrees with the
curl pictured when applied to 1-cycles.

7. Back to fluids

Extend the combinatorial curl to all of SC = C ⊕S2C · · · as follows.
First, extend the combinatorial star to a derivation and coderivation
mapping. Second, extend the boundary as a derivation and coderivation
mapping. The commutator of these two is the first extension of the
combinatorial curl D. Then, we conjugate by a coalgebra automorphism
to get the desired extension, still denoted D (see Remark 7.1). Denote
by Ad the generalization of adX : Y 7→ [X,Y ] for Lie algebras to L∞-
algebras(see Remark 7.1). The continuum fluid equation

divX = 0, Ẏ = adXY, curlX = Y

is compressed to the combinatorial setting on SC:

∂∞X = 0, Ẏ = AdXY,DX = Y.

Note that there are two parameters in the discretization process: the
monomial weight or number of terms in the Taylor expansion of ∂C

∞,
and the scale or mesh of the cubical decomposition.
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e

Figure 1. Curl of e before translation

Remark 7.1. 1) To describe AdXY for X,Y in SC one works in-
side sums of finite order differential and codifferential operators
on SC. An example of a first-order codifferential operator is mul-
tiplication by an element from C. Multiplication by an element of
SC of monomial weight m is an mth order codifferential operator.
Then for X in SC and Y in SC, AdXY :≡ ∂∞(X · Y ) +X · ∂∞Y .
This, when X has odd degree; otherwise, the negative sign. In our
case, D on C is an isomorphism on image ∂ inside C. In order to
invert the relation DX = Y on SC we assume that X has “mean
zero” as in Part 2. This means X belongs to image ∂∞, not just
to kernel ∂∞.

2) We define D to be an isomorphism on image ∂∞ by first extend-
ing D to SC as mentioned above. Secondly, we conjugate it by
the “cumulant” bijection [2] (SC, ∂1) ∼ (SC, ∂∞). Then D com-
mutes with ∂∞. By carefully extending the Hodge decomposition
on C to SC, we find that D is an isomorphism on image ∂∞. So
the combinatorial evolution equations have the same form as the
continuum equations and make complete sense.

Now we need to compute!

Part 2. Eigenspace models for computation and for theory

Let V∞ denote the space of divergence free mean flow zero smooth
vector fields on R3/Z3 with L2 inner product. A quadratic ODE ẋ =



3D INCOMPRESSIBLE FLUIDS 147

Q(x) on a finite-dimensional subspace Vn of V∞ is called Eulerian if
there is given

1) a self-adjoint operator Dn on Vn that is invertible and
2) a totally skew-symmetric 3-form { , , }n on Vn so that for all z in

Vn the inner product (Q(x), z) is given by {x,Dnx, z}n.

Remark 7.2. In another work we have shown the Eulerian ODEs
on finite dimensional inner product spaces preserve circulation along
transported elements and that this property characterizes this class of
quadratics ODEs [3]. A similar result (both ways) holds for the transport
of vorticity, where vorticity is defined to be the Dx where x is the velocity
[3]. The transport defined there is skew symmetric but need not satisfy
a Jacobi identity. The generalized Lie structures in Part 1 were brought
in to treat that discrepancy. The eigenspace models below are amenable
to that treatment. We plan to do this elsewhere.

Proposition 7.3. Eulerian ODEs preserve the norm (x, x) = |x|2

and the Gaussian measure e−|x|2/2dx.

Proof. 1) d(x,x)
dt = 2(ẋ, x) = 2{x,Dnx, x}n = 0.

2) The differential of the mapping x 7→ Q(x) is the associated bilin-
ear mapping B(x, y) = Q(x + y) − Q(x) − Q(y). In the basis of
eigenvectors of Dn, one computes the matrix for y 7→ B(x, y) has
zero diagonal entries for each eigenvector x.

Thus, the trace of y 7→ B(x, y) is zero for each x and the vector
field x 7→ Q(x) is both tangent to the L2 spheres and Euclidean volume
preserving on spherical shells that are preserved. It follows that the
Gaussian meassure is preserved as well. q.e.d.

Remark 7.4. Identifying vector fields with 1-forms we have the al-
ternating 3-form { , , }∞ =

∫
ν ∧ ν ′ ∧ ν ′′ that is defined on V∞ and

extends continuously to L3 (R3/Q3).
We also have the self-adjoint operator curl denoted D that is defined

and invertible on V∞. As a bilinear form (x,Dy) extends continuously to
1/2 derivative on L2. In 3D this space is contained in L3. The continuum

Euler ODE, Ẋ = QX, describing 3D incompressible fluid motion in
the zero viscosity limit is the Eulerian flow associated to this 3-form
{ , , }∞ and operator D on the entire space V∞ with respect to the L2

inner product on the infinite-dimensional space.

Theorem 7.5. 1) There is an exhausting sequence of finite di-
mensional subspaces Vn of V with consistent alternating forms
{ , , }n and self-adjoint invertible operators Dn : Vn 7→ Vn so
that the corresponding Eulerian ODEs converge to the Euler ODE
at infinity.

2) The Gaussian measure on L2 defined by
∏

e−|xi|2/2dxi over a basis
is “formally” preserved by the Euler ODE at infinity.
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Proof. Choose the eigenbasis for the curl operator D. Define Vn by
restricting to eigenspaces of eigenvalues at most n in absolute value. Let
Dn be the restriction of curl = D to Vn. Let { , , }n be the restriction
of the form { , }∞ from Remark 7.4 (which is checked by easy calcula-
tion). The rest “follows” by the proposition. One must use normalized
measures in the infinite product. q.e.d.

Conjecture Using Poincaré recurrence for the approximating Eulerian
flows above, it is possible to prove that for almost all initial conditions
with respect to the Gaussian measure 3D incompressible fluid motion
with zero or positive viscosity can be uniquely defined for all time.

Readers familiar with Bourgain’s work as in [1] will appreciate the
conjecture.
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