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Structured Vector Bundles Define

Differential K-Theory

James Simons and Dennis Sullivan

Abstract

A equivalence relation, preserving the Chern-Weil form, is defined between connections on a
complex vector bundle. Bundles equipped with such an equivalence class are called Structured
Bundles, and their isomorphism classes form an abelian semi-ring. By applying the Grothedieck
construction one obtains the ring K̂, elements of which, modulo a complex torus of dimension
the sum of the odd Betti numbers of the base, are uniquely determined by the corresponding
element of ordinary K and the Chern-Weil form. This construction provides a simple model
of differential K-theory, c.f. Hopkins-Singer (2005), as well as a useful codification of vector
bundles with connection.

Introduction

This paper grew out of the effort to construct a simple geometric model for differential K-theory,
the fibre product of usual K-theory with closed differential forms, [4],[5],[6]. The model which
finally emerged also fulfilled our long standing wish for a simple and straightforward codification
of complex vector bundles with connection.

Considering pairs of connections whose Chern-Simons difference form is exact defines an equivalence
relation in the space of all connections on a given bundle. We call a pair, V = (V, {∇}), consisting
of a vector bundle together with a particular such equivalence class, a structured bundle. As is
true for vector bundles, structured bundles have additive inverses up to trivial structured bundles:
given V there is a W such that their direct sum is equivalent to a bundle with trivial holonomy
(Theorem 1.15).

By defining Struct to be the commutative semi-ring of isomorphism classes of structured bundles,
and using the standard Grothedieck device to turn Struct into a commutative ring, we obtain K̂,
a functor from smooth compact manifolds with corners into commutative rings. As in ordinary K,
every element of K̂ may be written as V − [n], where V is a structured bundle and [n] is the trivial
structured bundle of dim n. K̂ achieves the above desired codification of connections and serves as
the sought after geometric model of differential K-theory.

Defining four natural transformations into and out of K̂ we develop in the first four sections the
diagram with exact diagonals and boundaries,
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where the sequence along the upper boundary may be identified (via ch ⊗ C) with the Bockstein
sequence for complex K-theory (the long exact sequence associated to the short exact sequence
of coefficients 0 → Z → C → C/Z → 0), and that along the lower boundary comes from de
Rham theory. Here, ∧BGL means all closed forms cohomologous to Chern characters of com-
plex vector bundles, and ∧GL means all closed forms cohomologous to pull-backs by maps into
GL = union of the GL(n,C) of the transgression of the Chern character form. δ is the map which
simply drops the connection, and ch is the Chern-Weil map applied to the Chern character poly-
nomial. The fibre product statement above is related to the commutative square on the right half
of the diagram.

The work’s main technical innovation is embodied in Proposition 2.6, where it is shown that all
odd forms modulo ∧GL arise as the Chern-Simons difference forms between the trivial connection
and arbitrary connections on trivial bundles. A corollary, as implied by the diagram above, is that
every element of ∧BGL arises after stabilizing as the Chern character form of some connection in
any bundle whose Chern character is the given cohomology class. In particular, if a bundle has
zero characteristic classes over C, then there is a connection on that bundle, stabilized by adding
in a trivial bundle, with vanishing Chern-Weil forms.

By considering the simultaneous kernel of ch and δ, the diagram also shows that the ambiguity in
determining a structured bundle up to stabilizing solely by its characteristic forms and underlying
element of K is measured by a complex torus, the dimension of which is the sum of the odd Betti
numbers of the base manifold.

In showing that the kernel of ch is K(C/Z) we were influenced by the work of Karoubi [2] and Lott
[1], which gave a related description of K(C/Z) involving a bundle with connection and an extra
total odd form whose d is the Chern character form. Our proof is based on the characterization
given in Appendix A of the homotopy fibre of a map in the homotopy category.
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We also point out that the existence of a differential K-theory associated to K-theory, and indeed
a differential theory associated to any exotic cohomology theory, was constructed in the paper of
Hopkins and Singer [5]. Following their approach, Freed, as well as Hopkins and Singer and perhaps
others like ourselves, were aware that a model for differential K-theory could be constructed based
on pairs (E,O), where E is a bundle with connection and O is a total odd form with an equivalence
relation generalizing that in [2]. One point of the present work is that this total odd form may be
taken to be zero in the equivalent description of differential K-theory presented here.

There is a word for word variant of the above concerning complex vector bundles with Hermitian
connection. Now there is a functor K̂R, four natural transformations and the diagram
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This is discussed briefly in Section 5. As a corollary, for any bundle over a closed Riemannian
manifold after stabilizing, there is a unitary connection on the bundle whose Chern-Weil form is
the harmonic representative of the Chern character of the bundle. Moreover, when the odd Betti
numbers vanish, this structured bundle is unique up to adding factors with trivial holonomy.

Our model of K̂ or K̂R may relate to two questions:

1. Up to a natural transformation, are K̂ or K̂R uniquely determined by the diagram, as shown
in [7] in the case of ordinary differential cohomology?

2. Can one enrich the families index theorem by passing from K to K̂ or K̂R? c.f. [3], [4], [6].

Finally, this model of K̂ or K̂R might be helpful for certain quantum theories and M -theory, in
which it has already been observed that actions can be written more appropriately in the language
of differential K-theory than in that of differential forms [6], [8]. In this respect we note Theorem
3.9, showing that K̂ and K̂R satisfy the Mayer-Vietoris property, which relates to locality.
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§1. Structured Bundles

Let [V,∇] be a complex vector bundle with connection over a smooth manifold with corners, X,
and let R ∈ ∧2(X,End(V )) denote its curvature tensor.

Using the Chern-Weil homomorphism, the Chern character of V , ch(V ), may be represented by
the total complex valued closed form on X, ch(∇), defined by

1.1) ch(∇) =
∑

j=0

1

j!

(
1

2πi

)j

tr(

j︷ ︸︸ ︷
R ∧ · · · ∧R) ∈ ∧even(X,C).

For t ∈ [0, 1] and γ(t) = ∇t a smooth curve of connections, (∇t)′ = At ∈ ∧1(X,End(V )), and we
set

1.2) cs(γ) =

∫ 1

0

∑

j=1

1

(j − 1)!

(
1

2πi

)j

tr(At ∧

j−1︷ ︸︸ ︷
Rt ∧ · · · ∧Rt) ∈ ∧odd(X,C).

It is a standard fact that

1.3) dcs(γ) = ch(∇1) − ch(∇0).

There is a second formulation of 1.2) which will be useful in what follows.

Let Π : X × [0, 1] → X be the standard projection, and set W = Π∗(V ). We may construct a
connection, ∇̄, on W by defining ∇̄s = ∇t

Π∗(s)
when s is tangent to the slice through t, and by

making ∇̄∂/∂t(Π
∗(f)) = 0 for f any cross-section of V .

Let R̄ be the curvature tensor of ∇̄. Then, if r, s are tangent to the slice through t,

R̄r,s = Rt
Π∗(r),Π∗(s)

1.4)
R̄∂/∂t, s = At

Π∗(s).

The first is straightforward. To show the second, let w ∈ W(x,t), and extend it to be of the form
Π∗(f), where f is a cross-section of V . Also extend s to be the lift of a vector field on X. Clearly
[s, ∂/∂t] = 0. Thus

R̄∂/∂t, sw = ∇̄∂/∂t∇̄sw − ∇̄s∇̄∂/∂tw = ∇̄∂/∂t∇̄sw =
d

dt
∇t

Π∗(s)
w = At

Π∗(s)w.

Now, let ψt : X → X × [0, 1] be the slice map, ψt(x) = (x, t). Then by 1.4)

tr(At ∧

j−1︷ ︸︸ ︷
Rt ∧ · · · ∧Rt) = ψ∗

t ( tr(i∂/∂tR̄ ∧

j−1︷ ︸︸ ︷
R̄ ∧ · · · ∧ R̄) )

= ψ∗
t ( i∂/∂t(

1
j tr(

j︷ ︸︸ ︷
R̄ ∧ · · · ∧ R̄)) ).
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From this we conclude

1.5) cs(γ) =

∫ 1

0
ψ∗

t (i∂/∂t ch(∇̄)).

The following proposition is almost certainly well known, but we did not find a reference.

Proposition 1.6: If α and γ are two paths connecting ∇0 and ∇1, then

cs(α) = cs(γ) + exact.

Proof : It is sufficient to prove that if γ is a closed path of connections, then cs(γ) is exact.
By 1.3) cs(γ) is obviously closed. To show it exact we show that cs(γ) integrates to 0 on every
cycle of X.

Let Z be such a cycle. Then by 1.5)

∫

Z
cs(γ) =

∫

Z×S1

ch(∇̄) = ch(W )(Z × S1) = Π∗(ch(V ))(Z × S1) = ch(V )(Π∗(Z × S1)) = 0

Thus cs(γ) is exact. �

Since ∇0 and ∇1 may always be joined by a smooth path, using Proposition 1.6, we may set

1.7) CS (∇0,∇1) = cs(γ) mod exact.

From Proposition 1.6) we also see

1.8) CS (∇0,∇1) + CS (∇1,∇2) = CS (∇0,∇2).

Definition: ∇0 and ∇1 will be called equivalent, and written ∇0 ∼ ∇1, if CS (∇0,∇1) = 0.
Equation 1.8) shows ∼ is an equivalence relation.

Definition: A pair V = [V, {∇}], where {∇} is an equivalence class of connections on V will be
called a structured bundle.

If ∇W is a connection on W and σ : V → W is a bundle isomorphism covering the identity map
of X, σ induces σ∗(∇W ), a connection on V , and it is easily seen that {σ∗(∇W )} = σ∗({∇W }).
V = [V, {∇V }] and W = [W, {∇W }] are called isomorphic if σ∗({∇W }) = {∇V }.

If ψ : X → Y is C∞, and V is a bundle over Y with connections ∇0 and ∇1, then, in the usual
manner, ψ∗(∇0) and ψ∗(∇1) are connections on ψ∗(V ). Clearly

CS (ψ∗(∇0), ψ∗(∇1)) = ψ∗(CS (∇0,∇1)).

Thus, if V = [V, {∇}] is a structured bundle over Y then ψ∗(V) = [ψ∗(V ), {ψ∗(∇)}] is well defined
as a structured bundle over X.
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Suppose ψt : X → Y is a smooth 1-parameter family of maps. If V = [V, {∇}] is a structured bundle
over Y , then Vt = [ψ∗

t (V ), ψ∗
t ({∇})] is a 1-parameter family of structured bundles over X. Assume

t ∈ [0, 1] and let γx : [0, 1] → Y be the curve γx(t) = ψt(x). Let σt : ψ∗
0(V ) → ψ∗

t (V ) be parallel
transport along the curves γt. Then, letting W = ψ∗

0(V ) and ∇t = σ∗t (ψ
∗
t (∇)), Wt = [W, {∇t}] is

a 1-parameter family of structured bundles over X, isomorphic to the family Vt, having the same
underlying vector bundle.

Letting γ′x(t) denote the tangent vector to γx at t, and using 1.5), we conclude

1.9) CS (∇0,∇1) =

∫ 1

0
ψ∗

t (iγ′

x(t) ch(∇)) dt.

If ∇V and ∇W are connections on V and W they determine connections on V ⊕W and V ⊗W ,
denoted by ∇V ⊕∇W and ∇W ⊗∇W . For f, g cross-sections in V and W , and r, a tangent vector
to X,

(∇V ⊕∇W )r(f, g) = (∇V
r f,∇

W
r g)

(∇V ⊗∇W )r(f ⊗ g) = ∇V
r (f) ⊗ g + f ⊗∇W

r (g).

It is well known that

1.10) ch(∇V ⊕∇W ) = ch(∇V ) + ch(∇W )
1.11) ch(∇V ⊗∇W ) = ch(∇V ) ∧ ch(∇W ).

Lemma 1.12: Let ∇V , ∇̄V ,∇W , ∇̄W be connections on the indicated bundles. Then

a) CS (∇V ⊕∇W , ∇̄V ⊕ ∇̄W ) = CS (∇V , ∇̄V ) + CS (∇W , ∇̄W )
b) CS (∇V ⊗∇W , ∇̄V ⊗ ∇̄W ) = ch(∇V ) ∧CS (∇W , ∇̄W ) + ch(∇̄W ) ∧ CS (∇V , ∇̄V )

Proof : Using 1.8)

CS (∇V ⊕∇W , ∇̄V ⊕ ∇̄W ) = CS (∇V ⊕∇W ,∇V ⊕ ∇̄W ) + CS (∇V ⊕ ∇̄W , ∇̄V ⊕ ∇̄W ).

Direct calculation of each term using 1.2) shows a).

Again using 1.8)

CS (∇V ⊗∇W , ∇̄V ⊗ ∇̄W ) = CS (∇V ⊗∇W ,∇V ⊗ ∇̄W ) + CS (∇V ⊗ ∇̄W , ∇̄V ⊗ ∇̄W )

and again from 1.2), direct calculation shows b). �

From Lemma 1.12 one immediately sees

Proposition 1.13: If V = [V, {∇V }] and W = [W, {∇W }] are structured bundles, then the equiv-

alence classes {∇V ⊕ ∇W} and {∇V ⊗ ∇W} are independent of the choices of ∇V ∈ {∇V } and
∇W ∈ {∇W }, and so

V ⊕W = [V ⊕W, {∇V ⊕∇W}] and

V ⊗W = [V ⊗W, {∇V ⊗∇W}]
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are well defined structured bundles.

Definition: We define Struct(X) to be the set of isomorphism classes of structured bundles over
X. By Proposition 1.13, the operations ⊕ and ⊗ make Struct(X) an abelian semi-group with
commutative, distributive multiplication. A smooth map ψ from X to Y induces ψ∗ : Struct(Y ) →
Struct(X) preserving these operations. Thus, Struct is a functor on the category of smooth
compact manifolds with corners into that of commutative semi-rings.

We conclude from 1.3) that ch : Struct(X) → ∧even(X) is a well defined natural transformation,
and from 1.10) and 1.11)

ch(V ⊕W) = ch(V) + ch(W)
1.14)

ch(V ⊗W) = ch(V) ∧ ch(W).

Definition: A connection ∇ on V will be called flat if its holonomy around every closed path is
the identity. This implies the curvature R ≡ 0 and that V is naturally isomorphic to the product
bundle with the trivial product connection. V = [V, {∇}] will be called flat if some ∇ ∈ {∇}
is flat. Since any two such of dim n are isomorphic, we shall denote this isomorphism class by
[n] ∈ Struct(X).

The following theorem is based on a related result in [11], stated without giving the proof. We
employ that proof here in Lemma 1.16 below.

Theorem 1.15: Given any V ∈ Struct(X) there is a W ∈ Struct(X) such that V ⊕W = [n] for
some n. Any such W will be called an inverse of V.

To prove the Theorem we need

Lemma 1.16: Let ∇ be a connection on V ⊕ W with curvature R. Let ∇V and ∇W be the
connections on V and W induced by ∇. E.g. if ΠV : V ⊕W → V is the projection, and f is a
cross-section in V then ∇V

r f = ΠV (∇rf). Suppose Rr,s(V ) ⊆ V and Rr,s(W ) ⊆ W for all tangent
vectors r, s at any point of X. Then,

∇V ⊕∇W ∼ ∇.

Proof : We may write

∇ = ∇V ⊕∇W +A

where A ∈ ∧1(X,End(V ⊕W )). For f a cross-section in V we see

Arf = ∇rf − ΠV (∇rf) = ΠW (∇rf) ∈W.

As the same holds for W , we see

1.17) Ar(V ) ⊆W and Ar(W ) ⊆ V.

7



Setting ∇̄ = ∇V ⊕∇W , let R̄ denote its curvature and d̄ denote its exterior differentiation operator.
Since ∇̄ preserves V and W , 1.17) implies

1.18) d̄Ar,s(V ) ⊆W and d̄Ar,s(W ) ⊆ V.

The usual formula computing the curvature of one connection from that of another shows

R = R̄+A ∧A+ d̄A.

By hypothesis, R preserves V and W . So does R̄, being the curvature of a direct sum connection,
and so does A ∧ A by 1.17). This implies that d̄A preserves them as well, but 1.18) shows the
opposite. Thus d̄A = 0 and

1.19) R = R̄+A ∧A.

Let ∇t = ∇̄+ tA, a curve of connections joining ∇V ⊕∇W to ∇. Letting Rt denote the associated
curvature, we see from 1.19)

1.20) Rt = R̄+ t2A ∧A.

In the notation of 1.2), At = (∇t)′ = A, and so the CS integrand consists of terms of the form

tr(A ∧

j−1︷ ︸︸ ︷
Rt ∧ · · · ∧Rt).

But, by 1.20) Rt preserves both V and W , and, since A reverses them, all such trace terms must
vanish. Thus CS (∇, ∇̄) = 0. �

Proof of Theorem 1.15:

The classifying spaces BkGL(n,C) = GL(n+k,C)/GL(n,C)×GL(k,C) come with natural bundles,
V n and V k, of dimension n and k, and connections ∇n and ∇k induced by the standard flat
connection on V n⊕V k. Lemma 1.16 shows that Vn = [V n, {∇n}] and Vk = [V k, {∇k}] are inverses
of each other.

The theorem of Narasimhan-Ramanan [9] shows that for sufficiently large k, an n-dim V ∈ Struct(X)
may be obtained as the pull-back of Vn via a C∞ map of X → BkGL(n,C). The pull-back of Wk

will then be an inverse of V in the sense of Theorem 1.15. �

§2. The Stably Trivial Case

Let GL = lim
n
GL(n,C), the stabilized complex general linear group and G its Lie algebra. G

consists of complex valued matrices, all but a finite number of whose entries are 0. Let θ ∈ ∧1(GL,G)
denote the canonical left invariant G-valued form on GL. Set

2.1) Θ =
∑

j=1

bj tr(

2j−1︷ ︸︸ ︷
θ ∧ θ ∧ · · · ∧ θ) ∈ ∧odd(GL)
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where

bj =
1

(j − 1)!

(
1

2πi

)j ∫ 1

0
(t2 − t)j−1 dt.

It is well known that Θ is a bi-invariant closed odd form, and the free abelian group generated by
all distinct products of its components represent the entire complex cohomology ring of GL. We
define ∧GL ⊆ ∧odd by

2.2) ∧GL (X) = {g∗(Θ)} + ∧odd
exact

where g : X → GL runs through all C∞ maps.

Note that if g, h map X into GL, then g ⊕ h : X → GL may be defined, and (g ⊕ h)∗(Θ) =
g∗(Θ) + h∗(Θ). Moreover, (g−1)∗(Θ) = −g∗(Θ). Thus ∧GL(X) is an abelian group.

Lemma 2.3: Let V be a trivial bundle with the two flat connections ∇ and ∇̄. Then

CS (∇, ∇̄) ∈ ∧GL/ ∧
odd
exact .

Proof : Since ∇ and ∇̄ each have trivial holonomy, we can find a cross-section g ∈ Aut(V ) such
that

∇̄t(f) = g−1(∇t(g(f))).

Expressing g as a matrix with respect to a ∇-parallel framing of V , we see

∇̄ = ∇ + g−1 dg.

Now, regarding g : X → GL, one easily sees that g−1dg = g∗(θ). Thus

∇̄ = ∇ + g∗(θ).

Setting ∇̄t = ∇ + tg∗(θ), we see

R̄t = R+ t dg∗(θ) + t2 g∗(θ) ∧ g∗(θ).

But, either calculating on GL, or directly with g−1dg, we see that dg∗(θ) = −g∗(θ) ∧ g∗(θ). More-
over, since ∇ has trivial holonomy, R ≡ 0. Thus

R̄t = (t2 − t)g∗(θ) ∧ g∗(θ).

It then follows from 1.2) that CS (∇, ∇̄) = g∗(Θ). �

Definition:

StructST(X) = { [V, {∇}] ∈ Struct(X) | V is stably trivial }.

9



For V ∈ StructST(X), let F and H be trivial bundles such that V ⊕F = H and let ∇F ,∇H be flat
connections on F and H. We define

ĈS : StructST(X) → ∧odd/∧GL

by

ĈS (V) = CS (∇H ,∇⊕∇F ) mod ∧GL/ ∧
odd
exact .

Proposition 2.4: ĈS is a well defined homomorphism.

Proof : Suppose F̄ , H̄,∇F̄ ,∇H̄ are another pair of trivial bundles with flat connections with
V ⊕ F̄ = H̄. Using 1.7), Lemma 1.12 and Lemma 2.3, and working mod ∧GL, we see

CS (∇H̄ ,∇⊕∇F̄ ) = CS (∇H̄ ⊕∇F ,∇⊕∇F̄ ⊕∇F )

= CS (∇H ⊕∇F̄ ,∇⊕∇F̄ ⊕∇F )

= CS (∇H ,∇⊕∇F ).

Thus ĈS is well defined. That ĈS is a homomorphism follows immediately from Lemma 1.10. �

Definition: V ∈ Struct(X) is called stably flat if there exists flat F and H such that V ⊕F = H.
The set of these objects will be denoted by StructSF(X). Clearly StructSF(X) ⊆ StructST(X) and
is a sub semi-group.

Proposition 2.5: ker(ĈS ) = StructSF(X).

Proof : Obviously StructSF ⊆ ker(ĈS ). Now suppose ĈS (V) = 0. Let F,H,∇F and ∇H be as in

the definition of ĈS . Now, ĈS (V) = 0 implies

CS (∇H ,∇⊕∇F ) = g∗(Θ) mod ∧odd
exact

for some g : X → GL. Again as in the proof of Lemma 2.3, choosing a ∇H-parallel framing of H,
we may regard g ∈ Aut(H) and set

∇̄H = g−1(∇H ◦ g).

As in the Lemma we see CS (∇H , ∇̄H) = g∗(Θ) and thus CS (∇̄H ,∇H) = −g∗(Θ). Therefore

CS (∇̄H ,∇⊕∇F ) = CS (∇̄H ,∇H) + CS (∇H ,∇⊕∇F )

= −g∗(Θ) + g∗(Θ) = 0 mod exact.

Setting H̄ = [H, {∇̄H}] and F = [F, {∇F }] we see V ⊕F = H̄ and thus V ∈ StructSF(X). �
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Proposition 2.6: Im(ĈS ) = ∧odd(X)/ ∧GL (X).

Proof : If L is a trivialized line bundle over X then any connection on L is simply a complex valued
1-form, w. Since w∧w = 0, the associated curvature, Rw, is dw, and {w} = {w+df | f ∈ C∞(X,C)}.

Let Lw = [L, {w}]. Using tw as a curve of connections joining w to the trivial connection, and
noting that Rtw = tRw, 1.2) shows

2.7) ĈS (Lw) =
∑

j=1

1

j!

(
1

2πi

)j

w ∧ (dw)j−1.

We first suppose X = Rn. If w = f dx then w∧dw = 0 and thus ĈS (Lfdx) = fdx. Moreover, since

ĈS is a homomorphism

ĈS

(
∑

i

⊕Lfidxi

)
=
∑

fidxi.

Thus ∧1(Rn)/ ∧G (Rn) ⊆ Im(ĈS ).

Proceeding by induction on k, suppose

2.8)




k∑

j=1

∧2j−1(Rn)



 / ∧GL (Rn) ⊆ Im(ĈS ).

Let w = x1dx2 + x3dx4 + · · · + x2k−1dx2k + fdx2k+1.

Claim: w ∧ (dw)k = (k + 1)!fdx1 ∧ · · · ∧ dx2k+1 + exact.

To show this, let γ = dx1 ∧ dx2 + · · · + dx2k−1 ∧ dx2k, and note

dw = γ + df ∧ dx2k+1 ⇒ (dw)k = (γ + df ∧ dx2k+1)
k.

Since all powers of df ∧ dx2k vanish,

(dw)k = γk + kγk−1 ∧ df ∧ dx2k+1 = k!dx1 ∧ · · · ∧ dx2k +

k!




k∑

j=1

dx1 ∧ dx2 ∧ · · · ∧ ̂dx2j−1 ∧ dx2j ∧ · · · ∧ dx2k−1 ∧ dx2k



 ∧ df ∧ dx2k+1

Thus,

w ∧ (dw)k = k!fdx1 ∧ · · · ∧ dx2k+1 +

k!




k∑

j=1

dx1 ∧ · · · ∧ dx2j−2 ∧ x2j−1 ∧ dx2j ∧ · · · ∧ dx2k



 ∧ df ∧ dx2k+1

= k! fdx1 ∧ · · · ∧ dx2k+1 − k!

k∑

j=1

dx1 ∧ · · · ∧ dx2j−1 ∧ x2j−1df ∧ dx2j ∧ · · · ∧ dx2k+1

= (k + 1)! fdx1 ∧ · · · ∧ dx2k+1 + exact.
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Thus, working mod ∧GL (Rn),

ĈS (L(2πi)k+1w) = fdx1 ∧ · · · ∧ dx2k+1 + θ,

where

θ ∈

k∑

j=1

∧2j−1(Rn).

By induction, θ = ĈS (V) for some V ∈ StructST(Rn). Theorem 1.15 shows V has an inverse V−1.

Clearly V−1 ∈ StructST(Rn) and by Proposition 2.4, ĈS (V−1) = −θ. Thus

ĈS (L(2πi)k+1w ⊕ V−1) = fdx1 ∧ · · · ∧ dx2k+1.

The general element of ∧2k+1(Rn) is the sum of such terms, and thus is the image under ĈS of the
direct sum of the inverse images of each of these terms.

For the general case let ψ : X → Rn be an imbedding. Since ψ∗ : ∧odd(Rn) → ∧odd(X) is onto,
and ψ∗(∧GL(Rn)) ⊆ ∧GL(X), ψ∗ : ∧odd(Rn)/ ∧GL (Rn) → ∧odd(X)/ ∧GL (X) is onto. Moreover,

ψ∗(StructST(Rn)) ⊆ StructST(X), and finally ĈS ◦ ψ∗ = ψ∗ ◦ ĈS . Thus if ρ ∈ ∧odd(X)/ ∧GL (X),

we can find ρ̄ ∈ ∧odd(Rn)/ ∧GL (Rn) with ψ∗(ρ̄) = ρ. By the special case, ρ̄ = ĈS (V) for some
V ∈ StructST(Rn). Then

ρ = ψ∗(ĈS (V)) = ĈS (ψ∗(V)). �

From Propositions 2.4, 2.5, 2.6 we see

Theorem 2.7:

ĈS : StructST(X)/StructSF(X) ∼=−→
∧odd (X)/ ∧GL (X).

§3. K̂(X)

Using the standard construction of K, which transforms an abelian semi-group into a group, we
define

K̂ = K(Struct(X)).

K̂(X) is the free abelian group generated by isomorphism classes of structured bundles, modulo
the relation V +W− (V ⊕W). Equivalently defined, K̂(X) is the quotient of the semi-group under
⊕ consisting of all pairs (V,W) modulo the sub semi-group consisting of pairs (V,V). Since (0,V)
is obviously the additive inverse of (V, 0), we write (V,W) as V −W.
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Using Theorem 1.15 it is straightforward using the pairs definition to show

3.1) Every element of K̂(X) is of the form V − [n].

3.2) V − [n] = 0 ⇔ V is stably flat and n = dim(V).

Again using the pairs definition, one sees that ⊗ is well defined in K̂(X), and thus K̂(X) becomes
a commutative ring. (Defining (V,W) ⊗ (V ′,W ′) to be (V ⊗ V ′ ⊕W ⊗W ′,W ⊗ V ′ ⊕ V ⊗W ′) one
sees {(W,W)} is an ideal.)

We define ∧BGL ⊆ ∧even by

∧BGL(X) = {ch(V)} + ∧even
exact

where V ranges over all elements of Struct(X). From 1.10) and 1.11) and Theorem 1.15 we see that
∧BGL(X) is a commutative ring.

By analogy with the definition of ∧GL, and using the theorem of Narasimhan-Ramanan [9], we
could alternatively have defined

∧BGL(X) = {φ∗(Ω)} + ∧even
exact

where φ : X → BGL ranges over all C∞ maps, and Ω is the Chern character form of the standard
connection on the classifying bundle over BGL.

Clearly, ch extends to K̂(X), and maps it to ∧BGL(C). We also define

δ : K̂(X) → K(X)

by

δ( [V, {∇}] − [W, {∇̄}] ) = V −W.

Letting c : K(X) → Heven(X,C) be the natural transformation defined by the Chern character,
and deR : ∧BGL(X) → Heven(X,C) be that defined by the de Rham Theorem, we see

∧BGL(X)

@
@@R
ch deR

�
���

3.3) K̂(X) ⊗ Heven(X,C)

δ

�
��� @

@@R
c

K(X)

is a commutative diagram.
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Proposition 3.4: ker(δ) ∼= ∧odd(X)/ ∧GL (X).

Proof : Define Γ : StructST /StructSF → K̂ by

Γ({V}) = V − dim(V).

By 3.2), Γ is well defined and is an injection. Moreover, it is clear that Im(Γ) = ker(δ). Thus from
Theorem 2.7,

Γ ◦ ĈS
−1

: ∧odd(X)/ ∧GL (X)
∼=

−→ ker(δ). �

Let i = Γ ◦ ĈS
−1

. Since δ is clearly onto,

3.5) 0 −→ ∧odd(X)/ ∧GL (X)
i

−→ K̂(X)
δ

−→ K(X) −→ 0

is an exact sequence.

Proposition 3.6: ch ◦ i = d, and ch is onto.

Proof : To show the first, note that from the definition of ĈS ,

dĈS (V) = ch(V) − dim(V) = ch(Γ(V))

for any V ∈ StructST (X). Thus, for θ ∈ ∧odd(X) and {θ} its equivalence class mod ∧GL(X),

ch(i({θ})) = ch(Γ(ĈS
−1

({θ}))) = d({θ}) = dθ.

To show the second, let µ ∈ ∧BGL(X). By definition, ∃ V ∈ Struct(X) and θ ∈ ∧odd so that
µ = ch(V) + dθ. By the above, µ = ch(V + i({θ})). �

Let deR : Hodd(X,C) → ∧odd(X)/∧GL (X) be the obvious map induced by the de Rham Theorem.
Since the image of deR consists of closed forms, d ◦ deR = 0, which by Proposition 3.6, implies
ch ◦ i ◦ deR = 0. Thus, i ◦ deR(Hodd(X,C)) ⊆ ker(ch). We have now established

Proposition 3.7: The following diagram of functors and natural transformations is commutative,
and its diagonals are exact.
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0 0

�
��� @

@@R

∧odd/∧GL - ∧BGL
d

@
@@R
deR i

�
��� @

@@R
ch deR

�
���

Hodd(C) K̂ Heven(C)

i ◦ deR

�
��� @

@@R
⊆ δ

�
��� @

@@R
c

ker(ch) - K
δ |

@
@@R �

���

0 0

Corollary 3.8: The outside sequences

Hodd(C)
i◦deR
−→ ker(ch)

δ |
−→ K

c
−→ Heven(C)

Hodd(C)
deR
−→ ∧odd/∧GL

d
−→ ∧BGL

deR
−→ Heven(C)

are exact.

Proof : Exactness of the first follows from diagram chasing, and that of the second from the
de Rham Theorem. �

In the decomposition below we assume that D is a codimension zero or one submanifold with collar
neighborhoods in each of A and B. Thus a smooth form on D can be extended to a smooth form
on either A or B.

Theorem 3.9 (Mayer-Vietoris):

Let A,B ⊆ X with A∩B = D and A∪B = X. If µA ∈ K̂(A) and µB ∈ K̂(B) with µA|D = µB |D,
then there exists µ ∈ K̂(X) with µ|A = µA and µ|B = µB.

Proof : Following the diagram in Proposition 3.7, since δ(µA) |D = δ(µB) |D, the Mayer-Vietoris
property for K produces V − [n] ∈ K(X) with (V − [n]) |A = δ(µA) and (V − [n]) |B = δ(µB).
Choose µ̄ ∈ K̂(X) with δ(µ̄) = V − [n].

Now, δ(µ̄ |A) = δ(µ̄) |A = δ(µA), and similarly for B. Thus, by the diagram

µ̄ |A = µA + i({αA})
∗)

µ̄ |B = µB + i({αB})
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where αA, αB ∈ ∧odd(A), ∧odd(B) and {αA}, {αB} represent their equivalence classes mod ∧GL(A),
∧GL(B).

By the above,

i({αA |D})− i({αB |D}) = i({αA}) |D− i({αB}) |D = (µ̄ |A) |D− (µ̄ |B) |D−µA |D+µB |D.

The first pair vanishes since each term is µ̄ |D, and the second pair vanishes by hypothesis. Since
i is an injection,

αA |D = αB |D + w

where w ∈ ∧GL(D).

Case I: w = dρ

Extend ρ to all of A, and set α̃A = αA + dρ. Thus {α̃A} = {αA}, and α̃A |D = αB |D. The latter
equation implies there is a unique α ∈ ∧odd(X) with α |A = α̃A and α |B = α̃B . Thus by ∗)

µ̄ |A = µA + i({α}) |A

µ̄ |B = µB + i({α}) |B

which implies that µ = µ̄− i({α}) satisfies the conditions of the theorem.

Case II: w = g∗(Θ) + dρ, where g : D → GL, and g∗(Θ) is not exact.

Using the clutching construction, we may construct a vector bundle V over X with the properties
that V |A and V |B are each trivialized by cross-sections {EA

i } and {EB
i }, and

∗∗) EB
j |D =

∑

i

gijE
A
i |D.

Choose a connection, ∇′, on V , set V = [V, {∇′}] and µ′ = V − [dim(V)] ∈ K̂(X).

By construction, δ(µ′ |A) = 0 = δ(µ′ |B), and thus

µ′ |A = i({α′
A})

µ′ |B = i({α′
B})

where α′
A, α

′
B ∈ ∧odd(A), ∧odd(B) and {α′

A}, {α′
B} represent their equivalence classes modulo

∧GL(A), ∧GL(B).

Let ∇AF and ∇BF be the flat connections on V |A and V |B defined by making {EA
i }, {EB

i }
parallel. By the definition of i, and working mod exact, we may take

α′
A = CS (∇AF ,∇′ |A)

α′
B = CS (∇BF ,∇′ |B).
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Now, continuing to work mod exact,

α′
A |D−α′

B |D = CS (∇AF |D,∇′ |D)−CS (∇BF |D,∇′ |D) = CS (∇AF |D,∇BF |D) = g∗(Θ)

by ∗∗) and the argument of Lemma 2.3.

Thus, by taking ¯̄µ = µ̄− µ′ and referring to ∗) we see

¯̄µ |A = µA + i({αA − α′
A})

¯̄µ |B = µB + i({αB − α′
B})

and

(αA − α′
A) |D = (αB − α′

B) |D + exact.

The problem is now reduced to Case I. �

Corollary 3.10: ker(ch) also satisfies the Mayer-Vietoris property.

Proof : In the theorem above, if ch(µA) = 0 = ch(µB), then ch(µ) |A = 0 = ch(µ) |B. Since
ch(µ) is a differential form, this implies ch(µ) = 0. �

Proposition 3.11: ker(ch) is a homotopy functor.

Proof : Any element of ker(ch) is of the form V − [dim(V)], where ch(V) = dim(V). By 1.9) the
pull backs of V under two smoothly homotopic C∞ maps would be isomorphic, and so of course
would pull backs of [dim(V)]. �

§4. ker(ch) has classifying space the homotopy fibre of

BGL
ch
−→ Π∞

n=1K(C, 2n)

We begin by introducing a relative group denoted πn(BGL, ker(ch)) related to the characterization
of homotopy fibers discussed in Appendix A. This group will consist of equivalence classes of
stable complex vector bundles with C-linear connections over the n-disk Dn so that the Chern-Weil
form vanishes on ∂Dn. Two of these (E, ξ) and (E′, ξ′) are equivalent if for some stable bundle

isomorphism over Dn, E
p

−→ E′ the CS form CS (ξ, p∗ξ′) which is closed on ∂Dn is already exact
on ∂Dn. We can add equivalence classes by direct sum, and these form a group using Theorem
1.15 applied to pairs, denoted πn(BGL, ker(ch)).
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Proposition 4.1:

πn(BGL, ker(ch)) =

{
0 n odd
C n even

with the isomorphism given by the class in the cohomology of the boundary of the Chern-Simons
difference form with the flat connection.

Proof : Since Dn is contractible, bundles over Dn are trivial, the bundle isomorphism E
p

−→ E′

exists and is unique up to homotopy. The CS form over ∂Dn CS (ξ, p∗ξ′) is odd and therefore exact
for n odd. Thus πn(BGL, ker(ch)) = 0 for n odd.

For n even, the CS form CS (ξ, p∗ξ′) is closed and defines an element inHn−1(∂Dn, C) ≃ Hn(D,∂Dn;C).
(E, ξ) and (E′) are equivalent iff this class is zero. All classes occur in this by Proposition 2.6 applied
to the boundary of the n-disk. This proves Proposition 4.1. �

Proposition 4.2: The functor ker(ch) is naturally equivalent on pointed compact manifolds
with corners to the based homotopy classes of maps into some classifying space GL(C/Z).

Proof : ker(ch) of a point is zero. ker(ch) is a homotopy functor satisfying Mayer-Vietoris by
Corollary 3.10. ker(ch) also sends finite disjoint unions to finite products. It follows from Brown’s
theorem [10] that ker(ch) on compact manifolds with corners has a classifying space which we
denote GL(C/Z).

�

Proposition 4.3: GL(C/Z) is homotopy equivalent to the homotopy fibre of the Chern character
map

BGL
ch
−→ Π∞

n=1K(C, 2n).

Proof : The map ker(ch)
δ

−→ K̃(Z) implies a map GL(C/Z)
δ

−→ BGL where K̃(Z) is the kernel

of the restriction to the base point which is classified by maps into BGL.

The composition GL(C/Z)
δ

−→ BGL
ch
−→ Π∞

n=1K(C, 2n) is null homotopic from the definition of
ker(ch) as representing structured bundles with Chern character form identically zero. In fact we
may consider that we are provided with a preferred homotopy class of null homotopies for this
composition ch ◦ δ.

Using this null homotopy gives a map (BGL)∪ coneGL(C/Z) −→ Π∞
n=1K(C, 2n) which then gives

a map

πn(BGL,GL(C/Z))
CH
−→ πn(Π∞

k=1K(C, 2k)).

In Proposition 4.1 and the paragraph before we have interpreted πn(BGL,GL(C/Z)) geometrically
as the group πn(BGL, ker(ch)) and shown CH is an isomorphism.
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By Appendix A, this means GL(C/Z)
δ

−→ BGL is homotopy equivalent to the homotopy fibre of

BGL
ch
−→ Π∞

n=1K(C, 2n). �

Thus we have

Theorem 4.4: ker(ch) is naturally equivalent to Kodd(C/Z) = complex K-theory with coeffi-
cients in C/Z.

Proof : This will follow from the definition of Kodd(C/Z) and the above. It is correct to define
Kodd(C/Z) as classified by the homotopy fibre of the map of classifying spaces corresponding to
the map of reduced theories (the kernel of restrictions to the base points)

K̃(Z)
⊗C
−→ K̃(Z) ⊗Z C ≡ K̃(C)

i.e.

BGL
ch
−→ Π∞

n=1K(C, 2n)

where ch is the composition of ⊗C with the Chern equivalence of K̃(C) and Π∞
n=1H

2n(, C).

For then the long exact sequence of the fibration

homotopy fibre → BGL→ Π∞
n=1K(C, 2n)

becomes

Kodd(C) → KoddC/Z → Keven(Z) → Keven(C)

or after applying the Chern character equivalence over C

Hodd(C) → KoddC/Z → Keven(Z) → Heven(C). �

We gather all of this together to arrive at the following result.
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Corollary: We have the diagram with exact diagonals and exact upper and lower boundaries:

0 0

�
��� @

@@R

∧odd/∧GL - ∧BGL
d

@
@@R
deR i

�
��� @

@@R
ch deR

�
���

Hodd(C) K̂ Heven(C)

reduction mod Z

�
��� @

@@R
j δ

�
��� @

@@R
c

K(C/Z) - K(Z)
Bockstein

@
@@R �

���

0 0

Proof : The natural equivalence between ker(ch) and K(C/Z) respects the Bockstein sequence
because the construction in Appendix A relates the long exact homotopy sequence of the pair (total
space, fibre) and the long exact sequence of homotopy groups of a fibration. �

§5. Hermitian Vector Bundles

In all that preceded, the the basic objects were complex vector bundles with connection. The entire
approach immediately applies to Hermitian bundles with inner product preserving connection. The
same definition of equivalence goes through and gives rise to a Hermitian version of Struct. Analogs
of all results remain true, with proofs following identical lines.

Letting K̂R = K (Hermitian Struct), we obtain the following commutative diagram,
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0 0

�
��� @

@@R

∧odd
∧U

- ∧BU
d

@
@@R
deR i

�
��� @

@@R
ch deR

�
���

Hodd(R) K̂R Heven(R)

reduction mod Z

�
��� @

@@R
j δ

�
��� @

@@R
ch

K(R/Z) - K(Z)
Bockstein

@
@@R �

���

0 0

where ∧U and ∧BU are real valued forms, defined analogously to ∧GL and ∧BGL.

Corollary 5.1:

For any bundle over a closed Riemannian manifold after stabilizing, there is a unitary connection
on the bundle whose Chern-Weil form is the harmonic representative of the Chern character of
the bundle. Moreover, when the odd Betti numbers vanish, this structured bundle is unique up to
adding factors with trivial holonomy.

Appendix A

Recall in the homotopy theory of spaces homotopy equivalent to CW complexes a map X → Y is
homotopy equivalent to the projection map of a Serre fibration. To see this let us assume X and

Y are connected. First replace X
p
→ Y by X

p̃
→ Ỹ where p̃ is an inclusion by replacing Y by (the

mapping cylinder of p) = X × I ∪∼ Y where X × 1 is collapsed by p onto its image in Y .

Then replace X by X̃ where X̃ is all the paths in Ỹ that start in X. Then X̃ maps into Ỹ (continue
to call it p̃) with the Serre path lifting property by evaluating a path at its endpoint in Ỹ . Clearly,
Ỹ ∼ Y , X̃ ∼ X, and p̃ ∼ p.

The fibre F → X of X
p
→ Y is defined up to homotopy to be the inclusion into X̃ of the paths in

Ỹ starting in X and ending at a specific point y ∈ Y (or Ỹ ).

Question: What properties characterize the homotopy fibre F
i
→ X of a map X

p
→ Y ?
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Proposition: Suppose we have a map F ′ i′
−→ X and further suppose the composition F ′ i′

→ X
p
→ Y

is provided with a null homotopy so that the induced map of homotopy sets

πi(X,F
′) → πi(Y,base point)

are bijections i = 1, 2, .... Then F ′ i′
→ X is homotopy equivalent to the homotopy fibre F → X of

X
p

−→ Y .

Proof : In this proof we assume X and Y are connected and p is onto π1. Thus F is connected
and we assume F ′ is also connected. By the path lifting property of Serre fibrations, the null

homotopy of the composition F ′ i
→ X

p
→ Y defines a canonical homotopy class of maps F ′ → F so

that

F ′ i′
→ X

p
→ Y

↓ || ||

F
i
→ X

p
→ Y

is homotopy commutative.

Now we look at the exact sequence of homotopy groups and sets

· · · → π2X → π2(X,F
′) → π1F

′ → π1X → π1(X,F
′) → π0F

′ ∼= pt
|| ↓ ↓ || ↓ ∼=↓

· · · → π2X → π2(X,F ) → π1F → π1X → π1(X,F ) → π0F ∼= pt

In a fibration the Serre path lifting implies the homotopy sets πi(X,F ) are isomorphic to πi(Y,base point)
and thus become groups. By the above commutative diagram the maps πi(X,F

′) → πi(X,F ) are
bijections. Thus the proposition follows from the 5-lemma. �
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