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In the middle seventies, Henri Epstein and I would walk over to
Orsay from the IHES to hear Michel Herman's lectures on circle diffeo-
morphisms. We marveled at how much structure and elegance evolved
from Michel’s study of the iteration of z +— z + y(z) where y is any
smooth function of periodicity one.

A couple of years earlier a new edition of Denjoy’s work was pub-
lished by the CNRS and Michel was involved. This provided Michel the
opportunity to reconsider Denjoy’s arguments showing a twice differ-
entiable circle diffeomorphism either has a periodic orbit or only dense
orbits. Basically, Denjoy was controlling the nonlinearity of the first
return iterates g, gs, qs, ... rising the differentiability hypothesis of
f and the disjointness of an orbit of intervals up to first return. This
involved calculating the first and second derivatives of long iterates of
f. The first derivative is just the usual chain rule while second de-
rivative involves in modern terms the chain rule for the non linearity
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Michel wanted to control the higher derivative of the iterates in order
to attack Arnold’s conjecture that if the g1, ¢o, ... did not grow rapidly
the Denjoy continuous conjugation D f of f to a rotation would actu-
ally be smooth. From the Kolmogoroff-Arnold-Moser theory, Michel
already knew that if he could introduce coordinates to make the non
linearity small enough for a given growth condition on the first returns
g1, Gz, - - -, then he would win.

A prodigious calculation of third and higher derivatives with a “mirac-
ulous cancellation” led to Michel Herman's initial big breakthrough.
First he showed that for any set of first returns, ¢, g2, ... the trans-
formation f was ergodic for the Lebesque measure class even though
there need not be a smooth invariant measure —the smoothness of the
unique invariant measure being controlled by the smoothness of the
Denjoy conjugacy D f.

Then a logically complex argument evolved showing Arnold’s conjec-
ture if the ¢, go, ... were of bounded type. Michel presented this argu-

ment at my urging in a marathon seminar at the IHES —approximately
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30 hours over three or four davs. For the last halt T was lost, but the
other two surviving participants, Pierre Deligne and Adrien Douady
were still checking and absorbing the proof. Adrien made a wondertul
fow chart of the logic which 1 transeribed in colored inks on the back
of a large Colette poster and Pierre undertook the task of presenting
Miclhiel’s arguinent at the next Bourbaki.

1 distinctly remember Pierre hunched over his desk in the evenings at
[HES struggling with the enormous proof. One evening he seemed par-
ticularly worried and it turned out he had doubts. He had completely
understood everyvthing concrete and constructive in the proof and one
estimate going from “big O” to “little o” was missing. Pierre was right
and Michel was also right. The missing estimate came from an appli-
cation of the ergodic theorem —a-non constructive passage from “big
0" to “little 0.”

Soon the Bourbaki event took place. Just before Deligne’s lecture
on Michel Herman’s achievement, I met Michel in the hall outside the
lecture room at the Institute Henri Poincaré. He was so overcome
with emotion that he couldn’t attend the lecture and he went for a
walk instead. I did attend and it was really something. Pierre’s first
sentence developed the essential aspects of the theory of the rotation
number of homeomorphisms of the circle without period points, “Given
f there is a unique irrational rotation Ra so that any of its orbits and
any of f’s orbits 1,2,3,... have the same circular order type.” Of
course this « is called the rotation number of f.

While on this walk or perhaps a little later, Michel began to see the
solution to the entire question when the first returns gi, g2, . .. were not
of bounded type. He soon had the full theorem that Denjoy’s conjugacy
Df was smooth precisely under the hypothesis of the perturbation
result given by the KAM theory for diffeomorphisms close to rigid
rotations.

A very special case of this general statement allows some apprecia-
tion of its depth. Take the golden number as rotation number so that
the first returns of an orbit near its start 1 are the Fibonacci iterates
3.5.8.... These appear on alternate sides of 1 and converge down to
1. Michel Herman's theorem implies this convergence is geometric with
precise ratio the golden number .62... itself. In other words, the as-
ymptotic geometry of the return is rigid by Michel’s theorem —while
the earlier result of Denjoy only implies there is some convergence. Dur-
ing this period I decided that this rigidity result of Michel Herman’s
was something really worth understanding deeply.

As great as Michel Herman’s bounded type result was, the new
progress was worth another Bourbaki report at a meeting the next
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vear. This time Harold Rosenberg took up the task of presenting the
vestill as woll as its relationship to smooth geometric guestions about
codimension oue foliations.

Vichel Herman'’s carcer blossomed after all this --marked by very
suceessful research, very conscientious contributions to mathematical
scholarship. and very fruitful and constructive interactions with grad-
uate students. For example, his student Yoccoz completed the equiva-
lence of the Segal condition on the gy, o, - .. and the > nature of the
Denjoy coujugacy for C* diffeomorphisms and together with Michel re-
lated the ~miraculous cancellation” of the third derivative calculation
with the chain rule for the Schwarzian derivative.

Now | would like to mention a development in the history of wdeas
and in Michel's attitude which, while being completely understand-
able, was not always constructive. At about this time (1975) numer-
ical work was being done on first return geometry in another area of
one dimensional mappings by Feigenbaum in the U.S. and by Collett
and Tresser in France. Feigenbaum found that the 2"-th iterates of
the critical point for the limit of period doubling mappings converges
geometrically quickly to itself with a certain universal ratio (.39...).
Analogous numerical studies of critical circle mappings by mathemat-
ical physicists revealed more universal geometry in the asymptotics of
first return mappings. This work purported to describe self similar
structure on the boundary of the KAM region and the papers used an
assertive tone in the statements —as in mathematical theorems— but
did not provide proofs beyond heuristics and numerics. Such papers
offended Michel, who had very laboriously proved estimates about the
size of the good KAM regions getting rigorous numbers like .001 while
the “chaos papers” were claiming numbers like .8 based on handwaving
and numerics.

One unfortunate consequence was that for some years Michel was
suspicious when the catch word of all these numerical papers “renor-
malization” was invoked. The physicists used this phrase in dynamics
to refer to the process of replacing one dynamical system f on the circle
or the unit interval by the first return to a tiny interval (and in the
former case by gluing neighborhoods of the end points together by an
iterate of f) to get a new dynamical systems Rf on a new tiny circle
or interval which would then be rescaled (or renormalized) up to unit
size.

In the intervening years, the renormalization viewpoint was used by
Khanin and Sinai to redo the circle KAM theory more geometrically
and conceptually. They also treat Michel Herman’s theorem in this
way. | am not familiar with their exact work, but in a final tribute to
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the fndamental nature of Michel's theorem, T would like to close with
a little mathematical story abont how the original complex edifice of
Michel Herman's proof becomes understandable all at once if enough
of its methodology is absorbed into the foundations. For me this is the
hallmark of a deep and complex result which is also a great resuit.

For a circle transformation f we can consider the sequence of first
returns g, ¢2, -- - to appropriate intervals glued up by appropriate pow-
ers of f to obtain a sequence of renormalizations Rf, R*f, ... which
are diffeomorphisms of new “abstract circles” Sy, Sy, ... The rota-
tion numbers of Rf, REf, ... are just the points of the orbit of the
rotation number of f iterated by the ergodic continued fraction map-
ping (ag, a;, @y, ...} = (@1, 69, ... ), where the q; are from the coniinued
fraction. Now three things are happening at once which reduces Michel
Herman’s theorem to the KAM perturbation result.

1. The renormalizations f, Rf, R*f, ... being first return mappings,
all have the same set of orbits so that a smooth invariant measure
for one gives such for all. Thus we don’t lose the question of the
smoothness of the Denjoy conjugacy by replacing f by any of its
renormalizations.

The first return iterates used to define the renormalized circles and
the renormalized diffeomorphisms have two important properties.

a) Their non-linearity is bounded by the sum of the lengths of
disjoint intervals on the circle (the Denjoy argument),

b) their deviation from being Moebius or projective as measured
by the Schwarzian derivative tends to zero as the renormaliza-
tion index tends to infinity. This follows from a) and the chain
rule for the Schwarzian derivative. Namely, a) controls the
non-linearity so that the chain rule estimates the Schwarzian
of the first returns by the initial C? constant of f and the sum
of the squares of the lengths of the disjoint intervals (whose
lengths are all going to zero by Denjoy’s original theorem}.

3. Thus relative to coordinate systems of bounded non-linearity from
the initial one the abstract circles are becoming closer and closer to
projectively flat and the renormalizations are becoming closer and
closer to projective transformations with bounded non-linearity.
This means that up to bounded non-linearity smooth coordinate
changes the renormalizations are converging to rotations. Now
KAM says that a positive measure cantor set of good rotation
numbers in such a neighborhood implies smooth invariant mea-
sures. The renormalizations are eventually inside such a KAM
neighborhood and by the ergodicity of the continued fraction
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transformation, their rotation numbers are infinitely often in the
cantor set of good rotation numbers for this neighborhood.

This is the view at a glance of Michel’s theorem -~1) renormalization
puts any diffeomorphism eventually near rotations and 2) starting with
anv set of good numbers the renormalized rotation number visits the
KAM set of positive measure (specific constants) infinitely often.

Michel Herman was a great analyst and dynamicist whose mathe-
matics was an inspiration.



