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Abstract

Consider two families of closed oriented curves in a manifold Md. At each
point of intersection of a curve of one family with a curve of the other family,
form a new closed curve by going around the first curve and then going
around the second. Typically, an i-dimensional family and a j-dimensional
family will produce an i + j − d + 2-dimensional family. Our purpose is to
describe a mathematical structure behind such interactions.

1 Introduction

By the string homology of a manifold Md we mean the equivariant homology
of the continuous mapping space Map(S1,Md) with the circle symmetry of
rotating the domain. The goal of this paper is to expose the following theorem
and its underpinnings:

Theorem 6.1 On the string homology of a smooth or combinatorial oriented
manifold Md there is a natural graded Lie algebra structure of degree (2−d).

This structure called the string bracket comes from the interaction of
closed oriented curves in Md. At each point of intersection of two such
curves, one can form the oriented curve obtained by going around one and
then around the other. Transversality will be used on the cells computing
string homology to define the string bracket of the theorem. For an i cell and
a j cell of strings there will typically be a (i+1)+(j+1)−d = (i+j)+(2−d)
dimensional set of intersection points. If we picture a bracket by two circles
touching, then a triple bracket means a third circle touches the result along
one arc or the other. Thus, the Jacobi identity can be viewed as in Figure 1,
where the two terms on left appear on the right with two other terms that
are geometrically identical up to sign. This Lie algebra is quite non-trivial
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Figure 1: Explanation of Jacobi identity

for surfaces of genus larger than one (see reference to Goldman and Wolpert
below).

In the process of analyzing the above argument we found a more basic
structure called the loop product on the loop homology, the ordinary homology
of the free loop space Map(S1,Md). A version of the loop product • of two
cells in Map(S1,M) is defined for each point z on S1 by first intersecting in
Md the two cells obtained by evaluating at this point z and then composing
the loops at these intersection points.

There are homotopies making the loop product on loop homology into an
associative graded commutative algebra. As in Gerstenhaber’s basic paper
[1], there is a preferred homotopy for the graded commutativity (denoted ∗)
which leads by symmetrization to a second operation {, } on loop homology.
This operation, called loop bracket satisfies the Jacobi identity where now it
is convenient to grade H∗ by subtracting d from the usual geometric grading
so that • and {, } become operations of degree zero and one respectively,

Hi ⊗Hj
•
−→ Hi+j ,

Hi ⊗Hj

{,}
−→ Hi+j+1,

instead of −d and (−d+ 1) respectively.
We arrive at the following result.

Theorem 4.7 The loop product • with the loop bracket {, } makes the loop
homology H⋆ (the ordinary homology of the free loop space) into a Gersten-
haber algebra, namely:

(1) The loop product • defines a graded commutative, associative algebra.

(2) {, } is a Lie bracket of degree 1, which means that for each a, b, c ∈ H∗

2



(i) {a, b} = −(−1)(|a|+1)(|b|+1){b, a}

(ii) {a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}

(3) {a, b • c} = {a, b} • c+ (−1)|b|(|a|−1)b • {a, c}.

Now consider the circular symmetry of the loop space Map(S1,M) =
L(M), and the associated degree +1 operator ∆ on homology

i cycle in L(M) −→ i+ 1 cycle in L(M) = i cycle × S1action−→ L(M).

It turns out that ∆ is a second order operator in the sense of commutative
algebra, i.e., the binary operation, the deviation of ∆ from being a derivation
of •, is a derivation in each variable. One also has easily that ∆◦∆ = 0. We
come to

Theorem 5.4 The loop product • and the operator ∆ make the loop homol-
ogy (the ordinary homology of Map(S1,M)) into a Batalin Vilkovisky algebra,
namely:

(1) • is a graded commutative associative algebra.

(2) ∆ ◦∆ = 0.

(3) (−1)|a|∆(a • b)− (−1)|a|∆a • b− a •∆b is a derivation of each variable.

The connection between these two results is that conditions (1), (2), and
(3) of Theorem 5.4 imply formally that the binary operation defined by the
deviation satisfies graded Jacobi so that a Batalin Vilkovisky algebra is a
special type of Gerstenhaber algebra. We prove Theorem 5.4 by constructing
a chain homotopy between the {x, y} of Theorem 4.7 and (−1)|x|∆(x • y)−
(−1)|x|∆(x) • y − x • ∆(y). We note that in the discussion of these two
theorems there are two independent proofs of Jacobi for the loop bracket.

Finally we come again to the string bracket on string homology, the equiv-
ariant homology of the mapping space of S1 into M . The approach referred
to above is to use intersection theory on chains to define the string bracket
and verify the Jacobi identity directly on the level of transversal triples of
chains.

The second approach to the string bracket uses the loop product • dis-
cussed above. Consider the degree +1 operation lift from equivariant chains
to ordinary chains corresponding to replacing an i-chain in the base of an S1

fibration by the i+1 chain which is the preimage in the total space. Consider
also the operation project which simply projects chains in the total space to
the base. Then we define the string bracket in terms of the loop product by
the formula

[x, y] = project(lift x• lift y).
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(In our calculations, Section 6 we denote lift by M, because lift means mark
a point in all possible ways on a closed curve without a mark (a string).
We denote project by E because project means erase the marked point in a
marked curve (loop) to get an unmarked curve (string)).

The composition (lift)• (project) induces the operator ∆ above on loop
homology, and the Jacobi identity for [, ] follows by direct calculation from
the properties of the Gerstenhaber qua Batalin Vilkovisky algebra structures
above.

We arrive at Theorem 6.1 stating that the string bracket defines a graded
Lie algebra structure on string homology. The geometric degree is (2−d) for
the usual grading of string or equivariant homology.

The same argument constructing the binary operation [, ] = m̄2, the string
bracket, constructs ternary, etc. operators m̄3, m̄4, . . ..

Now extend each m̄k to a coderivation mk to ΛH⋆ (see Section 6).
One knows the Jacobi identity for the string bracket m̄2 is equivalent to

the relation m2 ◦m2 = 0 for the associated coderivation m2.
The Jacobi relation for m̄2 generalizes to the entire collection {m̄2, m̄3, . . .}

in the following way.

Theorem 6.2 The associated coderivations {m2, m3, . . .} of the free commu-
tative coalgebra ΛH⋆ on the string homology H⋆ satisfy:

(i) mk ◦mk = 0, for k = 2, 3, 4 . . ..

(ii) mk ◦mr +mr ◦mk = 0 for k, r = 2, 3, 4, . . ..

These coderivations mk combine in various ways to define coderivations
of square zero on ΛH⋆. Such a differential is one definition of a Lie∞ or
strong homotopy Lie algebra structure on H⋆. Thus we have

Corollary 6.3 There exists an uncountable family {δΛ} of Lie∞ structures
on the string homology. Namely, for each Λ ⊂ {2, 3, . . .},

δΛ: ΛH⋆ −→ ΛH⋆ defined as δΛ =
∑

λ∈Λ

mλ

is a coderivation which satisfies δΛ ◦ δΛ = 0.

If we examine the string bracket when d = 2 we find a Lie bracket struc-
ture on the vector space of components of the space of closed curves in a
surface. For surfaces of genus larger than zero this is the non-trivial bracket
discovered in the 80’s by Wolpert [12] and Goldman [3]. That discovery was
strongly related to the symplectic structure on Techmuller space [12] and the
symplectic structure of other spaces of flat connections over a surface [3].
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(For more discussion see Section 7). When the genus is zero, i.e., M is a
two sphere, the loop product becomes non-trivial in the higher dimensional
algebraic topology of the free loop space of S2.

The S2-calculation is part of a general structure based on the diagram
relating the intersection product on ordinary homology (H⋆(M),∧) with the
loop product on loop homology (H⋆, •) and the Pontryagin product on the
based loop space homology (H⋆(Ω),×),

(H⋆(M),∧)
constant loops
−→ (H⋆, •)

intersection with a fiber
−→ (H⋆(Ω),×)(1)

Both maps are ring homomorphisms. The first is an injection onto a
direct summand showing the loop product is an extension of the classical
intersection product. The image of the second map is a graded commutative
subalgebra. For S2, (H⋆(Ω),×) is the tensor algebra on one generator η in
degree one and the image is the subalgebra generated by η2. This shows the
loop product is non-trivial for S2 (Section 9). For more complete calculations
we can augment the diagram (1) with a relation between the usual cap
product operation, ∩, and the loop product. This is described by

Theorem 8.2 For each x, y homology classes and compatible pair of classes
(A, a)

loop product (A ∩ (x⊗ y)) = a ∩ (x • y).

(see Section 8 for the definitions and the proof, and Section 9 for relevant
algorithms.)

The two approaches here to the string bracket, direct geometry and via
the loop product, reminds one of Witten’s paper [10]. There it was pointed
out that closed string interactions looked at directly as in the Figure 1 are
non-associative. To get around this, a marking point was introduced in [10]
to facilitate the definition of an associative multiplication of (open) strings.
Thus also our string bracket is non-associative but satisfies Jacobi and it
arises from an associative product of loops (marked strings).

There is also a dictionary relating our constructions with those in algebra
begun by Gerstenhaber [1].

In a sequel we will discuss a rich world of general string operations in
the chains of the loop space. We find a structure like a big part of a two
dimensional field theory associated to each manifold Md. In particular we
investigate the Lie∞ structure described in Theorem 6.2 and Corollary 6.3
as well as co-versions. We also hope to follow Stasheff’s specific suggestion
to relate our structure to the work of the physicist Zwiebach [11] and [13].

Table of contents
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(1) Introduction

(2) Definition of the loop product • at the chain level and passage of • to
loop homology.

(3) • is homotopy associative and homotopy commutative where ∗ is the
homotopy of commutativity.

(4) Symmetrization of ∗ gives a loop bracket {, } which passes to loop
homology and we have a Gerstenhaber algebra (i.e., the bracket is a
biderivation of • and satisfies Jacobi).

(5) Definition of ∆ and the argument that the deviation of ∆ from being
a derivation of • is the loop bracket {, }.

(6) Definition of M and E, string homology and the construction of a string
bracket [, ] which satisfies Jacobi. Generalized n-brackets and general-
ized Jacobi.

(7) The string bracket for surfaces, the work of Wolpert and Goldman, and
the case of S2.

(8) Cap product and loop product.

(9) Appendix 1: Sc2 and other simply connected manifolds.

(10) Appendix 2: M3 and K(π, 1) manifolds.

2 The loop product •

We think of the circle S1 as R/Z, so each point can specified by some x ∈
[0, 1). Unless otherwise stated, M is an orientable manifold of dimension d.
A loop in M is a continuous map from S1 to M . Observe that a loop has a
marked point: the image of 0. Map(S1,M), the space of all loops, will be
denoted by L(M), or by L since M is fixed throughout the discussion. By
an i-chain we mean a linear combination of oriented i-dimensional families
of loops in M . The parameter spaces of the families are taken from any
standard list of cells closed under face operators.

In the algebraic topology of chains on a space there are two well known
multiplications which we will combine to obtain a new structure. The first
of these multiplications is the (transversal) intersection of chains in a d-
manifold: an i-chain intersected with a j-chain gives an i+ j − d-chain.

The second is the product of an i-chain of loops with a j-chain of loops, all
of whose marked points are equal to some p ∈ M . Multiplying these chains
yields an i+ j cartesian product chain of composed loops with marked point
at p in M .

Our new loop product • is transversally defined at the chain level as
follows (see Remark 2.2): given x, an i-chain of loops in M , and y, a j-chain
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of loops in M , one first intersects the i-chain (of M) of marked points of x
with the j-chain (of M) of marked points of y, to obtain an i+ j − d chain c
(of M) along which the marked point of x coincides with the marked point of
y. Now we define the chain x• y, by putting at each point of c the composed
loop that first goes around the loop of x and then, around the loop of y (see
Figure 2).

Figure 2: For M3, the loop product of a 1-cell with a 2-cell is a 0-chain

In order to give the precise definition of the loop product we need the
following remark.

Remark 2.1 We will use the following orientation convention for our
constructions. We will have a map of a domain cell, usually a product K1 ×
K2×. . .Kn into M×M×. . .M (l factors) which is assumed to be transversal
to a diagonal. We orient the product cell with the product of individual
orientations. We orient the normal of the pull back by pulling back the
orientation of the normal of the diagonal induced by some orientation of M .
We then take the induced orientation on the pullback so that

(orientation on the pullback)(orientation on the normal) =

(product orientation of the cell domain)

�

Denote the (i − d) chains of L by Li and the direct sum of all these by
L∗. Also, if x:Kx −→ L is a cell, we denote by Kx its underlying set.

Now, for any pair of cells, x:Kx −→ L, y:Ky −→ L we define the set Kx•y

as the transversal preimage of the diagonal of M ×M under the map

Kx ×Ky −→M ×M,
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(kx, ky) 7→ (x(kx)(0), y(ky)(0))

Now, define x • y:Kx•y −→ L as

(x • y)(kx, ky)(γ) =

{
x(kx)(2γ) if γ ∈ [0, 1

2
],

y(ky)(2γ) if γ ∈ [1
2
, 1).

(we keep the notation Kx•y because Kx•y is a manifold which can be divided
into cells) . Orient Kx•y by Remark 2.1. (Observe that with our new grading,
if x ∈ Li and y ∈ Lj then x • y ∈ Li+j .

Remark 2.2 We will adopt a point of view which is used in classical in-
tersection theory of chains in a manifold. We say that a chain operation is
transversally defined if it is defined for appropriately transversal cells.

We say that an identity between chain operations holds transversally if it
holds on any finite subset of the chains where all constituents are appropri-
ately transversal. Thus, the classical intersection is defined transversally at
the chain level, is transversally associative and transversally graded commu-
tative. �

Lemma 2.3 If x, y ∈ L∗ is a transversal pair then

∂(x • y) = ∂x • y + (−1)|x|x • ∂y.

Proof. By definition, the underlying chain of x•y is the oriented intersection
chain in M of the marked points of x and of y respectively. Once the orien-
tation of M is fixed, the orientations of intersections behave for calculations
like orientations of normal directions.

Now, for each x ∈ L∗, we denote by x̃ the chain of M of marked points
of x. Thus, for transversal intersection one gets the familiar

∂(x̃ ∩ ỹ) = (∂x̃ ∩ y) + (−1)|x|(x̃ ∩ ∂ỹ)

where |x| = dim(x)− d.
Since Kx•y is the underlying set of x̃ ∩ ỹ we get

∂Kx•y = K∂x•y + (−1)|x|Kx•∂y.

The chain ∂(x•y) is the restriction of x•y to ∂Kx•y. Therefore, the above
formula yields the same formula for •,

∂(x • y) = ∂x • y + (−1)|x|x • ∂y.
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Let Hi denote the i-th homology group of the loop space L with the degree
shifted down by d and set H⋆ = H−d ⊕H−d+1 ⊕ . . .H0 ⊕H1 . . .. We refer to
H⋆ as the loop homology.

Corollary 2.4 The loop product • on chains passes to loop homology and
defines a product

Hi ⊗Hj
•
−→ Hi+j .

Remark 2.5 The loop product is defined in all dimensions and may be non-
zero way above the dimension of the manifold (e.g., M = S2, Example 7.1,
or S3, Corollary 3.6). �

3 Associativity of •, the ∗ operator, and ho-

motopy commutativity of •

Let us first discuss associativity. For the classical intersection product, we
have that if three cycles are pairwise transversal, then the intersection prod-
uct is literally associative at the chain level.

The classical based loop composition is associative up to homotopy (see
Stasheff [7] and [8] for a complete discussion of this point).

Thus both of these classical chain products yield associative multiplica-
tions in homology, and thus we will have the same associativity for •, the
loop product, combining intersection and based loop composition.

Proposition 3.1 The loop product in loop homology Hi ⊗Hj
•
−→ Hi+j is

associative.

Proof. Assume that the three homology classes in question x, y, z are rep-
resented by cycles that are pairwise transversal. The intersection locus of
(x • y) • z and x • (y • z) are literally equal with identical coorientations.
The loop product is associative up to homotopy using the same considera-
tions as in the based loop product, now parameterized by the points of the
intersection x ∩ y ∩ z.

Let us turn to the question of commutativity. The intersection prod-
uct of two transversal cycles is literally graded commutative. However, the
based loop product (Pontryagin product) is often non-commutative even in
homology. We will see that the • product, combining these two products is
homotopy commutative at the chain level. One chain homotopy is given by
a new binary operation x ∗ y defined for appropriately transversal pairs x, y

9



in the following way. Consider the chain c (of M) where the marked point
of x transversally intersects one of the images of the loops of y. Then at
each point of c put the following loop: first go around the loop of y until the
intersection point with the marked point of x. Then go around x and finally,
go around the rest of y (see Figure 3).

Figure 3: The ∗ product

The precise definition is the following: let x:Kx −→ L, y:Ky −→M be
two cells in L⋆. Let Kx∗y be the preimage of the diagonal of M ×M under
the map

Kx × [0, 1]×Ky −→ M ×M,

(kx, s, ky) 7→ (x(kx)(0), y(ky)(p(s))),

where p: [0, 1] −→ S1 is the usual projection. Then x ∗ y:Kx∗y −→ L is de-
fined as

(x ∗ y)(kx, s, ky)(γ) =





y(ky)(2γ) if γ ∈ [0, s
2
).

x(kx)(2γ − s) if γ ∈ [ s
2
, s+1

2
),

y(ky)(2γ) if γ ∈ [ s+1
2
, 1).

Lemma 3.2 If x, y ∈ L⋆ are appropriately transversal, then

∂(x ∗ y) = ∂x ∗ y + (−1)|x|+1x ∗ ∂y + (−1)|x|(x • y − (−1)|x||y|y • x).

Proof. Let x̃ denote the chain of M of the marked points of x and let ỹ
denote the chain of M with parameter space [0, 1]×Ky, given by ỹ(s, ky) =
y(ky)(p(s)), where p: [0, 1] −→ S1 is the usual projection.

Suppose that x and y are appropriately transversal. Since the underlying
sets of x ∗ y and x̃ ∩ ỹ coincide, ∂(x ∗ y) is parametrized by the underlying
set of ∂(x̃ ∩ ỹ). Hence, for transversal intersection, one obtains

∂(x̃ ∩ ỹ) = (∂x̃ ∩ y) + (−1)|x|(x̃ ∩ ∂ỹ).
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Since ∂([0, 1]×Ky) = ∂[0, 1]×Ky− [0, 1]×∂Ky, the restriction of x∗y to the
underlying set of (−1)|x|(x̃∩∂ỹ) is (−1)|x|(x•y−(−1)|x||y|y•x)−(−1)|x|x∗∂y.
One the other hand, the restriction of x ∗ y to the underlying set of ∂x̃∩ y is
∂x ∗ y, which completes the proof.

In particular, if x and y are cycles, Lemma 3.2 implies that ∂(x ∗ y) =
±(x • y − (−1)|x||y|y • x). Therefore, we have

Theorem 3.3 (H⋆, •) is an associative, (graded) commutative algebra.

Let us compare the loop product on loop homology (H⋆, •) with the usual
homology of the manifold with intersection product (H⋆(M),∧) and the ho-
mology of the based loop space with the based loop product or Pontryagin
product, (H⋆(Ω),×). We have two maps,

H⋆(M)
ε
−→ H⋆

∩
−→ H⋆(Ω)

where ε is the inclusion of constant (or even ε small) loops into all loops and
∩ is the transversal intersection with one fiber of the projection loop space
evaluation
−→ M . If we use the usual grading on H(Ω), our shifted grading on

H⋆, the homology of the entire loop space, and the analogous shifted grading
on H⋆(M), then these products and the two maps have degree zero.

Proposition 3.4 (H⋆(M),∧)
ε
−→ (H⋆, •)

∩
−→ (H⋆(Ω),×) preserve products.

Proof. These follow directly from the definitions.

Remark 3.5 ε is an injection onto a direct summand. For any Lie group
manifold, ∩ is a surjection. �

Corollary 3.6 For M = S3, the loop product is non-zero in infinitely many
degrees.

Proof. By Remark 3.5, H⋆
∩
−→ H⋆(Ω) is a surjection. With Q coefficients,

the homology of Ω(S3) is the homology of CP∞ and the Pontryagin product
gives a polynomial algebra on this generator in degree 2.
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4 The loop bracket {, } in loop homology

For easier thinking, let us now derive formulae by calculating in the chain
complex of all homomorphisms L∗ ⊗ L∗

ϕ
−→ L∗ of degree −1, 0, 1, . . ., with

the usual ∂ defined by the Leibniz rule with signs,

∂(ϕ(a⊗ b)) = (∂ϕ)(a⊗ b) + (−1)|ϕ|ϕ(∂(a⊗ b)),

∂ϕ, which is defined by this relation, is also denoted [∂, ϕ], the graded com-
mutator of ∂ and ϕ.

If [∂, ϕ] = 0, ϕ is usually called a chain map. As an example, if ϕ(x⊗y) =
(−1)|x|x ∗ y of the previous section, [∂, ϕ] evaluated on (x⊗ y) is

(−1)|x|∂(x ∗ y) + ((−1)|x|+1∂x ∗ y + x ∗ ∂y) =

(−1)|x|(∂(x ∗ y)− ∂x ∗ y − (−1)|x|+1x ∗ ∂y).

By Lemma 3.2 this is equal to

x • y − (−1)|x||y|y • x.

In other words, in the chain complex of homomorphisms L∗ ⊗ L∗
ϕ
−→ L∗,

the transversally defined 1-chain (−1)|x|x ∗ y has boundary the transversally
defined zero chain (x • y − (−1)|x||y|y • x). Symbolically,

∂∗′ = • − •τ,

where x ∗′ y = (−1)|x|x ∗ y and τ(x⊗ y) = (−1)|x||y|y ⊗ x.
Thus we consider ∗′ + ∗′τ and calculate it is a 1-cycle

[∂, ∗′ + ∗′τ ] = [∂, ∗′] + [∂, ∗′τ ] =

[∂, ∗′] + [∂, ∗′]τ = (• − •τ) + (•τ − •) = 0

using [∂, τ ] = 0 and τ 2 = 0.

Definition 4.1 The loop bracket {x, y} is defined transversally on L∗ by the
formula

{x, y} = x ∗ y − (−1)(|x|+1)(|y|+1)y ∗ x.

�

Lemma 4.2 For x, y, z ∈ L∗ the associator of ∗ is symmetric in the first
two variables,

x ∗ (y ∗ z)− (x ∗ y) ∗ z = (−1)(|x|+1)(|y|+1)(y ∗ (x ∗ z)− (y ∗ x) ∗ z).
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Figure 4: Kx∗(y∗z) and K(x∗y)∗z

Proof. Observe that the parameter spaces ofKx∗(y∗z)−(x∗y)∗z andKy∗(x∗z)−(y∗x)∗z

consist in those values where the basepoint of the loops of x coincides with
the one of the points of the loop of z and the basepoint of loops of y coincides
with another. (see Figure 4)

Symbolically,

Kx∗(y∗z)−(x∗y)∗z = {(kx, s, ky, t, kz) ∈ Kx × [0, 1]×Ky × [0, 1]×Kz :

x(xx)(0) = z(kz)(s), y(ky)(0) = z(kz)(t)}

Ky∗(x∗z)−(y∗x)∗z = {(ky, t, kx, s, kz) ∈ Kx × [0, 1]×Ky × [0, 1]×Kz :

x(xx)(0) = z(kz)(s), y(ky)(0) = z(kz)(t) =}.

Clearly, there is a bijection between the underlying sets of the chains in
question, Kx∗(y∗z)−(x∗y)∗z and Ky∗(x∗z)−(y∗x)∗z , which is orientation preserving
if and only if (−1)(|x|+1)(|y|+1) = 1.

Proposition 4.3 (L⋆, {, }) is a graded Lie algebra (transversally) with all the
degrees shifted by 1. In other words, for each x, y, z ∈ L⋆ mutually transver-
sal,

(1) {x, {y, z}} = {x, {y, z}}+ (−1)(|x|+1)(|y|+1){y, {x, z}}.

(2) {x, y} = −(−1)(|x|+1)(|y|+1){y, x}

Proof. Let us prove (1). By Lemma 4.2,

{{x, y}, z}+ (−1)(|x|+1)(|y|+1){y, {x, z}} − {x, {y, z}} =

(x∗y)∗z−(−1)(|x|+1)(|y|+1)(y∗x)∗z−(−1)(|x|+|y|)(|z|+1)z∗(x∗y)+(−1)|x||z|+|y||z|+|x||y|+1)z∗(y∗x)

+(−1)(|x|+1)(|y|+1)y ∗ (x ∗ z)− (−1)(|x|+1)(|y|+|z|)y ∗ (z ∗ x)
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−(−1)(|y|+1)(|z|+1)(x ∗ z) ∗ y + (−1)(|x|+|y|)(|z|+1)(z ∗ x) ∗ y

−x ∗ (y ∗ z) + (−1)(|y|+1)(|z|+1)x ∗ (z ∗ y) + (−1)(|x|+1)(|y|+|z|)(y ∗ z) ∗ x

−(−1)|x||y|+|y||z|+|x||z|+1(z ∗ y) ∗ x = 0

Remark 4.4 An identical Proposition and proof can be found in [1] in a
purely algebraic context. �

Corollary 4.5 The loop homology with the loop bracket,(H, {, }) is a graded
Lie algebra of degree +1.

Now we discuss the compatibility of loop bracket and loop product.
By Lemma 3.2, the map (transversally defined)

L⋆ ⊗ L⋆ ⊗ L⋆ −→ L⋆,

x1 ⊗ x2 ⊗ y −→ (x1 • x2) ∗ y − x1 • (x2 ∗ y)− (−1)|x1|(|y|+1)(x1 ∗ y) • x2

is a chain map, i.e., the commutator with ∂ is zero transversally.

Lemma 4.6 Let x, x1, x2, y, y1, y2 ∈ L∗ be appropriately transversal, then

(1) x ∗ (y1 • y2) = (x ∗ y1) • y2 + (−1)|y1|(|x|+1)y1 • (x ∗ y2)

(2) (x1 • x2) ∗ y − x1 • (x2 ∗ y) − (−1)|x1|(|y|+1)(x1 ∗ y) • x2 ≃ 0, where ≃
means chain homotopy.

Proof. The proof of (1) is easier because the equation holds transversally at
the chain level: The set of parameters where the marked point of x coincides
with one of the images of y1 • y2 is the union of the set of parameters where
the marked point of x coincides with one of the image of y1 union the set of
parameters where the marked point of x coincides with one of the image of
y2. (see Figure 5)

Let us prove (2). The idea (see Figure 6) is that the 2 dimensional chain

ϕ: L∗ ⊗ L∗ ⊗ L∗ −→ L∗,

x1 ⊗ x2 ⊗ y
ϕ
−→ ϕx1,x2,y

where x1 and x2 attach to y at pairs of arbitrary points in such a way relative
to the cyclic order that x1 is between the marked point and x2, provides a
chain homotopy between the two sides. More precisely, for each pair of points

(s, t) ∈ T = {(s, t) ∈ [0, 1]× [0, 1] : s+ t ≤ 1},

14



Figure 5: Proof of Lemma 4.6(1)

we will define a chain such that x1 is attached to y at t and x2 is attached
to y at 1− s.

Let

K = {(kx1, kx2, s, ky, t) ∈ Kx1 ×Kx2 × [0, 1]×Ky × [0, 1] :

x1(kx1)(0) = y(ky)(t), x2(kx2)(0) = y(ky)(s), s, t ∈ [0, 1]; s+ t ≤ 1}

We define a map ϕx1,x2,y:K −→ L.

ϕx1,x2,y(kx1, kx2, s, ky, t)(γ) =





y(3γ) if γ ∈ [0, t
3
]

x1(3γ − t) if γ ∈ [ t
3
, t+1

3
].

y(3γ) if γ ∈ [ t+1
3
, 1

3
]

x2(3γ + s− 1) if γ ∈ [1−s
3
, 2−s

3
].

y(3γ) if γ ∈ [2−s
3
, 1].

for each (kx1, kx2, s, ky, t) ∈ K, γ ∈ S1.
Since the restriction of ϕ to

(i) K ∩ {(kx1, kx2, s, ky, t) ∈ Kx1 ×Kx2 × [0, 1]×Ky × [0, 1] : t = 0} is

x1 • (x2 ∗ y).

(ii) K ∩ {(kx1, kx2, s, ky, t) ∈ Kx1 ×Kx2 × [0, 1]×Ky × [0, 1] : s = 1} is

(−1)x2(y−1)(x1 ∗ y) • x2

(iii) K∩{(kx1, kx2, s, ky, t) ∈ Kx1 ×Kx2 × [0, 1]×Ky × [0, 1] : s+ t = 1} is

(x1 • x2) ∗ y

then

∂K = K∂y,x1,x2 + (−1)yKy∂x1,x2 + (−1)y+x1Ky,x1,∂x2+

K(x1•x2)∗y −Kx1•(x2∗y) − (−1)x2K(x1∗y)•x2
.

∂ϕ is the restriction of ϕ to ∂K. Thus

(∂ϕ−ϕ∂)(x1⊗x2⊗y) = (x1 •x2)∗y−x1 • (x2 ∗y)− (−1)|x1|(|y|+1)(x1 ∗y)•x2

which completes the proof of (2). (See also [1]).
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Figure 6: Proof of Lemma 4.6(2)

By Corollary 4.5 and Lemma 4.6 we have,

Theorem 4.7 The loop product • with the loop bracket {, } makes the loop
homology into a Gerstenhaber algebra, namely:

(1) The loop product • defines a graded commutative, associative algebra.

(2) {, } is a Lie bracket of degree 1, which means that for each a, b, c ∈ H∗

(i) {a, b} = −(−1)(|a|+1)(|b|+1){b, a}

(ii) {a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1)(|b|+1){b, {a, c}}

(3) {a, b • c} = {a, b} • c+ (−1)|b|(|a|−1)b • {a, c}.

5 The ∆ operator

Now we consider the degree +1 operation on the chains of the loop space,

→ Li
∆
−→ Li+1 →

given by the circle action on Map(S1,M). It can be defined in the following
way: If x:Kx −→ L is an i-chain then ∆(x): S1 ×Kx −→ L is the i+1 chain
such that for each (s, kx) ∈ S1 ×Kx, ∆(x)(s, kx)(γ) = x(kx)(γ + s).

Since ∆ commutes with the ∂ operator on chains, it passes to the loop
homology, the homology of the free loop space, inducing a degree +1 operator

16



∆. Moreover, if x is an i-chain and k ≥ 1 then (∆)k(x) has always geometric
dimension i+ 1. Therefore we obtain

Proposition 5.1 ∆: H⋆ −→ H⋆ is a degree +1 operator and ∆ ◦∆ = 0.

We want to study how ∆ interacts with the above structure • and {, }.
In order to do it, we need to define two auxiliary degree +1 operators on L∗

∆1,∆2: L∗ −→ L∗.

Let x:Kx −→ L be a k-chain. Then

∆1(x): [0,
1
2
]×Kx −→ L, ∆2(x): [

1
2
, 1] −→ L,

are the k + 1-chains defined by

∆1(x)(s, kx)(γ) = x(kx)(γ + s) and ∆2(x)(s, kx)(γ) = x(kx)(γ + s).

Hence, ∆ = ∆1 + ∆2

The transversally defined map

L⋆ ⊗ L⋆ −→ L⋆,

x⊗ y −→ x •∆y

is a chain map because it is composition of (transversally defined) chain
maps. On the other hand, using Lemma 3.2 one can prove that the map

L⋆ ⊗ L⋆ −→ L⋆,

x⊗ y −→ (−1)|x|∆2(x • y)− x ∗ y

is also a chain map. Moreover, these two chain maps are chain homotopic,
as is shown in the next lemma.

Lemma 5.2 For x, y ∈ L⋆,

(−1)|x|∆2(x • y)− x ∗ y ≃ x •∆y

Proof. First, the idea of the proof: consider the chain operation

ϕ: L⋆ ⊗ L⋆ −→ L⋆

where the loop of x is attached to any point of the loop of y and one goes
around a part of the loop of y, starting at any point between the marked

17



Figure 7: Proof of Lemma 5.2

points of y and x and ending where x is attached, then goes around the loop
of x and finally, around the rest of y. (See Figure 7).

More precisely,
Let x:Kx −→ L, y:Ky −→ L be two cells of L⋆. Consider Kx∗y, the

parameter space of x ∗ y and set

K = {(t, kx, s, ky) ∈ [0, 1]×Kx∗y : 0 ≤ t ≤ s ≤ 1}

and define a chain ϕ:K −→ L as follows

ϕ(t, kx, s, ky)(γ) =





y(ky)(2γ + t) if γ ∈ [0, s−t
2

] ,
x(kx)(2γ − s+ t) if γ ∈ [ s−t

2
, s−t+1

2
],

y(ky)(2γ + t) if γ ∈ [ s−t+1
2

, 1].

Observe that x is attached to y at the image of s by y and the image of t by
y is the marked point of the resultant loop.

Proceeding in an analogous way as we did in the proof of Lemma 3.2, we
obtain

(∂ϕ− ϕ∂)(x⊗ y) = (−1)|x|∆2(x • y)− x ∗ y − x •∆y

as desired.
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Corollary 5.3 The loop bracket {, } on the loop homology is the deviation
of ∆ from being a derivation of the loop product. In other words, for a, b ∈ H

{a, b} = (−1)|a|∆(a • b)− (−1)|a|∆a • b− a •∆b

Theorem 5.4 The loop product • and the operator ∆ make the loop homol-
ogy into a Batalin Vilkovisky algebra, namely:

(1) • is a graded commutative associative algebra.

(2) ∆ ◦∆ = 0.

(3) (−1)|a|∆(a • b)− (−1)|a|∆a • b− a •∆b is a derivation of each variable.

Proof. By Theorem 4.7,Proposition 5.1 and Corollary 5.3.

Remark 5.5 The alternative definition of a Batalin Vilkovisky algebra as
a graded commutative algebra (A, ·) with a degree +1 operator ∆:A −→ A
such that ∆ ◦∆ = 0 and for each a, b, c ∈ A

∆(a · b · c) = ∆(a · b) · c+ (−1)|a|a ·∆(b · c) + (−1)(|a|−1)bb ·∆(a · c)

−∆(a) · b · c− (−1)|a|a ·∆(b) · c− (−1)|a|+|b|a · b ·∆(c)

can be found in Getzler [2]. �

6 The String Bracket

Using the circle action on the free loop space, we can define the equivariant
homology H⋆ of the entire loop space. We could describe this as the ordinary
homology of the quotient space S of general smooth mappings (S1,Md) by the
circle action of rotation in the domain circle S1. The space S can be viewed
as the space of all general smooth closed curves in M . Thus we refer to the
equivariant homology of the mapping space Map(S1,M) as string homology.
The circle fibration

S1 −→ (typical loops) −→ S=string space

leads to an exact sequence (geometric grading)

−→ Hi
E
−→ Hi

c
−→ Hi−2

M
−→ Hi−1 −→ . . .

where E forgets the marked point of each member of a family of loops, M
places a mark on each string in a family in all possible positions (and c
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is defined by cap product with the characteristic class of the circle bundle
above).

The operator ∆ above is the composition M ◦E. The composition E ◦M
on homology is zero, as part of the exactness above.

Any operation H⊗k
⋆

σ̃
−→ H⋆ given by composition of • and ∆ yields an

operation H⊗k
⋆

σ
−→ H⋆, σ = E ◦ σ̃ ◦M⊗k.

In particular, taking σ̃ = • and adding a sign, gives the binary operation

H⋆⊗H⋆

[,]
−→ H⋆ called the string bracket,

[a, b] = (−1)|a|E(M(a) •M(b)).

where |a| = dimension a− d.

Theorem 6.1 String homology with the string bracket, (H⋆, [, ]) is a graded
Lie algebra of degree (2− d) for the geometric grading.

Proof. By Theorem 3.3, • is graded commutative. So, since M has degree
+1,

[a, b] = (−1)|a|+(|a|+1)(|b|+1)E(M(b) •M(a)) = −(−1)|a|.|b|[b, a].

To prove Jacobi, replace a (resp. b, c) by M(a) (resp. M(b), M(c)) in the
Leibniz property (3) of Theorem 4.7 and apply E to both sides of the equation
to obtain

E ({M(a),M(b) •M(c)} − {M(a),M(b)} • c−

(−1)|a|(|b|+1)M(b) • {M(a),M(c)}
)

= 0.

Now, use Theorem 5.4 and the fact that M ◦ E = ∆ to replace in the above
equation each of the brackets {x, y} by the formula (−1)|c|(M ◦ E)(c • d) −
(−1)|c|(M ◦ E)(c) • d − c • (M ◦ E)(d). Since E ◦M = 0 we cancel the terms
where E ◦M appear and so we obtain

E (−M(a) •ME(M(b) •M(c))− (−1)|a|+1ME (M(a) •M(b)) •Mc

−(−1)|a|(|b|+1)+|a|+1M(b) •ME (M(a) •M(c))) = 0

Now, replacing in the above formula each occurrence of E(M(d),M(e)) by
(−1)|d|[d, e] yields

−(−1)|a|+|b|[a, [b, c]] + (−1)|a|+|b|[[a, b], c] + (−1)|a||b|+|a|+|b|[b, [a, c]] = 0.

Hence,
[a, [b, c]] = [[a, b], c] + (−1)(|a||b|)[b, [a, c]].
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By the above procedure, considering E ◦ σ̃ ◦M⊗k we define operations

m̄k:H
⊗k −→ H, k = 2, 3, 4, . . .

by the formula

H⊗k M⊗k

−→ H⊗k(•)⊗(k−1)

−→ H
E
−→ H.

Note that if we shift the grading on string homology by (−d + 1) from its
geometric grading the degree of each m̄k becomes +1(= −(k − 1)d + k −
k(−d+ 1) + (−d+ 1)).

Now extend each m̄k to a coderivation mk to ΛH⋆. Here, ΛH⋆ is the free
graded commutative coalgebra on H⋆ with the new algebraic grading and
with the coalgebra structure which dualizes the usual ∧ algebra structure on
ΛH⋆. Thus mk is the unique operation whose dual operation is the (unique)
derivation on ΛH⋆ extending the operator dual to m̄k.

One knows the Jacobi identity for the string bracket m̄2 is equivalent to
the relation m2 ◦m2 = 0 for the associated coderivation m2.

The Jacobi relation for m̄2 generalizes to the entire collection {m̄2, m̄3, . . .}
in the following way.

Theorem 6.2 The associated coderivations {m2, m3, . . .} of the free com-
mutative coalgebra ΛH⋆ on the string homology H⋆ satisfy:

(i) mk ◦mk = 0, for k = 2, 3, 4 . . ..

(ii) mk ◦mr +mr ◦mk = 0 for k, r = 2, 3, 4, . . ..

Proof. We only have to show the equations in the case when the range of the
commutator being studied lies in monomial degree one. Since the commuta-
tor of coderivations is a coderivation, this is enough to show it is identically
zero.

We illustrate the proof of (ii) for k = 3, r = 2. We have four families
of closed curves A1, A2, A3, A4. Then (m2 ◦m3)(A1 ∧ A2 ∧ A3 ∧ A4) can be
viewed a sum of twelve terms, each of them labeled with

({Ai1 , Ai2, Ai3}, Ai1),

where {Ai1 , Ai2 , Ai3} runs over all possible choices of three families from
{A1, A2, A3, A4}, with a preferred element.

Analogously, (m2 ◦ m3)(A1 ∧ A2 ∧ A3 ∧ A4) can be viewed as a sum of
twelve terms, each of them labeled with

({Al1 , Al2}, Al1),

21



where {Al1 , Al2} runs over all possible choices of two families with a preferred
element.

A correspondence of the two sets of labels is given by the map

({Ai1 , Ai2 , Ai3}, Ai1) −→ ({Ai1 , An}, Ai1)

where An is the only family not in {Ai1, Ai2 , Ai3}.
Now, we will see that corresponding pair of terms appear in m3 ◦m2 +

m2 ◦m3 with different sign.
Consider, for instance, the corresponding pair of terms labeled by

({A1, A2, A3}, A3) and ({A3, A4}, A3).

For simplicity, let us denote by Ai the parameter space of the family Ai.
We can assume that each Ai is a cell, and that M(Ai) is a map

M(Ai): S
1 ×Ai −→ L

where
M(Ai)(s, a)(γ) = Ai(a)(s+ γ).

The parameter space of the term labeled ({A1, A2, A3}, A3) is Kϕ, the preim-
age of diagM3 × diagM2 under the map

S1 × S1 ×A1 × S1 × A2 × S1 × A3 × S1 × A4
ϕ
−→M3 ×M2,

given by ϕ(t, s1, k1, s2, k2, s3, k3, s4, k4) =

((A1(k1)(s1), A2(k2)(s2), A3(k3)(s3)) , (A3(k3)(t), A4(k4)(s4)))

The parameter space of the term labeled with ({A3, A4}, A3), Kψ is the
preimage of diagM3 × diagM2 under the map

S1 × S1 ×A1 × S1 × A2 × S1 × A3 × S1 × A4
ψ
−→M3 ×M2,

given by ψ(s1, t, k1, s2, k2, s3, k3, s4, k4) =

((A1(k1)(s1), A2(k2)(s2), A3(k3)(s3)) , (A3(k3)(t), A4(k4)(s4))) .

Over each point of these parameter spaces, the loops of the terms labeled
with ({A1, A2, A3}, A3) and ({A3, A4}, A3) are as in Figure 8.

Observe that the only difference between ϕ and ψ is that s1 and t are
interchanged. This produces the difference of sign.
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Figure 8: The loop of the terms labeled with ({A1, A2, A3}, A3) and
({A3, A4}, A3)

Now, we prove (i). We illustrate for k = 3. There will be five families,
A1, A2, A3, A4, A5. (m3 ◦m3)(A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5) is the sum of thirty
terms, each of them labeled with

({Ai1, Ai2 , Ai3}, Ai1)

where ({Ai1, Ai2 , Ai3} runs over all subsets of three elements of {A1, A2, A3, A4, A5}.
We group these terms in pairs with the following correspondence

({Ai1, Ai2 , Ai3}, Ai1)↔ ({Ai1, Aj1, Aj2}, Ai1)

where {Aj1, Aj2} = {A1, A2, A3, A4, A5} \ {Ai1 , Ai2 , Ai3}. As in the proof of
case (ii), we can see that the parameter spaces corresponding to pairs cancel,
so (i) holds.

Corollary 6.3 There exists an uncountable family {δΛ} of Lie∞ structures
on the string homology. Namely, for each Λ ⊂ {2, 3, . . .},

δΛ: ΛH⋆ −→ ΛH⋆ defined as δΛ =
∑

λ∈Λ

mλ

is a coderivation which satisfies δΛ ◦ δΛ = 0.
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Proof. By Theorem 6.2 each δλ is a coderivation of ΛH⋆ of square zero and
so determines (by definition) a Lie∞ structure on H⋆.

7 Examples

Example 7.1 Let us unwrap the string bracket for Md when d = 2. If
the genus is greater than one, the equivariant homology of the loop space is
concentrated in dimension zero (except for the component of the trivial loop
whose higher homology we ignore at the moment).

The zeroth equivariant homology group, H0, is the vector space with basis
π̂, where π̂ denotes the set of free homotopy classes of loops in M .

Let us calculate the string bracket of two elements a, b ∈ H0. Let
̺, σ: S1 −→M be two loops such that their free homotopy classes are a and
b respectively.

We consider g two elements x, y of L−1 determined by two maps

S1 x,y
−→ Map(S1,M2)

given by
x(s)(γ) = ̺(s+ γ) y(t)(γ) = σ(t+ γ).

Hence, Ma = x̄ and Mb = ȳ, where x̄ denotes the homology class of a cycle
x.

Assume that x and y are transversal.
Thus, Kx•y = {(s, t) ∈ S1 × S1 : ̺(s) = σ(t)}. By transversality, the set

of intersection points of the curves ̺ and σ, ̺∩σ is finite. Observe that it is
precisely {̺(s) : (s, t) ∈ Kx•b}.

The orientation of Kx•y is given by endowing each of its points with a
sign. For each (s, t) ∈ Kx•y, this sign is precisely, the intersection index
ǫ(̺, σ, ̺(s)) of the loops ̺ and σ at ̺(s). Then

Ma •Mb =
∑

p∈̺∩σ

ǫ(̺, σ, p)(̺♯σ)p,

where (̺♯σ)p denotes the free homotopy class which contains the loop product
of ̺ and σ at p. Hence,

[a, b] = E(Ma •Mb) =
∑

p∈̺∩σ

ǫ(̺, σ, p)E((̺♯σ)p),

It seems remarkable that this formula is well defined in the vector space
of components, it is skew symmetric, and satisfies Jacobi. Thus the string
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bracket becomes for d = 2 the formula discovered by Wolpert [12] and Gold-
man [3] which plays a role in the symplectic structure of the Techmuller space
[12](because of Thurston’s earthquakes) and the symplectic structure on the
flat G-bundles for G a compact semisimple Lie group [3].

Indeed, trying to understand and generalize Goldman’s work [3] lead us
to the general theory above. �

Example 7.2 Now take d = 3 and consider a possibly twisted circle bundle
over M3 with base a surface F of genus greater than one. It is interesting
for the string bracket of M3 to consider equivariant homology (i.e., string
homology) in dimension one. Cycles are generated by maps of torii into M3.
The projection of the torus to F is homotopic to a circle. So we only get
interesting examples of torii in M3 by taking all the fibers in M3 over some
circle in F . Two of these torii A and B can be put in transversal position by
putting their projections a and b in F in transversal position. We see that
the string bracket of A and B in M3 is the lift of the string bracket of a and
b in F (as described in Example 7.1). So for these 3-manifolds the string
bracket is just as non trivial as the string bracket on surfaces.

A similar discussion applies to Seifert fibrations over surfaces. �

8 Loop product and cap product

The cohomology algebra of a space (with cup product) acts on the homology
of a space (called cap product) via the duality formula

< a ∩ x, b >=< a ∪ b, x >

where <,> is the dual pairing between homology and cohomology, ∪ is cup
product, and ∩ is cap product. To relate this structure to our loop product
•, consider the diagram

Map(S1,M)
c
←− Map(figure eight,M)

i
−→ Map(S1,M)×Map(S1,M)

where c denotes the composition of loops and i is the natural inclusion.

Definition 8.1 A pair of cohomology classes (a, A) (in the appropriate spaces)
is called a compatible pair if i⋆A = c⋆a. �

Theorem 8.2 For each x, y homology classes and compatible pair of classes
(A, a)

loop product (A ∩ (x⊗ y)) = a ∩ (x • y).
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Proof. The loop product is the composition of intersection with image i
(which is represented as a codimension d submanifold being the transverse
image of the diagonal under the map

Map(S1,M)×Map(S1,M)
marked points
−→ M ×M)

with the induced transformation of c in homology. The first process com-
mutes with cap product with firstA then with its restriction to Map(figure eight,M).
The second process commutes with capping with a class in Map(S1,M) or
with its pull back via c to Map(figure eight,M)

9 Appendix 1: S2 and other simply connected

manifolds

Fibrations such as

based loop maps on S2 −→ all loops in S2 −→ S2

have algebraic models. For example, S2 and based loops on S2 are modeled by

(0; x; y . . .)
d
−→ (0; 0; x2) and (x; ȳ)

d
−→ (0; 0) respectively. The notation gives

the generators in degrees 1; 2; 3; . . . respectively and what the differentials are.
The model is the free commutative algebra with those generators provided
with a derivation d of square zero and degree 1 with the specified values.

The total space of the fibration has a model (x̄; ȳ, x; y)
d
−→ (0;−2xx̄, 0; x2).

There is also a derivation ∆ of degree −1 and square zero given by

(x̄; ȳ; x; y)
∆
−→ (0; 0; x̄; ȳ) and d∆ + ∆d = 0 is true (and in fact determines d

given ∆ and d on the base of the fibration.)
The models are cochain models. The obvious maps serve as cochain maps

corresponding to the maps between space. The cohomology and induced
transformations are derived accordingly [5].

The equivariant cohomology or string cohomology has model obtained by
adding one closed generator u of degree 2

(x̄; ȳ, x, u; y)
d̄
−→ (0;−2xx̄, x̄u, 0; x2 + ȳu)

where d̄u = 0 and d̄z = dz + (∆z)u determines the rule for the other gener-
ators z.

Calculating with these models we find the Betti numbers of the loop
homology are all 1 in each dimension 1, 2, 3, . . . and the image of based loop
homology in free homology is in degrees 1, 3, 5, . . .. Thus exactness for S2 of

based loop homology
inclusion
−→ loop homology

∩
−→ based loop homology
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implies ∩ has non trivial image in the even degrees 0, 2, 4, . . .. This shows
the loop product is non-trivial for S2.

Calculating further, one finds ∆ is an isomorphism on loop homology from
odd to even dimensions and is zero in even dimensions. Since ∆ = M ◦ E,
one finds that E is non zero in odd dimensions and M is non zero starting
in odd dimensions. Since E ◦M = 0, one finds E is zero in even dimensions
and M is zero starting in even dimensions. Thus the string bracket [x, y] =
±E(M(x) •M(y)) is zero in all dimensions for S2.

9.1 General simply connected manifolds

This pattern works in general for simply connected manifold to describe the
algorithm for calculating the rational homology of these spaces:

If M has minimal model (where each differential is quadratic + higher
order terms)

(0; x1, x2, . . . ; y1, y2, . . .)
d
−→ (dx1, dx2, . . . ; dy1, dy2, . . .)

then the based loops on M has a model

(x̄1, x̄2, . . . ; ȳ1, ȳ2, . . .)
d
−→ (0, 0, . . . 0; 0, . . .)

and the free loop space with operations ∆ and d of degree −1 and 1 satisfying
d∆ + ∆d = 0 has model with generators

(x̄1, x̄2, . . . ; ȳ1, ȳ2, . . . , x1, x2, . . . ; y1, y2, . . .)

∆ is defined by xi 7→ x̄i, yi 7→ ȳi and x̄i, ȳi 7→ 0. Then d is defined so that
d∆+∆d = 0 and d is given as before on the xi, yi . . . coming from Md. Thus
(d∆ + ∆d)xi = 0 implies dx̄i = −∆(dxi) can be calculated since dxi and ∆
are known.

A equivariant model is obtained by adding to a free loop space model one
more variable u in degree two with du = 0 and d̄z = dz + ∆(z) · u for the
other generators z [5].

Remark 9.1 In [6] it was shown the ranks of the loop homology are un-
bounded for simply connected manifolds unless the minimal model has only
one or two generators (like S2 or S3). �

10 Appendix 2: M 3 and K(π, 1) manifolds

It is known that any closed 3-manifold is a connected sumM1♯M2♯M3♯ . . . ♯Mn

along S2 where each of the Mi’s is of one of the following types
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(i) π1 is finite so the universal cover is homotopy equivalent to S3.

(ii) Mi is S1 × S2.

(iii) π1 is infinite and the universal cover is contractible [4]

The technique of models plus finite group invariance can be used to treat
the examples of type (i) and (ii) .

If we treat examples of type (iii) it seems plausible one could develop an
algorithm for the connected sum using our knowledge of S2 and free product
ideas.

We discuss type (iii) under the hypothesis of Thurston’s geometrization
picture.

(1) If Mi is closed hyperbolic, each centralizer of a non-zero conjugacy
class is infinite cyclic. Thus that component of the free loop space is
a homotopy circle. By dimension reasons all loop products between
these components are zero. The loop product reduces to the classical
intersection product.

(2) Otherwise M would be a union along torii of Seifert fibrations over
surfaces with boundary and finite volume hyperbolic manifolds with
neighborhoods of the cusps deleted.

(3) If any non trivial Seifert fibrations are present, we have a rich structure
of loop product as described in Example 7.2.

(4) Finally, M could be a union along torii of hyperbolic pieces and we
haven’t analyzed these cases.

10.1 General K(π, 1) manifolds, d ≥ 3

The loop space of M is homotopy equivalent to a union over conjugacy classes
α in π of K(πα, 1) homotopy types, where πα is the centralizer of a represen-
tative of α. In particular a component of L(M) is homotopy equivalent to
a covering space of M . Thus its homological dimension is at most d. Again
for hyperbolic manifolds, the string bracket is zero for dimension reasons.
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