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Abstract. We define a coalgebra structure for open strings transverse to any
framed codimension 2 submanifold K ⊂ M . When the submanifold is a knot
in R3, we show this structure recovers a specialization of Ng cord algebra [Ng3],
a non-trivial knot invariant which is not determined by a number of other knot
invariants.

1. Introduction

There are many geometrically defined operations in open-closed string topology.
See [Su], for example. Some of them pass to homology, while others have boundary
terms (or “anomalies”) and do not. In [CS] and [Po], the splitting of closed strings
has an anomaly which is canceled by working modulo constant strings. We do
not apply this to the splitting of open strings because the unit of the combining
operation is made of constant strings. Still, we desire to remove this anomaly for
several reasons which will be explained in this note and others [Ba, McG, SS].

We treat the anomaly for splitting, which occurs in “traditional” (universal) string
topology, by passing to the subset of open strings which are transverse to the sub-
manifold. We call the resulting theory transverse string topology to distinguish
it from the well-studied universal string topology. This is a drastic change in per-
spective because the algebraic topology of the space of strings changes in a subtle
way. The value of doing this was motivated by the desire to relate this structure
on open strings for classical knots to the Ng cord algebra defined in [Ng2, Ng3]. As
noted independently by different people, one of the defining relations of the Ng cord
algebra resembles a relation related to splitting open strings.

Indeed, splitting transverse open strings defines a differential coalgebra structure
where the differential has two pieces: an internal boundary operator (without anom-
aly); and a term which resolves the concatenation of two open strings which do not
intersect the submanifold in their interiors. This term can be recognized via the
bar construction for a partially-defined combining operation on such open strings.
Our main result in this note, which we restate more precisely as Theorem 3.2, is the
following:

Theorem 1.1. The zeroth homology of the cobar construction on the coalgebra of
vertically transverse open strings, relative to a cross section of the normal bundle,
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determines a ring isomorphic to a specialization of Ng’s cord algebra. The isomor-
phism is as algebras over the group ring of an infinite cyclic group.

In [Ng1] Ng shows that the cord algebra is a powerful knot invariant. Combining
the isomorphism of Theorem 1.1 with his results we find the following:

Corollary 1.2. The operations on (transverse) open strings defines a non-trivial
knot invariant not determined by any of the following: Alexander polynomial, Jones
polynomial, HOMFLY polynomial, Kauffman polynomial, signature, Khovanov in-
variant, and Ozsvath-Szabo invariant.

Proof. This follows from our main result, [Ng1, Proposition 8.4] and [Ng3, Proposi-
tion 4.3]. �

One way to understand what is really going on here is based on [Ba]. That thesis
defines the partial multiplication alluded to above from a categorical perspective
where the (cobar construction) of (bar construction) is an equivalence. This allows
one to interpret the cobar of the open string coalgebra, in terms of an algebraic
construction, as a twisted Pontrjagin ring of the based loop space of the complement.
In the case of knots (in S3) this can be realized as a version of the Ng cord algebra. As
an application of the theory developed in the thesis, the transverse string topology
in [Ba] distinguishes two homotopic but non-homeomorphic Lens spaces.

This explanation itself was motivated in two ways by [McG]. First, that thesis
made use of a cobar of the coalgebra for a specific set of open strings. Secondly,
that construction required transversality, which was already known to remove the
internal anomaly and to make the partial algebra structure possible. The thesis
goes on to recover the cord algebra, as well as higher degrees of relative contact
homology (for Z-coefficients).

The cord algebra is isomorphic to a particular version of relative contact homology
defined using pseudo-holomorphic disks [EENS]. When there is no submanifold, a
morphism between a similar contact homology and a closed string topology theory
was introduced in [CL]. This morphism is natural in that it comes from geometry.
A relative version of this morphism has been proposed in [CELN].

We would like to emphasize that we do not assume that “the information of the
complement” is directly given to us. Rather, we derive what we need from the
transverse open strings. With this point of view but from a different perspective,
[SS] via a cyclic Hochschild construction proves that transverse string topology of
the knot recovers the bracket (and other information) on the equivariant loop space
of the complement. Via [CG], this information is enough to recover the Seifert
and hyperbolic graph structure of the JSJ-decomposition [JSJ] of the complement.
Hence transverse string topology again provides non-trivial knot invariants.

The paper is organized as follows. In Section 2 we review our version of transverse
string topology and define the string algebra ASt via the homology of its cobar. In
Section 3 we review one of Ng’s presentations of his cord algebra ANg. We then
prove the main isomorphism Theorem 3.2 relating the two algebras.
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2. Transverse string topology

In this section, we review a particular space of open strings introduced in [SS]
and some natural algebraic structures on it. We also discuss the cobar construction
and compute its zeroth homology, which leads to our definition of the string algebra
ASt. We compute ASt in the case of the unknot in R3.

2.1. The space of strings. Let K ⊂M be any framed codimension 2 submanifold.
Let N be a tubular neighborhood of K. Use the framing to trivialize the normal
bundle N → K and to define antipodal sections

Γ+,Γ− : K → ∂N.

For points P,Q in the fiber Nq over the point q ∈ K, let Q− P denote the oriented
line segment in Nq from P to Q.

Definition 2.1. Let ST = ST (K,Γ±) be the set of open strings (smooth maps
of the unit interval into M) starting and ending at K transverse to K, and which
intersect N in a radial way at Γ+ and Γ− only. More specifically, if a string ω ∈ ST
starts (resp. ends) at the point q0 (resp. q1) in K then ω first leaves (resp. last
enters) N as the line segment Γ+(q0) − q0 (resp. q1 − Γ−(q1)). Near any other
intersection point q of ω and K, ω ∩N = Γ+(q)− Γ−(q) for q ∈ K.

Γ−(q)

Γ+(q)

q

K

Γ+(q0)

q0

K
Γ−(q1)

q1

K

Figure 1. The various intersection points of an open string.

With any reasonable topology, we can write the strings as a disjoint union

ST =
⊔
n≥0
ST n

where ST n is the stratum of strings in ST intersecting K exactly n times (excluding
the start and endpoint).

Remark 2.2. We could also consider the space of string that are transversal to
the submanifold and may intersect with any tangent condition (dropping the Γ±

condition). For chains on the space, the subsequent operations we introduce are only
“partially defined” subject to tangent matching conditions. Nevertheless, the ideas
of this paper still hold using the cobar construction for partially-defined structures
(bicomodules) as presented in [Ba].
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2.2. Algebraic structures.

Definition 2.3. Let ω ∈ ST n be a string with its ith internal intersection at q ∈ K.
Consider the unit circle in Nq, oriented by the co-orientation of N, starting and
ending at Γ−(q). Let e(q) denote the half of this circle from Γ−(q) to Γ+(q) whose
orientation disagrees with the circle, and m(q) denote the half from Γ−(q) to Γ+(q)
whose orientation agrees. Define the ith resolve of ω, Ri(ω), to be sum of a smooth
approximation of two copies of the original curve ω : one with the line segment
Γ+(q) − Γ−(q) replaced by e(q) and the other with the line segment replaced by
m(q).

Γ−(q)

Γ+(q)

q

q

q

e(q)

m(q)

K

K

K

resolve

{
+

Figure 2. The resolve operation at a point.

Definition 2.4. Let ω ∈ ST n, with 1 ≤ i ≤ n. Define the i-th split of ω, ∆i(ω), to
be the ordered pair of curves ω′ ∈ ST i−1 and ω′′ ∈ ST n−i−1 obtained by splitting ω
at its ith intersection and reparameterizing the split interval into two unit interval
domains. More formally, given ω : [0, 1] → M such that w(τ) = q ∈ K is an
intersection point, we define the open strings

ω′ : [0, 1]→M, t 7→ ω(τt)

ω′′ : [0, 1]→M, t 7→ ω (τ + (1− τ)t) .

Let C∗(ST ) be the singular chain complex with topological boundary map ∂. We
set the grading so that an n-cell in ST m has grading n+m+ 1.
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Definition 2.5. Define the i-th resolve map, Ri : Ck(ST ) → Ck−1(ST ) by the
pointwise defined map Ri(ω) from Definition 2.3. Define the degree −1 resolve
map, R : Ck(ST ) → Ck−1(ST ) for each cell c ∈ Ck−l(ST l−1) as the alternating
sum

(2.1) R(c) =

l−1∑
i=1

(−1)i−1Ri(c)

and extend to all of Ck(ST ) by linearity.

∆1

{ }
,

q0 q1 q2 q3

Γ+(q0)

Γ+(q1)

Γ+(q2)Γ−(q1)

Γ−(q2)

Γ−(q3)

q0 q1 q1 q2 q3

Figure 3. A picture of ∆1 in the coproduct.

Definition 2.6. Similarly, define the degree 0 coproduct map

∆ : Ck(ST )→
⊕
i+j=k

Ci(ST )⊗ Cj(ST ), ∆(x) =

n∑
i=1

(−1)i−1AW ◦∆i(x)

by composing the Alexander-Whitney map AW with the pointwise-defined maps

ω 7→ ∆i(ω).

A straightforward check reveals

Lemma 2.7. R and ∆ commute with ∂, each other, and square to zero.
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Remark 2.8. The maps R and ∆ at the chain level depend on several choices such as
the reparameterization of the string’s unit interval domain and the smooth approxi-
mation in Definition 2.3. However, the induced maps on homology are independent
of such choices.

Corollary 2.9. (C∗(ST ), ∂ + R,∆) is a differential graded co-algebra (dgca). The
homotopy type of the dgca is independent of the choices made in its construction.

2.3. Homology of the cobar. Label the dgca from Corollary 2.9

C := (C∗(ST ), ∂ +R,∆).

Let T red(·) denote the non-unital, i.e. reduced, tensor algebra. Note that every-
thing in C has positive degree and thus the dgca has no counit. In this case, the
cobar ΩC of C is the differential graded algebra (dga)

ΩC = (T red(C∗(ST ))[−1], ∂ +R+ ∆,⊗)

where [−1] denotes performing a grading shift of −1, ⊗ is the tensor product struc-
ture, and ∂ + R + ∆ is extended via derivation over ⊗ as a differential. Note that
from our grading conventions for C∗(ST ), ΩC has only non-negative grading.

Definition 2.10. Given a ring R with product ∗ and an element α ∈ R, let the
ring R̃ twisted by α be the set R with product ∗̃ defined by x∗̃y := x ∗ α ∗ y.

Fix a point q in the boundary of the tubular neighborhood of the submanifold K.
Let

[m], [e] ∈ π1(M \K) := π1(M \K; q)

denote the homotopy classes of the meridional loop m and the constant loop e,
respectively. The cross-section from the framing of the normal bundle N of K
defines a map π1(K)→ π1(M \K). Let L be the image of this map.

Proposition 2.11. There is a ring isomorphism from the degree 0 part of the ho-

mology of the dga ΩC to the group ring Z̃π1(M \K) twisted by the element [m] + [e],
modulo the two-sided ideal generated by

{[lx]− [x], [xl]− [x] | [x] ∈ π1(M \K), [l] ∈ L}.

Here [xl] is the homotopy class of the concatenation of the loops x and l, based at q.

Proof. The 0-chains of ΩC are tensor products of arbitrary length of zero chains of
ST 0. Any 1-boundary is a linear combination of three types of 1-chains of ΩC :

(1) tensor products of the above zero-chains and one factor (in the tensor prod-
uct) which is a smooth 1-family in ST 0 where the start and endpoints of the
strings remain in a contractible set of K;

(2) tensor products of the above zero-chains and one factor which is a string
with one internal intersection; and,

(3) tensor products of the above zero-chains and one factor which is a smooth
1-family in Ω0 where either the start or endpoints of the strings traces out
a representative of [l] ∈ L.
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From the first type of 1-boundary, it is clear that we can choose a set of zero-
chains (cycles) which generate H0(ΩC) and which are represented by strings in St0
starting and ending at q. Moreover, if we mod out these zero-chains by 1-boundaries
of the first type we get an isomorphism from the algebra A1 generated by these
equivalence classes to the reduced tensor algebra of the vector space generated by
π1(M \K).

Let A2 be the algebra generated by equivalence classes of elements of A1 where
two generators of A1 are equivalent if they differ by a 1-boundary of the second
type. The map from the previous paragraph then defines an algebra isomorphism

from A2 to the group ring Z̃π1(M \K), twisted by the element [e] + [m].
Note that H0(ΩC) is A2 mod the image of the 1-boundaries of the third type;

therefore H0(ΩC) is isomorphic to Z̃π1(M \ K) after dividing by the ideal in the
proposition’s statement. �

2.4. A string algebra over the group ring of an infinite cyclic group. Let
e and m̄ denote the elements in H0(ΩC) which correspond to the equivalence classes
of [e] and [m̄] under the isomorphism from Proposition 2.11. Here x̄ denotes the
inverse of the loop x. A priori, the isomorphism depends on what homotopy one
uses in the proof of Proposition 2.11 to represent elements in ST 0 as loops based at
q ∈ K. However, since [e] and [m̄] are in the center of the image of the peripheral
group, e and m̄ are independent of these choices.

The cobar construction ΩC has no identity element. We will formally add the
identity element, although this is a “benign”1 operation in that it can be performed
at essentially any point in this note.

Definition 2.12. Given any ring R, with or without an identity element, let R(1)
be the ring enlarged to include the identity element 1. That is, R(1) = Z⊕R. Here
the product ∗ on R(1) is the usual (a, r) ∗ (b, s) = (ab, as+ br+ rs) for r, s ∈ R and
integers a, b.

Definition 2.13. Define the string algebra to be the degree zero homology of the
cobar construction, H0(ΩC) with identity element, modulo placing the elements e
and m̄ in the center

ASt =
H0(ΩC)(1)

[e, ·], [m̄, ·]
.

Proposition 2.14. ASt is isomorphic to Z̃π1(M \ K)(1), twisted by the element
[e] + [m], modulo the two-sided ideals generated by

{[lx]− [x], [xl]− [x] | [x] ∈ π1(M \K), [l] ∈ L} , and

{[mx]− [xm] | [x] ∈ π1(M \K)} .

This result follows from Proposition 2.11 and Lemma 2.15 below.

1It is a formal operation that can be done on a ring and commutes with all other constructions
(on the ring) that we do here.
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K

L

meridian

Figure 4. The case of a framed knot K in R3.

Lemma 2.15. Consider the group ring Z̃π1(M \K)(1) twisted by the element [e] +
[m]. The two-sided ideals generated by

{[mx]− [xm] | [x] ∈ π1(M \K)} and

{[x]∗̃[e]− [e]∗̃[x] | [x] ∈ π1(M \K)} .
are the same; similarly the two-sided ideals generated by

{[m̄x]− [xm̄] | [x] ∈ π1(M \K)} and

{[x]∗̃[m̄]− [m̄]∗̃[x] | [x] ∈ π1(M \K)} .
are the same.

Proof. Note that

[e]∗̃[x]− [x]∗̃[e] = [x] + [mx]− ([x] + [xm]) = [mx]− [xm]

So the generating set of the ideals match. A similar computation justifies the second
statement. �

Next we show how ASt is in fact an algebra over a larger ring of coefficients.

Proposition 2.16. The algebra ASt is an algebra over Z[µ±1], the group ring of an
infinite cyclic group.

Proof. Define the map f : Z[µ±1]→ ASt on the generators

f(µ) = e− 1, f(µ−1) = m̄− 1

and extend it as a ring homomorphism. The map is well-defined because it preserves
the one relation

f(µ)f(µ−1) = (e− 1)∗̃(m̄− 1) = [eem̄] + [emm̄]− [e]− [m̄] + 1 = 1,

where here we use the isomorphism from Proposition 2.11 to identify [e] with e and
[m̄] with m̄. Since e and m̄ lie in the center of ASt we are done. �
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2.5. An Example. We end this section with an example.

Proposition 2.17. The string algebra ASt of the unknot K in M = R3 is the group
ring of an infinite cyclic group.

Proof. Note that the ideal that we divide out by in the statement of Proposition
2.14 are trivial in the case of the unknot: L is the empty set and π1(M \ K) is

commutative so [mx]− [xm] = 0. Thus ASt is Z̃π1(M \K)(1) twisted by [e] + [m].
Consider the following elements which generate ASt additively:

m{1} = [e],m{2} = [m],m{3} = [m2],m{4} = [m3], . . . ,

m̄{1} = [m̄], m̄{2} = [m̄2], m̄{3} = [m̄3], . . . ,

m{0} = m̄{0} = 1.

Note that these elements are linearly independent in the underlying vector space of

Zπ1(M \K)(1), and hence in the (same) space which underlies Z̃π1(M \K)(1).
For a fixed k ≥ 1, define Z[µ±1]{k} to be the linear vector space spanned by

1, µ1, . . . , µk, µ−1, . . . , µ−k. Similarly, define ASt{k} to be the linear vector space
spanned by 1,m{1}, . . . ,m{k}, m̄{1}, . . . , m̄{k}.

One can compute that

m{k + 1} = m{k}∗̃(m{1} − 1), m̄{k + 1} = m̄{k}∗̃(m̄{1} − 1).

from which it follows

f(µk) =

k∑
i=0

(−1)k−im{i}, f(µ−k) =

k∑
i=0

(−1)k−im̄{i}

for the map f : Z[µ±]→ ASt defined in Proposition 2.16. Thus, we get the restriction

f |Z[µ±1]{k} has range ASt{k}. Since f(µk−1(µ − 1)) = m{k} and f(µ−(k−1)(µ−1 −
1)) = m̄{k}, this restriction function is onto. Thus, the restriction is a linear
isomorphism of (2k + 1)-dimensional vector spaces.

Since Z[µ±1]{1} ⊂ Z[µ±1]{2} ⊂ . . . ⊂ Z[µ±1] and ASt{1} ⊂ ASt{2} ⊂ . . . ⊂ ASt
are exhaustive inclusions of the underlying vector spaces, the isomorphisms for each
k prove that f is a ring isomorphism.

�

3. Comparing the string algebra and the Ng cord algebra

In this section we review Ng’s fundamental group presentations of the cord algebra
and prove the Main Theorem 3.2, which is to equate it with the string algebra ASt
from Section 2.4. All manifolds are assumed to be connected.

3.1. Fundamental group formulation of the Ng cord algebra. For a knot
in R3, Ng constructed a combinatorial DGA over Z[λ±, µ±, Q±] whose homology is
equivalent to knot contact homology, a version of relative symplectic field theory
which is defined using pseudo-holomorphic curves in symplectic manifolds [EENS].
In [Ng2] he interprets the degree zero homology with Z-coefficients in terms of an
algebra generated by cords divided by an ideal generated by skein relations. Ng
and Gadgil in [Ng2, Appendix] describe a fundamental group presentation of the
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cord algebra, which may be applied to any codimension 2 submanifold K of M .
In [Ng3, Definition 2.2] Ng extends this presentation to define the cord algebra
over Z[H1(∂N)] where N is a tubular neighborhood of K. For a knot in R3 this
presentation gives the Q = 1 specialization of the degree zero part of knot contact
homology.

We review below the construction of the cord algebra for a codimension 2 sub-
manifold K of M . Instead of working with Z[H1(∂N)]-coefficients, we work in
the specialization to Z[µ±]-coefficients, where µ is the homology class of a fiber of
∂N → K. Note that in the knot case, this theory is still more general than the cord
algebra with Z-coefficients, which is sufficient to distinguish knots indistinguishable
by those invariants listed in Corollary 1.2.

Definition 3.1. Let Vµ be the free module generated by π1(M \K) over the group
ring Z[µ±1]. Let T (Vµ) denote the unital tensor algebra of this module. Let [x], [y]
be arbitrary elements in π1(M \K). Define the (Ng) cord algebra ANg(K) of the
submanifold as T (Vµ) modulo the relations

[xy] + [xmy] = [x]⊗ [y](3.1)

[lx] = [xl] = x(3.2)

[mx] = [xm], [m̄x] = [xm̄](3.3)

[e] = 1 + µ(3.4)

[mx] = µ[x], [m̄x] = µ−1[x](3.5)

Here e, m and l are as defined in Section 2.3.

We note that not all the relations in Definition 3.1 are independent. For example,
relation (3.5) follows from relations (3.1) and (3.4). Such a presentation, however,
will be useful when comparing the cord algebra to string topology constructions.

3.2. Main Theorem.

Theorem 3.2. The cord algebra ANg and string algebra ASt are isomorphic algebras
over the group ring of an infinite cyclic group.

Proof. Let V denote the module freely generated by π1(M \ K) over Z and T (V )
denote its unital tensor product. Proposition 2.14 implies that ASt is isomorphic to
T (V ) modulo the two-sided ideals generated by (3.1), (3.2) and (3.3). We write this
as

(3.6) ASt ∼=
T (V )

(3.1), (3.2), (3.3).

As mentioned earlier, we can add the identity element before or after imposing any
of these relations. (In Proposition 2.14 the identity element is added after dividing
by the ideal associated to (3.1), whereas T (V ) is already equipped with an identity
element.)

Since the ideals associated to relations (3.1), (3.2) and (3.3) are defined not using
µ,

(3.7)
T (Vµ)

(3.1), (3.2), (3.3)
∼=
T (V )⊗Z Z[µ±1]

(3.1), (3.2), (3.3)
.
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The result of the theorem follows from equations (3.6) and (3.7) if we can prove
the following map is an isomorphism. Let

(3.8) f :

(
T (V )⊗ZZ[µ±1]
(3.1),(3.2),(3.3)

)
(3.4), (3.5)

−→ T (V )

(3.1), (3.2), (3.3)

be defined on a generating set of V by f([x]) = [x], and on the coefficients by
f(µ) = [e]− 1 and f(µ−1) = [m̄]− 1.

To see that f is well-defined, note that

f(µ[x]− [mx]) = ([e]− 1)∗̃[x]− [mx] = [x] + [mx]− [x]− [mx] = 0

f(µ−1[x]− [m̄x]) = ([m̄]− 1)∗̃[x]− [m̄x] = [m̄x] + [x]− [x]− [m̄x] = 0

f([e]− (1 + µ)) = [e]− (1 + ([e]− 1)) = 0.

Since ([e] − 1)∗̃([m̄] − 1) = 1 = µ∗̃µ−1, the map is an algebra morphism. It is also
clearly bijective.

�
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