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Structure on k-cycles of a k-dimensional Space

Nissim Ranade, Chandrika Sadanand and Dennis Sullivan

Abstract

Definition 1. A coordinate space is a finite dimensional real vector space V
with a choice of dimV co-dimension one subspaces in general position. By
general position we mean that the dimension of the intersection of any n of
these hyperplanes is dimV − n.

In this note we attach, in a topologically invariant manner, a finite length
chain complex of finite dimensional coordinate spaces to any compact triangula-
ble space. The top homology of the chain complex agrees with the top homology
of the space and thus inherits an oriented matroid structure from the coordinate
space structure on the top chain groups. In dimension two, this chain complex
invariant can be refined to give a complete topological invariant for a class of
two dimensional spaces called taut. Taut two complexes exist in every possi-
ble homotopy type of connected two complexes, and are characterized by being
built out of surfaces glued to graphs by maximally efficient attaching maps.
This paper was motivated by our attempt to understand the possible content
of a lost manuscript by Ralph Reid at MIT circa 1970.

Section 1

Let X be a compact Hausdorff space underlying a finite simplicial complex of di-
mension d (equivalently underlying a regular cell complex structure of dimension
d). A point in such a space is called a k-manifold point if it has a neighborhood
homeomorphic to an open set in Euclidean space of dimension k.

Now we define a filtration of X by subcomplexes. For every 0 ≤ k ≤ d we
define Xk := X if k = d and Xk := Xk+1\{k+1 manifold points} for k less than
d. One can show the space Xk is a subcomplex of the cell complex structure on
X of dimension at most k.

For every pair (Xk, Xk−1) we have the following long exact sequence (all
coefficients are real numbers in this note).

. . . −→ Hn+1(Xk, Xk−1) −→ Hn(Xk−1) −→ Hn(Xk) −→ . . .

Using the exact sequences for (Xk, Xk−1) and (Xk−1, Xk−2), we get a map
Hk(Xk, Xk−1) −→ Hk−1(Xk−1, Xk−2) and the following sequence of groups and
morphisms,
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. . . −→ Hk+1(Xk+1, Xk)
∂k−→ Hk(Xk, Xk−1)

∂k−1

−−−→ Hk−1(Xk−1, Xk−2) −→ . . .
(1)

Definition 2. We call the connected components of the set of k-manifold points
of Xk the k-strata of X . In other words, a k-stratum is a connected component
of Xk \Xk−1.

In the proof of the main theorem below, one sees that the orientable k-
strata correspond to natural generators, up to scalar factors, of the chain groups
Hk(Xk, Xk−1).

Theorem 1. The filtration X = Xd ⊇ Xd−1 ⊇ . . . has the following properties:

(i) Each chain group Ck = Hk(Xk, Xk−1) has the structure of a coordinate
space whose codimension one hyperplanes are defined by elements of Ck

not supported on a particular k-stratum.

(ii) The maps induced by the exact sequences of pairs make (1) into a chain
complex whose top homology is isomorphic to the top homology of X.

(iii) The intersection of the coordinate hyperplanes of Ck with the space of k-
cycles in Ck defines an oriented matroid, up to re-orientation.
(See page 10 of [1])

(iv) Any homeomorphism between two such spaces induces an isomorphism
between the above structures.

Proof. i) Xk has an underlying cell complex structure which gives rise to
chain groups A∗ (R coefficients). Hk(Xk, Xk−1) is the top homology group
for the relative chain complex,

0 −→ Ak(Xk)/Ak(Xk−1)
δ
−→ Ak−1(Xk)/Ak−1(Xk−1) −→ . . . (2)

So Hk(Xk, Xk−1) = kerδ and is a real vector space. Now we construct a
basis up to multiplication by scalars which will give rise to a coordinate
space structure on these relative homology groups.

For every orientable k-stratum, we pick an orientation and for each such
stratum we construct a formal sum of oriented cells in Ak that are con-
tained in this stratum. The coefficient of a cell is +1 if the orientation of
the cell matches with that of the component and −1 if it does not. Now
the boundary of such a sum only has (k − 1)-cells which are in Xk−1.
Hence these sums are in kerδ. Also these sums for the various strata
form a linearly independent set as the cells occuring in each sum for two
different strata are distinct. It remains to show that every chain whose
boundary is in Xk−1 is a linear combination of the above mentioned sums.

Let B be a chain whose boundary is contained in Xk−1. Let σ be a cell
appearing with multiplicity m in B and let S be the stratum in which σ
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is contained. If τ is another cell in S, it is connected to σ by a sequence
of k-cells in S with consecutive cells sharing a (k − 1)-face not in Xk−1.
This gives a path of alternating k and (k − 1) cells from σ to τ . There
may be several such sequences. For any such sequence, each consecutive
cell must appear in B with multiplicity m and appropriate sign so that
the boundary of B does not contain (k − 1)-cells from the corresponding
path. This is true whether or not S is orientable.

Suppose S is not orientable. Two connecting sequences exist such that the
orientations on a cell τ induced from a given orientation of some cell σ by
these two sequences do not agree. Therefore, the multiplicity of τ in B
must be both +m and −m. So m must be zero.

If S is orientable, the above discussion shows that the entire sum associated
with S appears in B with multiplicity m.

This proves that every element in Ck is a linear combination of oriented
strata. A particular co-dimension one hyperplane of the coordinate space
structure on Ck consists of those elements which have zero coefficient on
a particular stratum.

ii) Now we show (by a familiar argument) that (1) is a chain complex.

The map ∂k is the composition of Hk+1(Xk+1, Xk)
fk+1

−−−→ Hk(Xk) and

Hk(Xk)
fk
−→ Hk(Xk, Xk−1). So ∂k∂k−1 = fk+1(fk)

2fk−1. Since (fk)
2 = 0,

the sequence (1) of groups and morphisms forms a chain complex. To find
the top homology, consider the following part of the chain complex,

0 −→ Hd(Xd, Xd−1)
∂
−→ Hd−1(Xd−1, Xd−2).

It is easily seen that the top homology group is ker∂. Now, ∂ is the
composition of the following maps which come from two different exact
sequences.

Hd(Xd, Xd−1)
fd
−→ Hd−1(Xd−1)

fd−1

−−−→ Hd−1(Xd−1, Xd−2)

fd−1 is injective, as its kernel is the same as the image under a map from
Hd−1(Xd−2) = 0. Thus ker∂ = kerfd. This is the image under the map
from Hd(Xd) = Hd(X) in the following exact sequence,

0 −→ Hd(X) −→ Hd(Xd, Xd−1) −→ . . .

This image, in turn, is isomorphic to Hd(X) and hence the top homology
of chain complex (1) is the same as the top homology of the topological
space X .

iii) Intersecting a subspace of a coordinate space with the n hyperplanes gives
rise to an oriented matroid up to re-orientation. (See page 10 of [1]).
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iv) A homeomorphism from Y to X restricts to a homeomorphism from Yk

to Xk for every k, where Yk is obtained from Y the same way in which Xk

is obtained from X . An isomorphism is induced between the two chain
complexes associated with the pairs (Yk, Yk−1) and (Xk, Xk−1). This, in
turn, induces an isomorphism between Hk(Yk, Yk−1) and Hk(Xk, Xk−1)
for every k, which respects the boundary maps. Thus there is an isomor-
phism between the two chain complexes preserving the coordinate space
structure.

Corollary 1 (Inspired by Ralph Reid). For a d-dimensional regular cell com-
plex, the real cellular d-cycles in Cd of minimal support define the circuits of
an oriented matroid which is well-defined up to reorientation by the underlying
topological space.

Proof. This follows immediately from Theorem 1 (iii). (See page 10 of [1]).

The top homology group Hd(X) is equal to the space of cycles in the top di-
mension. By the proof of Theorem 1 (ii), these cycles inject into Hd(Xd, Xd−1).
Theorem 1 (i) shows that every element of Hd(Xd, Xd−1) corresponds to the
linear combination of d-strata. Together, these facts give another corollary.

Corollary 2. The top dimensional cycles can be written as linear combinations
of top dimensional strata.

This chain complex of coordinate spaces is a topological invariant of the
underlying space which, with some enrichment, becomes a complete topological
invariant in dimension one and in dimension two.

Remark 1. In dimension one, the connected components of 1-manifold points
are either circles or open intervals. Thus for connected non-trivial spaces, the
one dimensional strata are either a circle or the edges of a graph. The circle
case is specified by having no degree zero term in the chain complex. The
graph case for connected spaces of dimension one is essentially determined by
the above coordinate space chain complex. For such a graph, X1 is a finite
collection of open intervals and X0 is a finite collection of points. Every open
interval and every vertex corresponds to a generator of the respective chain
groups. The boundary map takes the generator corresponding to an interval to
the difference of the generators corresponding to its ending vertices. Thus for
every such open interval, which does not form a loop after being attached, the
above chain complex completely determines its position in the graph. Thus in
either case, circle or graph, the above chain complex, along with the function
giving the number of loops attached to every vertex, is a complete topological
invariant for connected compact one dimensional triangular spaces.

In the two dimensional case, we restrict our discussion to a special class of
spaces.
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Definition 3. We call a two dimensional cell complex taut if the attaching
maps of the boundary components of the 2-strata to the intrinsic one skeleton
are either locally injective or constant.

Note that for a general finite two complex the attaching maps can be ho-
motoped to locally injective or to constant maps. Thus every two complex is
homotopy equivalent to a taut two complex.

For a taut cell complex, the attaching map in the non-constant case is given
by a cyclic word on the set of 1-strata. The boundary map in chain complex
(1) is given by abelianizing the above word. The following theorem about taut
complexes with only orientable 2-strata follows quite directly.

Theorem 2. The following information forms a complete homeomorphism in-
variant of 2-dimensional taut cell complexes with all 2-strata orientable.

(i) The chain complex (1), with the loop counting enrichment described in
Remark (1)

(ii) The Euler characteristic and number of boundary components of each stra-
tum

(iii) Boundary components of 2-strata which are attached by constant maps
labeled by the one or zero strata where they are attached

(iv) The non-abelian version of ∂1(s) associated with each boundary component
of each 2-stratum, s, whose attaching maps are non-constant

Proposition. The free homotopy class of a non-constant attaching map of a
boundary component of a 2-strata in a taut 2-dimensional cell complex deter-
mines the attaching map up to reparametrization.

Proof. Consider a lift of the attaching map as a map of the interval into the
universal cover of X1 (which is a tree). Locally injective maps into a tree
are just the shortest paths. These are determined by their endpoints up to
reparametrization. Thus the conjugacy classes of the attaching maps give the
attaching maps up to reparametrization.

Theorem 3. The following information forms a complete homeomorphism in-
variant of 2-dimensional taut cell complexes, with or without non-orientable
2-strata.

(i) The chain complex (1), along with the loop counting enrichment described
in Remark (1)

(ii) The Euler characteristic, the orientability and the number of boundary
components of each 2-stratum

(iii) The labeling of the boundary components of 2-strata which are attached by
constant maps by the zero or one strata containing the constant images
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(iv) The labeling of directed boundary components of 2-strata with non-constant
attaching maps by conjugacy classes in the fundamental group of the in-
trinsic one skeleton X1

Proof. By the proposition, each locally injective attaching map of a boundary
component is determined up to reparametrization by the corresponding free
homotopy class of maps into the one skeleton. This free homotopy class is de-
termined by the conjugacy class associated by the map to the directed boundary
component. The rest of the proof is by inspection, extending, using the propo-
sition, the homeomorphism from Remark 1 between the corresponding graphs
over the 2-strata.
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