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Abstract
Cromov’s homology class of J-holomorphic curves is shown to satisfy at the
chain level the quantum master equation Ae® = 0 in a background described by
algebraic topology and transversality. This provides a mathematical interpreta-
tion of Witten’s discovery of the corresponding Gromov homology periods as the
correlations of a quantum field theory. The basic idea is due to Zwiebach.

1 Short Introduction

Associated to any oriented smooth target manifold M of even dimension d there is a
modular operad structure (Cy;, Si;) on one version and a related BV algebra stracture
1((4,{, }) on another version of an equivariant singular chain complex associated to the
smooth mapping spaces {3 — M} of the T .model with target M. These structures
are in the unbounded sense Section 3. Here % runs over diffeomorphism types of
closed oriented comnected surfaces of genus g with n marked points. After an even
shift of gradings by (d —6)(1 — g) +2n + c(8), BeHyM, c linear and even, the degrees
of the chain complex 8 operator and transversal glueing operations Cij, Sij, 5, A\,
and {,} are all equal to —1. A solution S in degree zero of the quantum master
equation or AS +1/2{5,5} = 01in the BV algebra, defines multilinear pairings on
the cohomology of a dual cochain complex. This provides a mathematical definition of
physical correlations associated to values of the Feynman path integral with insertions
< f e’y pa...tp, >. In this case the multilinear pairings, as opposed to just linear
pairings, are defined because the BV operator A is also a coderivation for a natural
coalgebra structure.

When M is almost complex the dimension shift (d—6)(1— g)+2n+2¢;(B) gives the
formal real dimension of that piece of the moduli space corresponding to J-holomorphie
curves of genus ¢ and n marked points in the homology class of 3 in HaM.

1UUsed by Batalin Vilkovisky [17] in an algebraic quantization scheme for classical field theories
with constraints. In the & model the defining equations of the target M could be considered to be
constraints. A BV algebra is a graded commutative algebra with an operator A of degree —1 so that
A -A = 0 and the deviation of A from being a derivation, {,}, is itself a derivation in each variable.
It follows {,} is a Lie bracket of degree -1 and A is a derivation of {, }.
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When M is closed symplectic the compactified by energy and ¥ complex struc-
ture cut off moduli spaces of perturbed J-holomorphic curves regarded as chains with
boundary yield a degree zero solution of the quantum master equation in the BV al-
gebra using the dual pictures of Gromov [1] and Sen-Zwiebach [2]. The associated
multilinear pairings determine Gromov-Witten invariants.

The transversality and parametrized surgery defining the unbounded structure
maps are just like those in String Topology [4]. Underlying both cases, here and
[3], is the structure of an unbounded modular operad with A and {,} added in. See
the longer introduction below for the definition of modular operad and more detailed
descriptions.

The discussion here for general M may be viewed as a chain level or off shell
background for the closed string A-model or Gromov Witten theory, defined when the
target M is closed and symplectic, but which may be formulated more generally in
terms of the quantum master equation of the BV algebra.

Whereas the above discussion uses only closed surfaces ¥ with finite subsets I of
interior marked points, there is also a construction for surfaces with boundary mapping
to M where pieces of the boundary between marked boundary points could be required
to land in various submanifolds of M. Using parametrized interior and J connected
sum one obtains an (unbounded) generalized modular operad structure which combines
into one package the higher genus version of string topology [3] mixed together with
backgrounds for various discussions of symplectic topology. The latter beyond what is
in the present paper is being developed and will appear elsewhere [12],{15],{16].

2 Longer Introduction

A singular chain complex of the smooth mapping spaces ». — M of closed oriented
surfaces X into a target manifold A/ of dimension d even taken altogether as > varies
and equivariantly with respect to diffeomorphism groups of the ¥’s (Subsection 3.1 } has
an algebraic structure called unbounded modular operad. This means [7] there are non
negative graded chain complexes (C(I), ) with an additional direct sum decomposition
over the genus C'(I}) = @),2,C(g,I) functorially attached to finite sets I, J, ... with
unbounded chain maps

che oW L5 o(rug—1{i, i)

with sef, jeJ and unbounded chain maps C(I) 5, C(I — {4,7}) with {4,j} C I. C};
is a parametrized connected sum at ¢ and j of different surfaces along the locus where
the map transversally identifies ¢ and j. S;; is a parametrized self connected sum
at 7 and j along the locus where the map transversally identifies ¢ and j. These
structure maps act on bidegrees by (¢1,k) ® (g2,0) — (g1 + g2,k +1—d + 1) and
(q,k) > (g + 1,k — d+1) where d =dim M, g = genus X, and k,! are the geometric
dimensions of the equivariant chains. The structure maps satisfy the relations that
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any compositions are associative and anti commute, (Subsection 3.3). The structure
maps Cj; and S;; are unbounded in the sense they are only defined on dense core
domains which are subcomplexes of ®,C(I,). These subcomplexes satisfy inclusion
relations and have isomorphic homology to the entire complexes, Subsection 3.2. These
unbounded (or partial) operations are sufficient for our homological or derived category
purposes because there are functorial quasiisomorphic completion constructions (in
two senses, see |13] motivated by [8]). The core domains are defined by transversality
conditions and the structure maps are defined by parametrized surgery both analogous
to String Topology [4]. The geometric operations Cj; and S;; for d odd will not be
discussed further here.

There is a further direct sum decomposition of C'(g,I) = ®zC(3,9,1) where §
ranges over all elements in HoM which may be represented by maps of a genus g
surface into M.

Theorem 1 When d is even, the chain complezes C(I) = @&,85C(g,5,1) form a
modular operad (in the unbounded sense aebove). After an even grading shift down by
®,Ppl(d — 6)(1 — g) + 2n + c(B)] where ¢ is linear in 3 and even, all the operations
d, Cy;, and S;; have degree —1.

Now we add more structure to the modular operad. We define {, } and § (Subsec-
tion 3.4) by the compositions

c@) ® c®) 2" o) & c({sh) Y C®)

and

c) * o4, 5} 25 o)

by adding marked points via operators M; and M,. An anomaly appears in the defini-
tion of § which is resolved by reducing C(@) somewhat. (See Remark 3.10).(Similarly
for I #0).

Theorem 2 Now let V be the difference 6 — 0. When d is even and c s even,
(C(0),{,},V) is defined and is an unbounded differential Lie algebra of degree —1.
(See Subsection 3.4)

Remark 2.1. (C,V,{}) is a Lie algebra of degree —1 means [a,b] = (—1)1{a,d} is
the bracket of a differential Lie algebra (of degree zero) on the graded space C shifted
by one. ' |

We can consider the Maurer Cartan equation V.S + 1/2{5,5} = 0 where S has
degree zero. A solution here implies a solution to the equation A(e®) = 0 in the
graded symmetric algebra AC generated by C. Here A is the (2nd order) derivation
on AC obtained by adding together both V and {,} extended to be coderivations of
AC. The equation A - A = 0 summarizes the differential Lie algebra properties of
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(C,{},V). The 2nd order nature and nilpotence of A comes by viewing A as the
extension of V plus {,} to all disconnected surfaces by summing over the possible
glueings (7,7). Then since a A b can be viewed in terms of disjoint union of surfaces
and maps over the product of the bases for a and for b,

AlaAby = (Aa) Ab+ (=D)a A Ab + {a,b},

where {a, b} denotes the extension of {, } on C' = C(9) to all of AC to a binary operation
which is a graded derivation in each variable. The equation for S in terms of A is
called the quantum master equation and can be written either as AS+1/2{S, S} =0
or Ae® = 0. We have, C' = C({)

Theorem 3 When d is even and c(3) is even, (AC, A\) is defined and is an unbounded
Batalin-Vilkovisky algebra attached to the spaces of maps of surfaces into M modulo
diffeomorphisms of the source underlying the ¥ model in physics. ® A is a 2nd order
derivation and a coderwalion. Given o solution S to the gquantum masier equalion
the analogues of Feynman path integral correlations are the periods of €5 relative to
products of cohomology classes ¢; of the dual cochain complex to (AC, ) denoted

< [ S 10900 >

(See Subsection 3.4 for the proof).

Application As mentioned above, the even integer (d — 6)(1 — g) + 2n + ¢(8)
used to shift the chain complexes C'(g, I} above when ¢(5) = 2¢, () yields the formal
dimension of the moduli space of J-holomorphic maps of 3 into an almost complex
manifold (M, J) representing the homology class 3 in Hy(M), n = cardinality of 1.

If the target manifold M is a closed symplectic manifold with 2-form w, and J is
a compatible almost complex structure {w(z, Jy) is symmetric and positive definite),

Gromov studied the J-holomorphic mappings X i> M of Riemann surfaces into M
and analyzed the non-compactness of the space of these in the given homology class 2
in HoM. He found exactly the familiar non compactness in the complex structure of
Y. corresponding to pinching curves, together with Freed-Uhlenbeck bubbling off of 2-
spheres in the map into M. Bubbling off or pinching off an essential separating curve in
the complex structure of 3 will be seen to be inverse to an operation like C;;. Similarly,
pinching off a nonseparating curve is inverse to an operation like S;;. Thus if one
introduces cut off inequalities to prevent these pinching and bubbling phenomenon from
happening (Section 4) one obtains for each (C(43, g) a compact family of J-holomorphic
curves. Using () coefficients and perturbing the equation the (relative) cycle is defined

*In the physics discussions the ordinary maps of surfaces ¥ into the target M are augmented
by (contractible) odd components. A (formal) symplectic manifold of odd degrees appears where
functions define (formally)} an odd version of Poisson algebra with bracket derived from a BV operator
[16]. The functions are closely related to differential forms on the original mapping spaces. New
variables are added to form the equivariant forms relative to diffeomorphisms of 3, the BV algebra
structure extends formally and a solution of the quantum master equation is sought where the leading
term is a classical action in the original superfields. The structure is formal.
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9], [10] and has a boundary essentially described by a sum over the operations {, } and
§. In this way (after shifting each C'(3, ¢) down by (d—6)(1 — g) + 2¢1(3) we obtain a
solution S to the quantum master equation of degree zero, where S assigns to each f
and each genus of ¥ the oriented Gromov moduli space compactified by cut off, plus
small collars.

Theorem 4 (Gromou, Eliashberg, Fukaya, Hofer, Kontsevich, Li, MacDuff, Ono,
Ruan, Salomon, Sullivan, Tian,...,Zwiebach) Let k = 0,1,2,.... For a closed symplec-
tic manifold M the set of all cut off oriented moduli spaces of perturbed J-holomorphic
curves with a fired number k of nodes define (J-chains which provide a degree zero solu-
tion to the quantum master equation 85 = 65+1/2{S5, S} in an unbounded BV algebra
attached to the S-model of mapping spaces with target M. Equivalently, /e’ = 0.

(See Section 4 for the proof and a more specific statement.)

Note The...in the theorem refers to anyone omitted who has contributed to the
formidable task of making the picture of the Gromov chain or homology class into
rigorous mathematics.

Writing the quantum master equation in Zwiebach’s form [2], which directly inspired
this paper,

a8 = 65 + %{S, S}, (Zwiebach’s form)

we see the geometry of Gromov’s virtual cycle where the first term on the right hand side
corresponds to approaching the & (of the left hand side) by pinching a non separating
curve while the 2nd term on the right hand side corresponds to approaching the 0 (of
the left hand side) by either pinching off an essential separating curve in the complex
structure or by bubbling off a two sphere in the map.

The invariants of S, namely the periods of the total class of ¢ in (AC, A) relative
to the cohomology of the dual cochain complex determine Gromov-Witten invariants.

3 The modular operad and BV algebra structure

3.1 The equivariant chain complex

We first define the equivariant chain complexes C'(I) for the mapping spaces, & — M.
Let I be a finite set and for each oriented connected pseudo manifold ¢ (see Remark 3.1)
consider bundles n over ¢ with fibre the pair (X,7) where ¥ is a closed connected
oriented surface of genus g and [ C 3 is an embedding of [ into ¥. We also need
piecewise smooth maps f : 7 — M of the total space of n into the target manifold
M. Two such pairs (5, fland {n/, f) are equivalent iff there is an oriented bundle
isomorphism b which is an oriented piecewise diffeomorphism between ¢ and o', sends
I to I on each fibre by the identity, and relates f to f', namely f'o = f. We take
the free module C(g,I) over the coefficient ring () on these equivalence classes for o
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connected. We add the relation (o, orientation) equals - (o,0pposite orientation). We
also assign to the disjoint union of pseudomanifolds, bundles, maps, etc the sum.

Remark 3.1. We work in the piecewise differentiable category of spaces built by glue-
ing together compact manifolds with corners (eg. curvilinear polyhedra) and piecewise
smooth maps. A pseudomanifold of dimension & by definition is an object in this cat-
egory which admits such a decomposition with each (k — 1) dimensional part lying in
the face of one or two k-dimensional pieces. The 9 is the (k—1) dimensional part made
of pieces with only one k& dimensional face. (W

Remark 3.2. A self equivalence of (o, 7, f) which is orientation reversing on o forces
that generater to be zero. ]

The sum of the oriented geometric boundary components defines the usual boundary
operator d. The direct sum of all these chain complexes for the equivalence relation
above requiring the identity map on I over all genera ¢ = 0, 1,2, .. is the chain complex
C(I) over the ground ring ) functorally attached to the finite set 1.

3.2 Core domains of unbounded structures

Now we define core domains D(I}) C C(I) and D(N, L, ... 1) C @,_,C(l,) by
transversality. In each case the constraint is imposed on the connected basis elements
and then the core domain is closed under (}-linear combinations. For one generator
(n, f) the constraint is that the map ¢ — M7 which evaluates f at the subset I of
the fibre is in general position relative to all the sub diagonals of M’. For a collection
(Tas fa, ) the constraint is that the product evaluation map is in general position rel-
ative to all the sub diagonals of the big product, and this is also true for the restriction
to all the natural product strata in the cartesian product of the o,.

Proposition 3.3. The core domains D(I1, I», ..., I,,) are subcompleres and satisfy the
two properties (compare [8]):

i) for each partition 31, B, ..., Br of {1,2, ..., n} such that B; = {fi, ji+1,-.., Ji+m;}
15 @ segment

D(IbIZv e Iﬂ) < D({Iﬁ}ﬁeﬁl) Q- & D({Iﬁ}ﬁeﬁk) - ® C(la).

it) each inclusion in i) induces an isomorphism on homology.

Proof. They are subcomplexes because of the definition of general position. The inclu-
gions of 1) exist because more constraints are added by the definitions passing from right
to left. To see that any such inclusion is onto in homology observe that any cycle in
the range may be perturbed slightly to satisfy the constraints or the further constraints
in the inclusions of #i). Injectivity follows because a homology in the range between
cycles in general position is also in general position near its boundary and by a small
deformation relative to its boundary may be put in general position everywhere. 1
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Remark 3.4. The set of generators which are in general position is dense for a natural
topology. The "denseness” of the core domain motivates the adjective ” unbounded” in
describing these structures. ]

3.3 The operations of the modular operad

Now we define the operations of the unbounded modular operad. First

oo ) EoIur -4

On the core domain subcomplex (Subsection 3.2) D(I,J) ¢ C(I) ® C(J) for each
generator oy ® oy in D(I,J) the preimage of the diagonal by (f(i), f(j))(called the
locus (4, 7)) has a normal bundle by transversality. Thus the normal bundle and then
the locus may be oriented when M is oriented to define a relative cycle whose 9 lies in
J{or x 03) in a manner compatible with the natural pieces do; x o5 and or x o;. Note
this orientation of the normal bundle is independent of the order of ¢+ and j because d
1S even.

Along the locus (%, j) we have a well defined mapping of the one point union of
the fibre over o; and the fibre over oy into M. Now for each surface we replace the
marked point by the set of directions at that point and glue these together along the
boundary by a rigid map. The ambiguity in such a map is a circle parametrizing the
set of orientation reversing isometries between these two boundaries (after choosing
metrics on the boundaries). We can map any of the connected sums to the one point
union by collapsing the glued up circles to the one common point.

Combining all this we get a fibration of connected sum surfaces over a circle bundle
(of all rigid glueings) over the (¢, j) locus and a canonical map into M of the total space
of the surface bundle. Up to our equivalence the result is a well defined map into M.
We combine the natural orientation of the circle (Remark 3} with the orientation of
the locus (1, ) to orient the circle bundle. This is the output of the operation between
two elements C;; which commutes with the d operator.

The self connected sum construction of C([f) %o (I—{i,j}) on the domain D(I) C
C{I) is done essentially the same as in the case of Cj;.

Remark 3.5. (Orientation of the circle) The surfaces ¥ are oriented. Thus each
small circle around a marked point is oriented. In the glueing an orientation reversing
isometry between boundary circles is used so that the glued up surfaces has a natural
orientation. There is a circle of such orientation reversing isometries and this circle
needs to be given an orientation.

The family of all the glued up surfaces is a standard Dehn twist family over the
circle of glueings. We orient that base circle by declaring the monodromy around that
direction to be a right Dehn twist. ]



Proposition 3.6. When d is even Sy; only depends on the unordered pair {i,7}. Also
Ci; is graded symmetric. The glueing operations have odd degree, and compositions are
associative and anticommute.

Proof. 'This follows from the construction and Remark 3.5. : |

Now let us shift down the grading in the (g, 8) component of C'(I), n= cardinality
of I, by (d — 6)(1 — g) -+ 2n - ¢(8) where ¢ is linear in §. In the new grading we have

Proposition 3.7. When d is even and c(f) is even, the dimension shift is even and
d,Cyj and Sy;; each hos degree -1.

Proof. We check the degrees. Before Cy; sent (g1, 11, k1) ® (g2, 1o, k2) — (g1 + g0, 11 +
Ny — 2,k + ke —d + 1) and Sy sent (g,m,k) — (9 +1,n—2,k —d +1). Using
c(B1 + B2) = c(B1) + (=) the degree of Cj; in the new grading is thus

[(d—6)(1—g1)+2n1+(d—6) (1—g2)+2na]+ —d+1]-[(d—6) (1—g1 —g2) +2(n1 +ny—2)] = —1

by direct calculation.
Similarly, the degree of S;; in the new grading is [(d — 6)(1 — g) + 2n] + [—d+ 1] —
[(d—6)(1—g—1)+2(n—2)] = —1. |

Remark 3.8. The number (d — 6)(1 — g) + 2n+ ¢() used to shift the grading in the
above proposition when c(3) = 2¢,(8) gives the formal (real) dimension of the moduli
space of J-holomorphic curves of genus g with n marked points in the homology class 3
of any almost complex manifold (M, J) of real dimension d. In other words the formal
complex dimension is {(d¢ — 3) (1 — g) +n + 13 where dg is the complex dimension of
(M, J). Thus if ¢; = 0 (eg. Calabi Yau) dg = 3 (or d = 6) is the critical dimension
when there is a discrete number of robust J-holomorphic curves of every genus. O

3.4 The operations of the BV algebra

We define § and {, } on the chain complex C(@)of Subsection 3.1 and on the enlargement

NC(B) which includes maps of surfaces with nodes. There is a map C(0) Mo+
which adds a marked point in all possible positions to the surfaces in the family defining
an element in C(#) . M; has degree 12 because the base of M(z) in C({x}) is the
total space of z in C(0). The bracket {, } in C(D) is the composition

c®) e C® "2 el @ C({5}) =5 ()

where ¢ is the marked point in the first factor and j on the second. This bracket has
degree 4 —d ++1 = —d + 5 and is analogous to the generalized Goldman bracket or
string bracket of [4] of degree —d + 2.



We will define § analogously as the composition C(B) *2 ({4, j}) Mo (@) where
My replaces a family of surfaces with no marked points with the same family with a
pair of distinguished distinct points in all possible positions. The base of My(z) is the
total space of the fibrewise 2 point configuration space over the base of z. There is
a compactness issue which is discussed in Remark 3.10. Since M, has degree 4 the
composition & also has degree 4 —d +1 = —d + 5.

Now form the graded symmetric algebra coalgebra generated by C(0), AC(#) and
extend —@, 4, and {, } to coderivations of AC(f). The sum of these is called AA. Extend
{,} to a bracket on AC(@) so that Teibniz holds and denote it {, }.

Theorem 3 AC(0) with its multiplication and the operator X\ is a BV algebra with
derwed Lie bracket {,} of odd degree. Thus & - /A =0 and the deviation of /N from
being a derivation is {,}. Furthermore /\ 1s a coderivation of the natural coalgebra
structure on AC(D).

Proof. A point on the locus where each of the two pairs is identified in M contributes
to two points (by definition) in the chain representing the output of A’ - A’. Here
A'is A take away -J. Since the circles of glueings for each pair is taken in opposite
orders for the two points the orientations at the two points are opposite. Thus the
involution interchanging the two points is orientation reversing and this output chain
is equivalent to zero by Remark 3.2. The rest follows directly from the definitions, the
glueing picture, and Remark 3.10 which shows @ and A commute. Thus A - A =0
which is equivalent as well to the statement of Theorem 2 of Section 2. n

Remark 3.9. We may extend all the above to the chain complex NC() correspond-
ing to maps of connected nodal surfaces into M- namely disconnected surfaces glued
together at distinct pairs of points to make the entire collection connected. These are
called garlands in Chernov-Rudyak [14] which studied a factor of {, }. Now there is
also a compactness issue for {, }, when a point of a glueing pair we add comes close to
a nodal point. This also concerns § as well as the issue for ¢ of the two points of the
glueing pair approaching each other in the surface. Again see Remark 3.10.

The same argument gives Theorem 3 for NC(0). n

Remark 3.10. We treat the non compactness of the 2 point configuration space ap-
pearing in the definition of A by first blowing up the diagonal in the 2 point configu-
ration space of 3 by replacing each point on the diagonal by the circle of directions at
that point.

Then as a pair of points in a fiber ¥ of n approaches [ in the direction of I we
pull out a tiny two sphere with marked points ¢+ and j. More precisely, we form the
connected sum of the two sphere with marked points ¢, 7, & to >I attaching the direction
blow up of k in the two sphere to the direction blow up of [ in X so that the segment on
the two sphere between 4 and j lines up with [’ in 3. We also allow a small bubble to
appear in the map f at [. More precisely we use the original map f of 33 for each pair
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of points in the configuration space outside a small neighborhood of the diagonal, while
on the small neighborhood of the diagonal we alter the map f so that it continuously
incorporates at f(p), p on the diagonal, the map of the two sphere at f(p) from a fixed
family e;;; of maps of the two sphere parametrized by the points of M.

The d-chain of maps e;;;is parametrized by M so that for m € M it maps the
two sphere with labeled points. 7, 7,k near to m so that & goes to m and ¢ and j
are mapped differently except at a finite number of points in M where they coincide
transversally. Then Ms is defined by using these maps of ¥ over the compactified by
blow up configuration space of two points on ¥, namely the original map f over most
of the open part of the configuration space, then pulling out a small bubble near the
diagonal blown up using the bubble d-chain e;;; to guide the process.

For a dense set of generators x, Ma{x) will be in the domain of 5;; because ey is
chosen that way. By construction we have

(OMyi 5y — Mijy0)(z) = Crlesr @ Mi(z)).

Here the notation for M, and M; has been slightly expanded. Now further assume e;;;
is the d-chain which for each point m in the target manifold A% maps a fixed 2-sphere
with 3-marked points {i, 7, %k} to a small segment between the images of ¢ and j near
the point m. Assuming transversality holds, we can calculate,

(98 — 88 (z) = Sy - Cralesjn @ My(z)) = —Cu((Siein) ® M(z)) =0

using § = Sy; - M5y and the anticommutativity of modular operad operations.

The term Sjje;;; is only non zero at the finite set of points of M where for the
corresponding map of S? 7 and j coincide. At such a point it is represented by a Dehn
twist family of labeled torii mapping to the point.

Assuming the construction of e;j;, is done this way we can make 80 — ¢ zero by
passing to the reduced complex where the generators corresponding to Dehn twist torus
families of constant maps are set to zero. Ol

Corollary 3.11. ¢ and 8 commute if the compactification of My = My, via the choice
of ex is done as above and we pass to the reduced complex.

Eractly the same kind of considerations occur in the complezes NC(0) in compact-
ifying M; and M;; to achieve [9,8] = 0 and [0,{,}] = 0.

Proposition 3.12. The bracket operation {,} passes to the reduced complez.

Proof. We have to show {£,2} = 0 for any « in C'(0) and any torus family of constant
maps ¢ which is set to zero in passing to the reduced complex. But M;(t) is already
equivalent to zero because it has an orientation reversing self equivalence. |
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3.5 The guantum master equation and correlations

Now we consider the Maurer Cartan equation or the quantum master equation associ-
ated to (C,V,{,}), the differential Lie algebra of degree —1, where C = C'(#). Let S
denote an object of shifted grading zero with components in possibly infinitely many
of the genus and 3 gradings ¢ = 0,1,2,.... The MC or QM equation is by definition,

1 1
VS + 5,8} =0 or AS + {5, 5} = 0,

which is the same equation since V = A for elements like .S in monomial degree one.
These equations can be checked component wise in the genus and 3 grading.

Recall the complex {AC, A) generated by (C,V,{, }) as in Subsection 3.4.

Proposition 3.13. A solution S to MC or QM equation above implies a solution to
the equation in AC, Ae® = 0, where e is interpreted component wise for the new
monomial grading of AC.

Proof. Since A is 2nd order (Section 2) one computes formally that
Ae® = (AS +1/2{8, S})e".
Thus AS + 1/2{S, S} = 0 implies Ae® = 0, and conversely. [ |

Corollary 3.14. A solution S of the quantum master equation in C implies there
are multi linear functionals on the cohomology of the dual complexr which we wrile

< [ e prpg...ion >.

Proof. Counsider the dual (AC)* of the coalgebra AC with dual differential A*. Now
the dual of a coalgebra (like AC) is an algebra and the dual of a coderivation (like A)
is a derivation. Thus cocycles representing ; can be multiplied in (AC)* to determine
cocycles there. The latter may be evaluated on € yielding < [ e®y;...0n >. [

4 The Gromov Chain of J-holomorphic curves

4.1 Perturbed J-holomorphic curves

We will refer to the formalism of [10] especially chapter 1 section 6 for discussing
the Gromov chain associated to J-holomorphic curves in a symplectic almost com-
plex manifold (M, J,w). Fixing a stable combinatorics and homology data (X, 3) there
1s a set of J-holomorphic curves with this type which is compact if we add the J-
holomorphic curves of all the finitely many stable combinatorial types (¥', 3) obtained
by degenerating. (see Subsection 4.2 and Subsection 4.3 below). This compactness is
the achievement of Gromov to which many have added. See [9], [10] and the intro-
duction and references. This compact set admits a finite stratification into types but
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the dimension and the regularity of the various strata is not necessarily what we want
because the solutions of equation: (complex structure in ¥ so that J (map)=0) may
not be transversal.

The idea is to locally perturb the equation near the compact set and consider the
transversal zeros which will be in some neighborhood of the compact set. Because of
the presence of finite automorphism groups orbifolds, orbibundles, and multisections
must be used, see [10] section 6, chapter 1, to construct the Gromov chain with @
coefficients. It is a tour de force challenge and achievement. All we need to know here
is that the objects are produced by local perturbations and transversality, and that all
perturbed J-holomorphic curves are included.

4.2 Combinatorics

Let us discuss the combinatorics of (3, 3). By ¥ we mean a finite collection of con-
nected closed oriented surfaces together with nodal data- a finite subset of ¥ (up to
isotopy) with a fixed point free involution so that glueing related points yields a con-
nected "nodal surface”. By § we mean an integral homology class assigned to each
component of 3. Tt is important that the set of homology classes realized by ”per-
turbed J-holomorphic” curves lies in a sharp cone in Hy(M, R). This follows from the
hypothesis that M is a closed symplectic manifold, see [18] which contains a more gen-
eral result. Thus when representations of a realizable class degenerate into components
there are only finitely many possibilities for their homology classes.

4.3 Stable combinatorics and degeneration

The combinatorics is stable if each component with § = 0 has Euler characteristic
strictly less than the number of nodes on that component. Now let us study the stratum
or part of the Gromov chain of (perturbed by #) J-holomorphic curves corresponding
to a certain combinatorics {3, 3) of "nodal” curves and homological position.

This part of the Gromov chain has an open part with the above combinatorics and
a codimension two part where more degeneration takes place. If we impose inequalities
on the complex structure and on the local energy of the maps we can carve out a small
(generically tubular) neighborhood of the codimension two part where degeneracies
happen. The homological boundary of what is left after carving out is essentially a
sum over boundaries of tubes around strata where one degeneration happens. Fix one
of those terms in the boundary of the cut off Gromov chain. Along that stratum one
sees new combinatorics.

One component of the nodal surface we started with has either had a handle pinched
off or been pinched into two components. The homology class 3 in the latter case splits
into two parts and the genus splits into two parts. Zero homology class and zero genus
can occur but the Euler characteristic condition above still holds.
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4.4 'The main result

Now we can present the main result. Let S’ denote the cut off Gromov chain (Sub-
section 4.3) associated to all stable combinatorial types of connected surfaces with k
nodes. So S defines an element in NC (). Set NC(0) = N. We will modify S’ to S by
adding small collars as small corrections in the argument below. Then in (a comple-
tion of) AN, e” can be defined and it may be construed as the corrected cutoff Gromov
chain of perturbed .J-holomorphic curves associated to all stable combinatorial types
of possibly disconnected surfaces with each component having exactly £ nodes.

Theorem 5 I'n AN,
1
05 — 85 + “2“{8, S}t

I'n other words, Ne® =

Proof. The 0 of the total connected Gromov chains is made out of boundary of tubu-
lar neighborhoods of the strata corresponding to one additional degeneration. These
are approximately described by applying the operation ¢ (if the degeneration doesn’t
disconnect) to the piece of the Gromov chain corresponding to the new combinatorics
obtained by pulling apart the new node and erasing the points. If the degeneration
disconnects, the boundary of the tube is approximately described by applying {, } to
the two pieces obtained by pulling apart the created node and erasing the points.

To replace approximate by exact we add small collars. Note we are assuming
the (n perturbed) J-holomorphic curves satisfy all the transversality required for our
operations to be defined. Thus 1 generic is required.

We find the equation 95 =45 + %{S, S}, or equivalently Ae® = 0,
n

Remark 4.1. We can always add n marked points labelled by I to the above discussion.
Then the argument of Remark 3.10 when discussing M; and Ms must be used again
for the non compactness created by the added point or points approaching I. ([l
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