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Abstract

In the paper we discuss two fairly difficult questions about smooth expanding dynamical
systems on the circle. (i) We characterize the sequences of asymptotic length ratios which occur
for systems with Hglder continuous derivative. The sequence of asymptotic length ratios are
precisely those given by a positive Hélder continuous function s on the Cantor set € of d-adic
integers satisfying a functional equation called the matching condition. The functional equation
for the 2-adic integer Cantor set is

1+ 820 +2) = 5(22(? 5 (1+ 3(;;:)) .

(ii) We calculate the precise maximum level of smoothness possible for a representative of the
system up to diffeomorphism in terms of the functions s and er{z) = (1+s(z})/(1+(s{z + Hh.
For example, in the Lipschitz structure on C determined by s, the maximum smoothness is 1
for 0 < @ < 1 if and only if s is a-Holder continuous. The maximum smoothness is C'** for
1 < a < 2 if and only if cr is o-Hélder. The two boundary cases correspond to smoothness of
class first derivative Lipschitz or first derivative Zygmund, respectively. A curious connection
with Mastow type rigidity is provided by the fact that s must be constant if it is c-Hoélder for
o > 1, and cr must be constant if it 15 c-Hblder for o > 2.
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1 Introduction.

One could say that this paper is about the space A(2) of sequences {ag,a1,aa,- .-} of positive real
numbers which satisfy

(i) an/am is exponentially near 1 if n —m is divisible by a high power of two, and

(i) as,aa,ds,- - is constructed from ag, @1, a3, a5, --- by the recursion
a 1 :
I+ asnp2 = i (1 + '—") . (1)
an+1 don

The only explicit element in A(2) that we know is {1,1,1,...}.

However, it will follow from the first part of this paper that A(2) is a dense subset of a separable -

infinite dimensional complex Banach manifold of [23], because we will show that A(2) is canonically
isomorphic to

A) the set of all possible affine structures on the leaves of the dyadic solenoid 5{2) which are
transversally Holder continuous and invariant by the natural dynamics E(2): 8(2) = 5(2). (The
solenoid and its dynamics are defined below.) ‘

B) the set of C7 structures oOn the circle S invariant by the “Joubling the angle” dynamics
E@2):5=5r>1L

C) the set of positive Hilder continuous functions s on the Cantor set C of 2-adic integers
satisfying

The connection between the sequences of A(2) and C) is direct. One merely restricts s in C) to
the dense subset of natural numbers in the Cantor set of 2-adic integers.

The connection between the sequences of A{2) and A) is also direct. One dense leaf in the solenoid
is provided with a binary grid and is expanded by the dynamics in a manner combinatorially like
r - 27 acting on {n/2*} Creals. The sequence {ao, a1, a2, -} is used to define ratios of consecutive
lengths between integral points of the grid. The functional equation makes the doubling map look
affine between the integral grid and its double. The 2-adic continuity allows the complete affine
strucsure induced by pullback to impress itself on the other leaves of the solenoid 5(2).

The passage from A) to B) is also direct. The solenoid §(2) with its dynamics is the inverse limit
system associated to the diagram

B2 g E(2 g E(2 s

TEQ®) T EQ) T E(2)

B g E{2 s E(2 S



{1,1,1,...}. The point is that a homeomorphism of R which is locally projective must be affine. In
[5] the possible difference between these 2 cases requires a magical argument.

The fifth line of Table 1 suggests a formal proof of other known rigidity results related to ex-

panding dynamics. If € and its metric were replaced by a 1-dimensional continuum and a metric
i
associated to a Riemannian metric then (zygmund 1% derivative) Teble! (cr is 1-Holder) ‘”2;1“5’

. definiti -
is constant (Y 8o locally projective = affine {(usually).

The completion of the set in C') correspond to (uaa) structures on the circle S (called symmetric
structures in [6]) invariant by the “doubling the angle” dynamics F{2) : § — S so that all branches
of E{2)™™ are (uaa) (see definition in [23]). In [23] is alse studied the case corresponding to analytic
structures on the circle S invariant by the dynamics £E(2) : § —+ § and leaves the €7 case, r > 1, to
be studied in this paper.

This theory is giving rise to a deeper understanding of flexibility and rigidity results for transitive
non linear hyperbolic dynamics, and it is also giving new relations between asymptotic geometry
and Gibbs theory (cf. [13], [15] and [17]).

2 (QlrHdder structures U for the expanding circle map E.

The ezpanding circle map F = E(d) : S — § with degree d > 2 is given by E(z) = z¢ in complex
notation. Let p € & be one of the fixed points of the expanding circle map E. The Markov intervals
of the expanding circle map F are the adjacent closed intervals I, ..., I3 with non empty interior
such that their boundaries are contained in the set {E~1(p}} of preimages of the fixed point p € §
and {3 1 N I is equal to the fixed point p. Let the branch expanding circle map E; : I; — S be
the restriction of the expanding circle map E to the Markov interval I;, for all 0 < ¢ < d. Let the
interval Iy, .4, be E;lo. .0 Egll(S). The n'M.level of the interval partition of the expanding circle
map £ is the set of all closed intervals Iy, o, € 5.

A function A : I — J, where I, J C R, is C1HH8lder §f there is £ > 0 such that the map A is C1**
smooth. A homeomorphism h : I — .J is guasisymmetric if there are constants b > (¢ and ¢ > 1 with
the property that for all x — §;,z,2 4 d2 € I, such that ¢! < d2/8) < ¢, we have

h(z + 82) — h(z) 81 .
Mz —hz—o) 5

log

Definition 1 The ezpanding circle map E : S — S is CYHHOer with respect to a structure U on
the circle S if for every finite cover U’ of U, (i) there is an £ > 0 with the property that for all charts
u: !l —= Randwv:J— R contained in U" and for all intervals K C I such that E(X) ¢ J, the
maps v o B ou"u(K) are C**¢ and their C'*° norms are bounded away from zero and infinity;
(ii) for every chart u : I — R contained in U’ and for every map w4, : { — R, which is an isometry
with respect to the lengths on the circle § ¢ R? determined by the Euclidean norm on R2, the
composition uise ¢ # ™t is a quasisymmetric homeomorphism.

Lemma 1 The expanding circle map £ : S — S is C*HH%%er with respect to a structure U if,
and only if, for every finite cover U’ of U, there are constants 0 < p < 1 and b > 1 with the
property that for all charts © : J — R and v : & — R contained in I/’ and for all adjacent



intervals Iy, o, and I ..oz, at level n of the interval partition stuch that Iy, o, 1y o)..a, C J and
E(lay...an), B(laf . o, )CK we have that

[u(Zay...cin )] i'”(E(Ia;...oz;,))[

[ulfa; ...c0n )|
|u(Ia',_...a'n)| IU(E(IaL..an Dl

Iu(Ia‘l...a;)l < O('un) (3)

b1 <b and |log

Lemma 1 follows from Theorem 3 in Section 6.

Lemma 2 Let FE : S — S be an expanding circle map, C1HH0/der with respect to a structure [,
For every finite cover U’ of U, there is an € > 0, with the property that for all charts w : J = R
and v : ¥ — R contained in U" and for all adjacent intervais I and I', such that I,I' C J,
E(I),E(I'} C K, we have

Lemma 2 follows from the Mean Value Theorem.

3 The solenoid (E,S).

The sequence X = (..., T3, T3, %1,20) 18 an inverse path of the expanding circle map E if E(x,) =
Zn-1, for all n > 1. The topological solenoid S consists of all inverse paths x = {...,23,%2,21,T0) of
the circle expanding map E with the product topology. The topological solencid is a compact set.
The solenoid map E is the bijective map defined by

Ex) = (...70, B(zo)).

The projection map ™ = s : S — S is defined by 7(x) = zo. A fiber over zp € S is the set of all
points x € S such that 7(x) = zp. A fiber is topologically a Cantor set {0,...,d ~ 1}Z>0 A leaf
L = Lz is the set of all points w € & _path connected to the point z € 5. A local leaf £' is a path
connected set. The monodromy map M : § — S is defined such that the local leaf starting on x and
ending on M(x) after being projected by = is an anti-clockwise arc starting on g, going around the
circle once, and ending on the point zp. All leaves £ of the solenoid S are dense, since the orbit of
any point x € S under M is dense on its fiber (see Lemma 5 in Section 4). The topological solenoid

S is a twist product of the circle S with the Cantor set {0,...,d— I}ZZG.

Definition 2 The solenoid (E, S) is transversally Holder continuous affine (thea) if (i) every leaf L
has an affine structure; (ii) the solenoid map F preserves the affine structure on the leaves; and (iii)
the ratio between adjacent leaves determined by their affine structure changes Hélder continuously

along transversals.

We say that (x,y,z) @s a triple, if the points X, ¥y and z are distinct and are contained in
the same leaf £ of §. Let T be the set of all triples (x,y,z). The function r : T — R7 is
invariant by the action of the solenoid map E if and only if, for all triples (x,y,z) € T, we have
r(x,¥,2) = r(E(x), E(y), E(z)). The function r : T — R varies Holder continuously along fibers
if and only if there are constants ¢ > 0 and 0 < p < 1 with the properiy that for all triples
(x,y.,2),(x",y',2") € T such that z, = z,, yn» = ¥, and 2 == 2, we have

flog(r(x,y,2)) —log(r{x', ¥, 2 )| < O™}



Definition 3 A Hélder leaf ratio functiont : T — R is a continuous function, which varies Hélder
continuously along fbers, is invariant by the action of the solenoid map E, and satisfies the following
matching condition: for all triples (x, w,¥),(w,¥y,2) €T,

rix,w,yir(w,y,z)
r(x}y}z) = 1+T'(X w y) "

1(X,y,2)
XN

(X, W,¥)

-
hid

1(W,Y.Z)
P

Figure 1: The matching condition for the leafl ratio function r.

Lemma 3 There is a one-to-one correspondence between (thca). solenoids (E' , 5') and Holder leaf
ratio functions » : T — R*.

Proof: The affine structures on the leaves of the solenoid S determine a function r : T — R*
which varies continuously along leaves and satisfies the matching condition. The converse is also
true. Moreover, (i) the solenoid map S preserves the affine structure on the leaves if and only if the
function r : T — R is invariant by the action of the solenoid map E and (ii) the ratio between
adjacent leaves determined by their affine structure changes Hélder continuously along transversals
if and only if the function r : T — R varies Hdlder continuously along fibers. ]

Lemma 4 Let E : § = § be an expanding circle map C'HH%4deT with respect to a structure [/
Then E : § — S generates a Holder leaf ratio function rg i : T — RT.

Proof: Let U’ be a finite cover of U/. For every triple (x,y,2z) € T and n large enocugh, let
Uy, : Jn — R be a chart contained in 7' such that z,,yn, 2n € Jyy. Define rg p(x,y,2) by

= i Iun(yn) = tn{zn)]
T‘E,U(x! Y, Z) - nl-;n;'o |un(In} - Up (yn)l -

By Lemma 2, rgy : T — R¥ is a leaf ratio function. ]



4 The solenoid function s: C — R™.

Let 2 aid® be a d-adic number. The d-adic numbers

n—1 oo o0
S (@-Dd+> ad  and (e + 1D+ D ad’

= —00 i=n i=ni+41

such that a, +1 < d are d-adic equivalent. The d-adic set {1 is the topological Cantor set {O, cevyd—

l}Z corresponding to all d-adic numbers modulo this d-adic equivalence. The product maep dx :
! =  corresponds naturally to the multiplication by d of the d-adic numbers. The add 1 map
1+ : © - § corresponds naturally to the sum of 1 to the d-adic numbers and the add d map
d+ : t = Q is d compositions of the add 1 map.

Let the map @ : {! — § be the homeomorphism between the d-adic set {2 and the solenoid
S defined as follows. For every d-adic number Y oo a;d’, the point &(F o a;d) is x =
(--.,z1,20) € 8, such that 2; € I,,_, and E%(zo) € Ia_,,,, for all i > 0, where I, arc the
Markov intervals of the expanding circle map E. By construction, the solenoid map E:5585is
topologically conjugate to the product map dx : 1 — Q; and the monodromy map M:5-8is
topologically conjugate to the add d map d+ : Q-0 bythemapo:0—= 5.

Lemma 5 Every orbit of the monodromy map is dense on its fiber.

Proof: Since the add d map d+ : ) = {0 is dense on the image &~ (F) of every fiber F' of the
solenocid .9, the lemma follows.

The set  is the topological Cantor set {0, ...,d— 1}Z<° corresponding to all d-adic pumbers of
the form Zt__oo a;d* modulo the d-adic equivalence. The projection map mq : {} = {1 is defined by
T (0 aid) = S aid'. The map w: = S is defined by means of the Markov intervals

as follows: w($ ' __ a;d") =z where E~%(z) € I,,_,. By construction,

i=—00
o0 oo
W o Tn ( Z aid"‘) =Tgow ( Z aidi) )

j==—0c

for all 320 a;d’ € QL.
The set C is the topological Cantor set {0,...,d — I}ZEU corresponding to all d-adic integers of
the form 3.2, a;d’.

Definition 4 The solenoid function s : C' — R™ is a continuous function satisfying the following
matching condition, for all a € C:

_ s{a) 1
1+s(da+2)_-s(da+l) (l+s(da))' (5)

Lemma 6 The Holder leaf ratio function r : T — R7T determines a Hélder solenocid function
sp:C = RT.



s(2a) s(2a+1) s(2a+2)
4 N N

LN
s(a)

Figure 2: The matching condition for the solencid function {d = 2).

Proof: For all 332, a;d* € C, define

The matching condition and the Hélder continuity of the leaf ratio function r : T -+ R¥ implies the
matching condition and the Hélder continuity of the solenoid function s, : ¢ — R, respectively. |

Lemma 7 There is a one-to-one correspondence between Hélder solenocid functions s : ¢ — R*
and sequences {rg,71,T32,-..} € A(d) of positive real numbers which satisfy

(i) Tn/rm < O@?) if n ~mis divisible by d*, where 0 < u < 1, and

(i1) ro,rdy2, 2442, ... 15 constructed by the recursion
T 1
1+ rgizs = — (1 + —) : (6)
Tdit1 Tdi

A more geometric interpretation of the sequences contained in the set A{d) is given by the
d-quasiperiodic fixed grids in Section 8.

Proof: Given a Holder solenoid function s : C — R* for all i = ;‘:0 ajd? € Z>q define r; by

di
Ti{ = 8 g ade
=0

The matching condition of the solenocid function s : ¢ — R, implies that the ratios ra, 7442, T2g+2, - - -
satisfy the recursion (6}. The Hélder continuity of the solenoid function s: €' —+ R™ implies cond:-

tton (i).
Conversely, for every d-adic integer a = 3.0 a;d* € C, let a,, € Z»o be equal to 3 .. aid".
Define the value s{a) by
o) = Jim o,
By condition (i) the limit is well defined and the function s : ¢ — R™ is Holder continuous. By
condition (ii) the function s: ¢ — R* satisfies the matching condition. ]



5 Solenoidal charts for the (CltHolder expanding circle map
E.

Let £ be a local leaf with an affine structure which projects by mz = mg|L homeomorphically onto

an interval J of the circle 5. Let ¢ : £ -» R be a map which preserves the affine structure of the
leaf £. A solenoidel chart us : J — R on the circle S is defined by uz = d o wzl (see Figure 3).

Ty ..y Ion'l...ot‘n- Ics

;! -
N
w
o
A4

U Ly o) urley o)

Figure 3: The solenoidal chart.

Lemma 8 The solenoidal charts determined by a (thca) solenoid (£, 5) produce a structure U for
which the expanding circle map E is QY+ Hdlder

Proof: Let U’ be a finite cover consisting of solenoidal charts. Let Iy, ., I ..o, be adjacent
intervals at level n of the interval partition and uy : J — R and vy : & — R. solenoidal charts such
that To, .., fo; o, ©J and Io, 0., loy..ar C K. Let x € £ and y € L' be the points with

ﬂ'(x) =laia, N Iaf’l ], and "T(Y) =l N Iaé...a;-

Since E is affine on leaves, we have

where s : ¢ — R* is the Hélder solenoid function determined by the {thca) solenoid {£,5) {see
Lemma 6). By Holder continuity of the solenoid function,

s (@—I(Eﬂ(x) ))

: (awl(Eﬂ-l(y))) < O™, (8)

log

for some 0 < p < 1. By equality (7}, inequality (8), and Lemma 1 the expanding circle map F is
C1HHBdeT with respect to the structure I7 produced by these solenoidal charts. [

Lemma 9 The Hélder solenoid function s : ¢ — R7T determines a set of solenoidal charts which
produce a siructure U such that the expanding circle map E is C1HHo!der
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Proof: Every point a € C determines a triple
(X, Y.2) = (Q(a - d))d')(a))‘b(a +d))

and the solenoid value s{a) determines a ratior(x,y,z) = s(a). We define the ratios T(E“ {x), Bn (¥), En {z))
equal to s(a), for all n € Z. By construction, the ratios are invariant under the solenoid map E.
Since the solenoid function satisfies a matching condition, these ratios also satisfy a matching condi-
tion and determine an affine structure on the leaves of the solenoid. By construction, the solenoidal
charts determined by this affine structure on the leaves satisfy equality (7) and inequality (8). By
Lemma 1, the expanding circle map E is C'+#54e" with respect to the structure U produced by

these solenoidal charts. B

Theorem 1 There is a one-to-one correspondence between (i) C1THOMer gstructures UV for the
expanding circle map E : § — S; (ii) (thca) solencids (E,5); (iii) Holder leaf ratio functions
r: T — R7; (iv) Holder solenoid functions s : € - R™¥; (v) sequences {rg,71,...} € A(d); (vi)
d-quasiperiodic fixed grids.

For the definition of a d-quasiperiodic fixed grid see Section 8.
Proof: Tt follows from the following diagram, where the implications are detemined by the lemimas
indicated by their numbers:
() <& ) €5 (v
4
o NP3
(v) <& (iv) <E= (i)

5.1 Smooth properties of the solenoidal charts.

Let the expanding circle map E be C1HH%4eT with respect to a structure /. By Lemma 3 and
Lemma 4, the structure U/ determines a (thca) solenoid (£, ). The solenoidal cover V of U is the
set of all solenoidal charts determined by the {(thca) solenoid (E,S).

Theorem 2 Let U’ be a finite cover of the C1HH51der structure U for the expanding circle map E.
The smoothness of the expanding circle map £ when measured in terms of the cover I7" attains its
maximum when the cover U’ is a subset of the solenoidal cover V.

Proof: Let the expanding circle map F : § — S be €7 smooth, for some r > 1, with respect to
a finite cover U’ of the structure /. We shall prove that the solencidal charts vz : I —» R are C7
compatible with the charts contained in'U”’, proving the theorem.

Let Z be a local leaf which projects by my = w5|L homeomorphically on an interval I contained
in the domain J of a chart « : J — R of U'. For n large enough, let u, : J, — R be a chart in U’
such that [, = ﬂg{@““ (L)) C Jn- Let Ay un(ln) — (0,1) be the restriction to the interval un(fn)
of an affine map sending the interval u,{l,) onto the interval (0,1).

Let e, : (0,1) = R be the C” smooth map defined by e, = uo E® o u? o A7 (see Figure
4). The map e, is the composition of a contraction A’ followed by an expansion u ¢ E™ o u;t.
Therefore, by the blow-down blow-up technique (see [1] and [12]), the map e : (0,1) — R defined by
e = liMp_ 00 €n is & C7 homeomorphism. By construction, the map vz : I = R defined by e™lou
is & solencidal chart €7 compatible with the charts contained in U”. |



Y

11

ui//ﬁg\

Uy (In) 0 1

Figure 4: The construction of the solenoidal charts from the C*+H%4er structure U.

6 Smoothness of h : R — R and cross ratio distortion of
grids.

Let h: I — J be a homeomorphism, where I, J C R. We are going to analyse the €™ smoothness
of the map in terms of the distortion of the cross ratios of a grid (see the following Table 2). Table
2 is an important tool used to prove Table 1.

A grid g of an interval T € R is a collection of grid intervals {I{F  n€ Nand g € Z} such
that, for all n > 1, (i) the union Ugez I3 of all adjacent intervals I} at the same level n is equal
to the interval I; (i} the set of all end points of the intervals Iy at level n is contained in the set
of all end points of the intervals I2™" at level n + 1; (iii) the ratios rh = |5, {/|151 between any
two adjacent intervals I and If | are bounded away from zero and infinity, independently of the
intervals I3, 1%, considered and of the level n; (iv) the ratios |Ig+1i /|I%| are bounded away from
zero and infinity independently of 3 and of the level n, where I3 C I7.

Let h: I C R = J C R be a homeomorphism. Let I, Iz and Igi be three adjacent intervals
in I where I is on the left of Iz and Iz is on the left of Ig». For any interval Ig in I, denote by
Jg the interval A(Ig). (i) Let the average derivative dg be defined by dg = |J3|/|Isl. (i) Let the
ratio rg be defined by |[Ig|/|I5|. (iii) Let the ratio rpp be defined by |Jgr|/|Js|. (iv) Let the ratio
distortion Iz be defined by

s =lr:-g%;3 = log Cﬁ% (9)
{(v) Let I, be equal to the union Iy U Ig U Igr of the adjacent intervals I3, Ig and Ig«. The cross
ratio or equivalently the Poincare length P(Igp C I,) of Ig in I, = Ig U Iz U Ign is defined by

| 2o/ | Hs| + [Tgr} + |Iﬁ"|)
FE] |
= log ((1 Fra)(l+ r@l)) .

Py Cl,) = log (1+

(vi) Let J, be equal to the union Jg U Jg U Jz+. The cross ratie distortion cg is defined by
cg = PlJg CJo)— Pl Cl,)

1+r74
log M__.L_ﬁl ) (10)
1471 1+ Ta
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Theorem 3 Let A : R — R be a homeomorphism and g a grid of R. Let Ig, Ig and Ize be
three adjacent grid intervals contained in any bounded interval of R. Then, we have the equivalence

shown in the following Table 2:

The smoothness of the | The order of the cross | The order of the ratio
map h: R = R. ratio distortion cg. distortion ig.

CcHe [{I7]) O(Zs")
Cl+Zygmund O(IIHD —
Cl-.l-zygmund i 0(|Iﬁ|) —
Cl+Lapschztz _ O(lIﬁ')

c*e O] ™) —
2+ Lipschitz O(|I,6 |2) _—

Affine of| ") o(|Zg)

Table 2.

The Proof of Theorem 3 will follow from Proposition 1 and Proposition 2 below.

By Theorem 3, we obtain the following non-trivial Corollary 1 saying that we do not have to
study the ratic distortion or the cross ratio distortion of all adjacent intervals Ig, Igr, Iz, but just
the ones which are grid intervals.

Corollary 1 Let 2 : R — R be a homeomorphism and g a grid of R. The grid g measures all the
information needed to caracterize the smoothness of the map h, in terms of the order of the ratio

distortion or of the order of the cross ratio distortion.

6.1 Proof of Theorem 3.

We first introduce several definitions and lemmas necessary for the proofs of Proposition 1 and
Proposition 2.

Let h : R — R be a homeomorphism and g a grid of R. The level n ratio distortion I{n) of an
interval K is the maximum of the ratio distortions /g, over all the grid intervals I} in K. Similarly,
the level n cross ratio distortion c(n) of an énterval K is the maximum of the cross ratios ¢g, over
all the grid intervals Ifin K.

Lemma 10 If the cross ratio distortion e(n) on some open interval X is bounded independently of
n, then the map h is quasisymmetric in every closed interval I C K. Coaversely, if the map h is
quasisymmetric in an interval I then the cross ratio distortion ¢(n) is bounded on L, independently

of n.

The definition of a quasisymmetric homeomorphism 4 is given in Section 2.

Proof of Lemma 10. Let Ig, 15, Ig» and Igw be four adjacent intervals at level n in K. Let S
be the smallest interval between Jp and Jg-. Suppose S = Jg.. Since the cross ratio distortion ¢g
= pomdes gl _ Ll 15l + 11+ e
g gl 19l + e 8"
1< < <b.
= Mpel e 5]
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Therefore, the ratio 755 is bounded. Since the ratio rg is also bounded, we have that the ratio
distortion {g is bounded. Similarly, if § = Jg then 1 < r,:ﬁl, < b, which implies that the modulus
of the ratio distortion g is bounded.

Let ¢ > 0 be a constant. For all points z — &1, %,z + 8 € L such that ¢=! < §2/48; < ¢, there are
adjacent grid intervals I, ..., I, at some level n such that (i) the interval [z —d;, z + d2] is contained
in the union WY_, I;; {ii) there is at least one interval Iy C [z — 81, z] such that the points z—§;, 2 are
not contained in I;, where 1 < d < g; (iii) there is at least one interval I, such that z € ., where
d < e < g; (iv) there is at least one interval Iy C [,z + d2] such that the points z,z + J; are not
contained in Iy, where e < f < g; (v) the constant ¢ just depends on the constant ¢; (see Figure 5).

8 T4 I, I, I,

e e . - e
x-8, X x+8g

Figure 5: The adjacent grid intervals I1,...,I,.

Since the modulus of the ratio distortion is bounded and the constant g just depends on ¢, the

following ratio is bounded:

o8 oy —h(z —51) 5

Conversely, if the ratio distortion is bounded, then by equality (10) the cross ratio distortion is
bounded. |

A homeomorphism A : I — J is uniformly asymptotically affine [uea) if there is a constant
¢ > 0 and a continuous function &, : Rf — Ry, with £.{0) = 0, with the property that for all
z —61,%,x + dp € I, such that ¢! < &2 /8, < ¢, we have

h(z + 8) — hz) &
h{z) — h(z — 61) &2

log <ee(d)

Lemma 11 If the cross ratio distortion cg is of order o(1) for all grid intervals I3 contained in some
open interval K, then the map A is uniformly asymptotically affine (uaa) in every closed interval
L ¢ K. Conversely, if the map & is uniformly asymptotically affine (uaa) in an interval L, then the
cross ratio distortion cg is of order o(1) for all grid intervals Iz contained in L.

Let a symmetrie triple (I, Is, Ig» ) be three adjacent intervals I, I, Ig» C I of the same length.
Let the standord grid be a grid (i) where all the intervals at the same level n have the same length
and (ii) each grid interval at level n is equal to the union of two grid intervals at level n + 1.

We will denote, for simplicity of notation, an interval [a ~£,a + €] by o = ¢.

Proof: First, we prove that if the cross ratic distortion e, € o(1) for all grid intervals I,, then
the cross ratio distortion cg € o(1) for all symmetric triples (Ig, Igr, Ig+). Secondly, we prove that
the ratio distortion lz converges to zero when the length of the intervals of the symmetric triples
converges to zero. In the third part, we complete the proof.

The first part. For all small ¢ > 0, there is an M > 0 such that for all symmetric triples
(Ig,1g, Ig») there are grid intervals I, , ..., Ia,., where m < M, such that the cross ratio distortion
of ¢ is £/2-close to an analytic formula ¢, of the cross ratio distortions ca,, - - -, Ca,, - By hypotheses,
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the c,, converge to zero when the lengths of the intervals I, converge to zero. Therefore, theze is
an N > 0 such that for all symmetric triples (I, Igr, [gn) with length [Ig] < N~! the corresponding
analytic formula e, is £/2-close to zero. Thus, the cross ratio distortion cg is e-close to zero.

The second part. Suppose that there is a ¢ > 0 with the property that for all n» > 1, there exists
an interval Iz C L, with length |Ig| < 27" and lg > ¢. Therefore there is a constant ¢; > 0 such

that
1+ rpg

14+7rs
Let I, Iy, Ig», and Ign~ be adjacent intervals with the same length. By equality (10) and since
the distortion of the cross ratio cg converges to zero when the length of the interval Iz converges to
zero, there is a small £ > ( such that

>1+40c. (11)

1 147k
M__H@_ﬁrmig_ (12)
1+75 l+'rﬁ,

By {11} and {12), there is a constant ¢; > 0 depending only on the constant ¢, such that if the
constant ¢ gets large then c, gets large and

—1

Thg

7‘5,1

< 1—ocs.

By the same argument as above applied to the cross ratio cgr, there is a constant ¢z depending only
on ¢ such that if the constant ¢ gets large, then ¢; gets large, and Igr > cs.
The difference c¢g — ¢g+ between the cross ratio distortions ¢z and cgw is equal to

e — Can = IOg Th,@” Ti 1 + 'i"gn 1 ‘I“ 'f‘hﬂ 6 j—_’QE‘.
s s T That 14 Tha" 1+ ]
Therefore,
1+ 1t 147
lﬁil — l'@r = ].Og (Tﬁ%) - 10g (ﬁ) + 2¢. (13)

Let the interval I, be equal to the union Iz U Ig of the adjacent intervals Ig, Ig; and the interval

Iy be equal to the union Ig- U Iz of the adjacent intervals [, [g. By concatenation, the ratio
Ty 18 equal to

TATh + TETETS

Tq = —fe— it 2

1475
Therefore, .
1 TR + Tag
= lor + log ——— —log ——— 14
Lo lﬁ+ﬁ+0gl+r‘3~ o T+ s (14)
By (13) and (14}, for some constant e > 0
lozlg+igr —2e>c+ez~2e>c+e (15)

Let I, and Ig be adjacent intervals of the same length such that (i) I, , = Ip,, U Ig ; (i)
Is, = Ig and Ig = Ig; (see Figure 6). By inequality (15) and by induction on m, the ratio
distortion Ig,, > ¢+ (n —m)e. Thus, the ratio distortion lg_, is not bounded when n —m and n tend
to infinity, which is absurd by Lemma 10. Therefore, the ratio distortion I3 converges to zero when
the length of the interval Iz converges to zero.
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Figure 6: The adjacent intervals Iz and Ig:.

The third part. In particular, we have proved for the standard grid that the ratio distortion
I(n) converges to zero when n tends to infinity. Let ¢ > 0 and € > 0 be constants. For all points
z —01,2,% + 8 € L such that 0 < 8,02 < 6 and ¢! < da/81 < ¢, there are adjacent grid intervals
Ii,...,I, at some level n with the property that (i) the point  — 4, € I, the point = € Iy, and
the point z + ds € I,, for some 1 < d < ¢; (ii) the ratio (Zf;f 1510 /81 € 1+ ¢ and the ratio
(3 io L) /62 € 1 £ e, for some € > 0; {iii) the bound on the number e of intervals I; just depends
on ¢ > 0 and € > 0. The level n of the grid intervals I,..., I tends to infinity when é converges to
zero. Since the ratio distortion {{n) converges to zero when n tends to infinity, for all small £ > 0

there is § > 0 small enough such that

hiz + 62) — h(z) &1

hz) —hls—o) 8| S TF

log

Conversely, by equality (10), if the ratioc distortion {(n) converges to zero when n tends to infinity,
then the cross ratio distortion c(n) converges to zero when n tends to infinity. n

Lemma 12 Let Iz and Iy be adjacent intervals at level m. The cross ratio ¢z is equal to

lfj _ lﬁf (16)

g =
TR T

up to terms of order O(13,13.). Let I, and I be adjacent intervals at level m — 1 such that
IgUlg C IoUILy. Let Igw be any interval at level m such that Igw C I, Ul . The ratio distortion

Iy is equal to
Ho| + o]
l., = lﬁ 17)
* = Tl + [Ty (

up to terms of order O(I3,., cgm ).
Proof: Since rg and rpg are positive,

1+ rp5
log ————— = {lpl-
'Ogl_i_m sl

r
s
By Taylor series expansion of the logarithmic function,

1+ 7ag la 2
€ + Ol 18
L+rg 1475 (1) (18)
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Similarly,
1472

hs o £ 00)
1+rgt 1+
By (18), we get equality (16). Let the interval I, be equa,l to the union Iz, U...U Ig,,. Let the
interval I, be equal to the union Ig,,,, U...U I, _,. By equality (16),

log

i, : I, 2 2
- S : :|:O(l Y T TN 7. T ).
!Iﬁe’ + Iﬁs+1| 'Iﬁjl + |Iﬁj+1| A A ot

Therefore, we just have to prove equality (17) for 8 = 5, and §' = ﬁ2 Let a; be the product
T8 - T‘g and ap; the product rag, . 'I‘f,,g Let R be the sum 1 4 ZJ =1 aj and Ry be the sum

1+ Z ¥ an;. Let B’ be the sum 1+ Z: ' raj and R), the sum 1+ Z;:M apj. By definition of
the ratlo distortion I,

R, R
I _IOgER_'

The ratios r4p, are equal to rg, (14 Ig;) £ O(13,). Therefore, the sum Ry, is equal to R + E, where

M—1 J
Ee > aq (Z 15,) O, by, )
i=1 I=1

The sum R}, is equal R' + E', where

E'e Z aj (Zzﬁ,) £033,,..., 1%, )

I=1

Therefore, the ratio distortion I, satisfies
E E
— 2003, .. 15, (19)

em R

By equality (16},

(1—!—0.1 +Z a1 - aﬂ) :EO(Z%I,...,lgj,c'gl,...,c,gj_l)'_

Therefore,
Ee 1+ (14+a;+.. +aM—1)(a1+---+GM»-1):|:O(I;29,-:C6;):
5
foralli=1,...,M — 1. Similarly,
) .
E'= B (142 +. ..+ 2 +am+...+an_1)(aa + ...+ an_1),
1 + g,

up to terms of order O(I3 ,cg,), foralli=1,...,N — 1. By (19),

o] + 1]
IIﬁ1i + ;Iﬁzi

foralli=1,...,N—1. ]

Ia € lﬁl :‘:O(l%‘.,Cgi),
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Proposition 1 For 0 < r <1 or1 <r < 2, if the cross ratio distortion cg is of order O(|Zz|") for
all grid intervals I3 contained in some open interval K, then the map h is C™*! smooth. If the cross
ratio distortion ¢z is of order O(|T5|2) or o(j5]?), then the map logdh is C1FLPsehitz or the map
h is Mobius, respectively. Conversely, for 0 < r < lor 1 < < 2, if the map A is C"™"! smooth in a
closed interval L C K then the cross ratio distortion c¢g € O{|Ig]"}, for all grid intervals Iy contained
in L. If the map logdh is C1FL@schilz or the map h is Mébius then the cross ratio distortion cg is
of order O(|15|?) or o{|Ig|?), respectively.

Proof: Case 0 < r < 1. First, we prove that the cross ratio distortion ¢z € +0(|I3|"}, for all
intervals /j contained in K, implies the ratio distortion Ig € £O(|I{"). Secondly, we prove that if
Iz € £O(|I5{") then the map h is C"*! smooth. Finally, we prove that if the map A is C™** smooth
then ¢z € £O(|15{").

Let the cross ratio distortion ¢g € +O(|Ip|"), for all intervals Ig. By Lemma 11, the ratio
distortion iz converges to zero when the level n of the interval Iz tends to infinity. Let us suppose,
that the ratio distortion Iz € £O({I5|®), for some 0 < s < r, and that for all N > 1, thereisn > N
and some interval Ig, C L at level n such that Iz, = O(]I3,|"). We will prove by contradiction, that
I3 € O(J15.]")- A similar argument applies, if we consider even slower speeds of convergence for the
ratio distortion I3 and a sequence {5, converging at the possible slowest speed.

Foralll <m <, let {Ig, C Ia,_,} be anested sequence of intervals. By induction on equality
{17),

B o O, " g, 271 < O g, I°7h),
Hs..]
which is absurd, since by hypotheses,

Ig -
== > O(|Ig, [*7).
Tl =07
Therefore, {g € £0{]15|") for all intervals Is.

Conversely, if the ratio distortion Iz € =0O(|I3|"), for all intervals Iz C L, then by equality (16),
the cross ratio distortion cg € £O(|I5]").

For all points P # P’ contained in L, take the highest possible value of m for which there are
adjacent intervals Ig, I at level s with the property that P € Iy, P' € Iy, P ¢ Iz and P’ ¢ Ip.
Let the interval I, at level m — 1 contain the union Iz U Ig:. By construction of the interval I, and
bounded geometry, the ratio |P* — P|/|1,| is bounded away from zero and infinity independently of
the points P and P'. Since lg € O(|1.]"), we obtain

dg — dg € £O{|1.I"). (20)
By definition of average derivative d, and (20),
de € dg £ O(|1a|") Cdg £ O 1a]|" (21)

For all n > m, take a nested sequence of intervals {I5, C Ig} at level n +m and a nested sequence
of intervals {Iz. C Iz} at level n 4+ m, such that the sequence {Is_} converges to the point P and
the sequence {Ig } converges to the point P’ (see Figure 7).

By definition of average derivative and (20), we obtain that

dﬁn E dlgn-!-l :t O(Ifﬁn |") (22}
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IB IB'
Iﬁl - ¥ b . IB]
I52 - - L S— [B2
De p'u

Figure 7: The nested sequence of intervals Ig, and Ig .

Therefore, the average derivative da, converges to a limit dp. Similarly, the average derivative
dp: converges to a limit dps, when n tends to infinity. The limits dp and dpr are contained in
da £+ O(|1,]"). By (20) and (22},

ldpr —dp| < O(|P" = P["). (23)

We will prove that the homeomorphism A is differentiable at the points P and P’ with derivatives
dh{P) = dp and dh(P') = dp:.

For every point p € L, take any interval Iy such that the point p € I. Let I, and I, be
adjacent intervals at the highest possible level L’ for which the interval Iy is contained in the union
Iy, ULy, Let I, at level L' — 1 contain the union I,, UI,,. By construction of I,, the ratio |I,|{/|[s|
is bounded away from zero and infinity independently of the interval I,.

Take the smallest sequence of adjacent intervals I,,; yoresdyp atlevel L'+1 such that Iy is contained
M

in the union L, U...U I, (see Figure 8).
1 Ty

I I, I
L, I,

Figure 8: The interval .

By definition of the average derivative dg,

ds = lim, Z 119| (24)
By (22) and definition of d,, the average derivative d_: is contained in d, £ O(|Iy|"}. By equality
(24), the average derivative dy is contamed in dp = O({Ig| }. Therefore, by inequality (23), the map
h is C1*7 smooth and dh(p) =

Conversely, we prove that if the homeomorphism A is C71! smooth on L, then the cross ratio
distortion ¢g € £0O(|3|") for all intervals fp C Land 0 < r < L.

Let Ig, {3 and Ig» be adjacent intervals at the same level n. By the Mean Value Theorem, there
are z,y € I3 U g such that Ig € £0(|y — z|™) C £O(|3|7). Similarly, lg € £0O(lIg|"). By equality
(16), the cross ratio distortion c¢g € £O(|Ig]").



19

Case 1 < r < 2. By the above, the map h : L — L has a C® smooth derivative dh, for every
0 < s < 1. Let Ig and Ip be adjacent intervals at level m. Let ¢ : L — L be the map defined by
¢z} = [, logdh(y)dy. The average derivative of the map ¢(x) is defined by

_ J1, log dh{y)dy|
g |

Using the Taylor series of the logarithmic function, and since the map h has a C'° smooth derivative,
¢s = log(dg) up to terms of order O(|12|**), where 0 < s < 1. By definition of ¢3 and by equality
(9),
Is € ¢p ~ ¢ = O(|1p]%). {25)

For all points P # P’ contained in I, take the highest possible value m for which there are two
pairs of adjacent intervals Ig, I3 and Iy, Iy at level m with the property that (i) there is a pair of
adjacent intervals I, Iy, at level m — 1, which contains the union Iz Uz U Iy U Iy (ii) the point
P € Ig U Iy, the point P € I, U Iy, the point P ¢ I, U Iyr, and the point P/ € IgU 1.

For all n > m, take a nested sequence of adjacent intervals {Ig ,Ig C Ig U Iz} at level
n, such that the point P € I, U Iz . Similarly, take a nested sequence of adjacent intervals
o, Iy, C Iy U Ly}, at level n, such that the point P’ € Iy, U Iy . By (17) and (25},

by — ¢y ¢ — g < O(Ia™1 (L, 171 26
IR S T (26)

By (17) and (25),
ba |~ P g — ¢g,

* 01z (e
lIﬁ:‘t—l UIﬁn—Ll iIﬁ:z UIﬁ'uJ ! 3 | ) ( )

By (27), the ratio (¢g -~ ép,)/|Ig U Ip,| converges to a limit dj, when Iz U I, tends to the
point P. The limit d} is contained in {@g - ¢g)/|Ig U Ig| £ O{|I3|"~1). Similarly, the ratio (¢ —
G} |1y U Ly, | converges to a limit d,, when Iy U Iy, tends to the point P’'. The limit d% is
contained in (g — ¢y)/[Iy U Iy| £ O(|1y|""1). By inequality (26),

ldp — dpl < O(IP" = PI"™%). (28)

We now prove that the diffeomorphism ¢ is €71 smooth at the points P and P’, that the
second derivative d*¢(P) is equal to 2d%, and that the second derivative d*¢(P’) is equal to 2d%.
For every point p € L, take any two small adjacent intervals I, and I, at some level L/, such that
p is contained in I, U L. For all points z,y € I, Ul, and for all [ > L', take the smallest sequence
of adjacent intervals IW{, e ’ITf: which contain the points x and y, at level [ + L', By (25),

“__11 l.fg
46s) — dé@|/ly —a] = lim EE_ZIT 29)

By (27) and definition of d2, we have

[ d2

vy P r—1
L ¢ + O, 4).

Ll 10, L 1+ ] K
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By equality (29), we obtain |dé(y) — dp(z)|/|y — z| € 2d, & O(|I,{"""). Therefore, by inequality
(28) the map ¢ : L — L is C™*! smooth and d®¢(p) = 2d. If 7 = 2, then themap ¢ : L -+ L is
Ct+Lipsckitz Tf the cross ratio distortion c¢g € =o{|I5]?), then the Schwarzian derivative of the map
h: L — L is equal to zero.

Conversely, we prove that if the homeomorphism & is ™! smooth on L then the cross ratio
distortion ¢, € £O(|1;|"), for all interval I, contained in L. ‘
Let I, I, and I~ be adjacent intervals at the samne level n with endpoints z,y, z, w. By Taylor

series,

b e (0 + 1) T2 = 00 111

‘ d® p(z)
_’qb d i T
Ly € (| + 1) 52 £ O 7 111,
Therefore, by equality (16), the cross ratio distortion ¢y € £0(|4|7). i

The adjacent intervals I, I,» and L~ form a triangle triple if I, U Ly U L+ is contained in the
union of three grid intervals at some level n and each interval I, I, and I,~ is equal to a union of
grid intervals at level n + 1. The intervals L, Iy, I, are the friangle intervals. Given an interval
1, let m, be the middle point of the interval I,. The middle set M of a grid is equal to the disjoint
union of all middle points m., of the triangle intervals I,. A function f : M — L is triangle Zygmund
if and only if for all triangle triples (I, [, 1),

(] + [T Dfmge) + (T | + [ Ly D F(my)
LI+ 2+ 5 flmep)| < OULD-

For all pair of adjacent intervals I, I+ contained in the union I, U I, U L. of a triangle triple, let
the interval I o be equal to [Mmg, Me]- Let fo o 1 oo — L be the middle affine map defined by
fa,a' (moc) = f(ma) and fo:,oz’ (ma') = f(ma‘) (See Figure 9)

fa,a'(ma'):f(moe')

f(x,q'(ma):f(ma)

]
|

Y - » L
m

X To, o
Mg o'
N P Lo '

Figure 9: The map fuo.
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Define the middle piecewise affine map Fypryr Iy ULy v — L by

| (@), Hzely
Frree () = { Fomr (@), if @€ Ly o

(see Figure 10).

fyyy (my)=f(my) o
Fry,ym(my)=f(my)

f av *®

fyyy(my)=f(my) T

Ly + [Ty DEyy,yr(mye) + Ly + L]}y ye(my)
[Ty |+2[Tye]+ Ty

fav =

Figure 10: The map f, ..

The map h : I — J is Zygmund if for all peints z — d;,z, 2+ 6 € I, such that §,,dy > 0, we have

51h(.7: -+ 52) + (Szh(l:. — 51)

- <
51 + 52 h(.’l:) = 0(61 +62)

(see Figure 11). The map h : I — J is zygmund if the bound in the inequality above is replaced by
0(51 -+ 52)

Proposition 2 If the cross ratio distortion ¢g is of order O(|Iz|) or of order o|7z|) for all grid
intervals fz contained in some open interval K, then the map logdh is Zygmund or zygmund,
respectively, for every closed interval L C K. Conversely, if the map log dh is Zygmund or zygmund
in an interval L then the cross ratio distortion ¢z is of order O([Is}) or of order o{|Ig|), respectively,
for all grid intervals Iz contained in L.

Proof: By Proposition 1 and since for all grid triples Ig, {a:, [g+ the cross ratio ¢g € =O(|I3]), and
the map h: L — L is C'** smooth, for every 0 < 8 < 1. Let ¥ : L — L be the map defined by
¥(x) = f:o log dh{y)dy. The average derivative of the map 1(z) is defined by
!J}ﬁ log dh{z)dz|
ﬁ =
|1
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h(X+62) L B e
hx) peeeoeo P
hav ? ______ IY,Z’T.' ; . Slh(x+82)+52h(x—81)
5 PO ! * §;+8;
h(x-8)) e---4" | :
——————— e
x-8, x x+09

Figure 11: The graph of the map h at points £ — §;, z and = + 6.

Using the Taylor series of the logarithmic function, and since the map A is smooth for all triples
I.@? I»g’ 1 Iﬁ" bl

Ig € dg — g = O(Is*"). (30)
The average derivative function ¢ : M — L is defined by ¢(m) = ¢,. Since for all triangle intervals
I the cross ratio distortion ¢, is an analytic function of the cross ratio distortions cg of a bounded
nurhber of grid intervals 7g, and by assumption the cross ratio distortions ¢z € +O(|75]), we have
ey € O(IL ). By (16) and {30), for all triangle triples (I,, Iy, Iy}, the average derivative function
¢ M - L is triangle Zygmund; i. e.

(] + 1y Dy + (o] + [ L

AR Tm ey 21 R G (31)

Let (L, I, L) and (I, I, L) be two triangle triples such that
Lo UL = I, and UL, UIL+rUILm= LU, Ly,

Let ¢y ¢ Lo = L be a middle affine map (see Figure 9) and Gy oyt Ly UL (e = L be a
middle piecewise affine map (see Figure 10). Define the map Pt ottt 2 L g Vgt g ULy e = L
by .
¢w,w’ (.‘.'t:), ifre Iw,w'
¢w,w’,u” ! (,',L,") prvd ¢w:,wrr (Q’:)? if €T e le !
¢w”,w“' ($)’ if T E Iw”,w"’

(see Figure 12). By definition of average derivative and since I, U I» = Ly, we have that

_ Imwl —_ m71|¢wrr —+ |mwn —_— m’y'i‘?su'
- !mwu —_ mwri ’

¢7'

By the triangle Zygmund property for the triangle triples (Tws 1wy Lun) and (I, Lo, Im),
drawing the graphics of the maps ¢, 4,4+ and @y, v (see Figure 12 and Figure 13), we obtain
geometrically that, for all & € I, ., U Lyr 4,

[t w1 () = Gy e (2)] < O(IL ). (32)



b, o (Mg ) =Py y(mym)
¢ av 2
O, 0 (Mem)=0u", g (My )
[ y = ¢'y','y"(my') = ¢y,y' (my')

¢m,m'(mm‘)=¢m',m”(mm')

q)avl

Gy (My) =0 5 {1y )

b o BT0D00. o (my)+ (Lo l+{10") b0, o' (ma)
‘ Lo+ 2 o[ +]Ta]

0, o AlelemDoom o (ma) r (Tavl+lTa"D dor (M)
avz—

flm"'lﬂi-zllm"l-!—ilm'l

Figure 12: The map ¢w’wl it and the map ¢-Y,.),I,.},H_

23



24

®
myn = I‘Ilm"'

m.:

m"

myzmm

Figure 13: Graphics of the map ¢y oy~ o and of the map [T
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Define the sequence (gbrl)nez of piecewise affine maps ¢n : L = R by ¢lla,w = da g, for all
adjacent grid intervals I, I« at level n. By definition of average derivative, the sequence of maps
¢ + I = L converges to the map log dh in the C° topology, when n tends to infinity.

For all triples of points {x,y, z) in L, choose the smallest n > 0 such that there are adjacent
grid intervals I, I, I», at level n, with the property that z,y,z € I, + U Ly 4». By the triangle
Zygmund condition, the map ¢,|I, ,» U Ly 4 satisfies the Zygmund condition for the points «,y, 2;
i e

ly - o:wsn(?) + |2 — ylgn(z) _ d,n(y)‘ < 0z ~ ).
z — g

By inequality (32) and replacing the map ¢, by the limiting map log dh in the Zygmund condition,
we obtain that the map logdh : L — L is Zygmund; i. e.

' |y — z|log dh(2) + |z — y| log dh(z)
|z — z|

- logdh(y){ < O(lz ~ =).

Conversely, for all symmetric triples (Ig, Iy, Iy) let =, y, z € L be the corresponding middle points.
Let #’, 2" € L be the endpoinis of the interval Ig. Since the map logdh : I — L is Zygmund, the

integral

1

f " logdh(t)dt = f *(log dh(t) + log dh(—t + 22))dt
€ (logdh{z) = O(|Is)}| 7).

Therefore,

¢ = logdh(x) = O(3]). (33)
Similarly, the average derivative ¢., € log dh(y} £ O([1,[) and the average derivative ¢, € logdh(z) =+
O|L|). By (16), (30), and (33),

%p = o= 20+
= O(ilg]).

The proof follows similarly for zygmund. B

7 Proof of Table 1.

Proof of Table 1. Let £ and £ be two local leaves and v : J = m5(£) = Rand v : J' = 7g(L') =C
R the corresponding solenoidal charts. If JN.J' # 0, let Is, g, C JN.J' be any interval at any
level n of the interval partition. Let the points x € £ and y € £’ be such that n5(x) = ns(y) € §
is the right extreme point of the interval Ig,  ga.. Let e be the point &(E™(x)) € { and b the point
@(E™(y)) € C. By definition of the metric |r|, the distance |r|(a,b) is equal to the supremum of
|z(Ig,...3. )| over all solenoidal charts = : S\ {e;} — (0,1), where ¢; is an endpoint of a Markov
interval. By Lemma 2, the overlap maps z ou~! and z o v™! are C*+#%4eT gmooth. Therefore, by

Lemma 1 the ratios

Ir|(z,y) an l7|(z, %)
R ol 2 ol pl 34

are bounded away from zero and infinity, independently of the interval I, g, < JM.J' at level n of
the interval partition and of n > 1.
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Let Ig: g and Igy v be adjacent intervals at level n of the interval partition, such that I .
is also adjacent to Ig,. g, . By proof of Lemma 9,

u(lg,. p:) w{Ige gr)

sla) = ——2—, s(a-k1) = ——-2r,

(a) u(lg,..p. ( ) u{lp: . g}

e () Us..0)
U 8.8 vlige  gre

5(b) = ———-= s(b+ 1V = —2""="

) v(l3;.5.) b+ 1) v{lp;..a,)

The interval partition of the expanding circle map F generates a grid g, in the set u(J N J').
Therefore, Table 2 implies that the overlap map h = vou™? :w{JNJ') = v(J N J') satisfies Table
1. - =

8 d-Quasiperiodic fixed grids g;.

The d-quasiperiodic fixed grids g4 defined below are completely characterized by the same sequence
of ratios 7 = {r;},.z at every level n > 1 of the grid gq (see definition of a grid in Section 6).
Moreover, the ratios {r;},.z_ € A(d). These ratios determine exactly the solenoid function in a
dense set of the Cantor set C. By continuity of the solenoid function, the ratios {r;},_7 determine
the solenoid function completely. The grid g4 also corresponds to the affine structure of a leaf £
which is fixed by the solenoid map E, i. e. E( ) = £. By density of the leaf £, the affine structure
of the leaf £ determines a (thea) solenoid (£, S).

Let g = g4 be a grid of R such that every interval I7 at level n contains exactly d intervals of
level n-+1. The ratios r%, = |I}% 1 |/|17] between any two adjacent intervals I7, and IT ., determine
the grid g, up to an aﬂine transformation. Let the sequences r™ at level n of the grid g be equal
to (1) ez and let B denote the set of all these sequences ", for ail n > 1. The amalgamation
operator A : B — B is defined by A(r) = s, where

(i+1)—-1
1+ Zm—dz+l Fditl,m

dz—1
L+ 3 mmd(i-1)+1 Td(i—1)+1,m

$i = Td{i—1)+1,di 2

for all i € Z. The amalgamation operator A : B — B determines the sequence £~ = A(r™) at
level n — 1, from a sequence r® at level n. A grid gy is up to an affine transformation a point in the
inverse limit space {... =+ A — A} of amalgamation operators A. A fized point of amalgamation is
a sequence 7 such that A4(r) = r. A sequence r = (i), .7 is d-quasiperiodic if there is 0 < p < 1
such that |rj; — rg] < O(), when (j — k)/d® is an integer.

Definition 5 Let r be a d-quasiperiodic sequence which is a fixed point of aralgamation. A d-
quasiperiodic fized grid g4 is determined, up to affine transtormations, by the sequence ...rr

Lemma 13 There is a one-to-ope correspondence between d-quasiperiodic fixed grids ¢ and affine
structures on a leaf £ = E(L) contained in a (thca) solenoid (E, S).

Proof: Let £ be a leaf of the (thca) solenoid {£,8) which contains a fixed point xg of the solenocid
map E. The leaf £ is marked by the points ...,x.1,Xg,X1,..., which project on the same point of
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the circle as the fixed point Xo, and such that there is a local leaf £,, with extreme points x,, and
Xm+1 which does not contain any other point x;, for m Zi#m+1
The affine structure on the leaf £ determines the ratios r, = r(Xm_1, Xm, Xm+1) of the leaf ratio
function r : 7 — R¥, for all m € Z. For every m € Z, the ratios r,, coincide with the value of the
solenoid function s(3°°7. a,d"), where m = > met @nd™. Note that the sequence rq, T1,-.. € A(d).
Since the solenoid map £ is affine and E(L) = £, the sequence of ratios r = (rm}pez is fixed

by the amalgamation operator A, (see Figure 14). The Hélder transversality of the solenoid (E, §)
implies that the sequence r is d-quasiperiodic. Therefore, the element --.Ir is a d-quasiperiodic
fixed grid gg =...7r.

i
r t, 1

E( r To r rs
TN TN N Y
X 5 X_l XG X X X3

Figure 14: The leaf £ fixed by the solenoid map E.

Conversely, a d-quasiperiodic fixed grid g; = ...rr determines uniquely the affine structure of a
leaf £ which is fixed by the solenoid map E. Since r is a fixed point of the amalgamation operator
Ag, the solenoid map F is affine on the leaf L. By density of the leaf £ on the solenoid § and
since the grid g4 is d-quasiperiodic, the affine structure of the leaf £ extends to an affine structure
transversally Holder continuous on the solenoid S, such that the solenoid map E leaves the affine
structure invariant. n
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