On the foundation of geometry, analysis,
and the differentiable structure for manifolds

by Dennis Sullivan

There are levels of structure on a set beneath that of the differentiable structure on
a smooth manifold and above that of the topological structure where one has more than
enough to define an adequate algebra of differential forms, exterior d, and their non—linear
versions connections and curvatures on vector bundles over the space.

One example described in Whitney’s book [1] is the structure of any metric gauge
which is locally equivalent to that of a polyhedron. By a metric gauge we mean a maximal
class of metrics on the set where for any two metrics in the class all the respective local
distances d(x,y) are in bounded ratio. The idea of Whitney’s construction is to start with
lipschitz chains and put ‘a new norm which makes two chains close if they are up to a small
mass error homologous by a chain of small mass. The continuous cochains for this
Whitney norm on chains form a graded commutative differential algebra -~ the Whitney
forms for the metric gauge. One obtains in this way forms w so that w and dw have
bounded measurable coefficients. Exterior d is a bounded operator for the Whitney norm.
There are also forms with square integrable coefficients with exterior d a closable
unbounded operator with dense domain containing the Whitney {orms.

I the metric gauge is locally equivalent to that of Euclidean space Teleman
developed Hodge theory using these Whitney and L2 forms. [2] He found that exterior d
plus the adjoint of exterior d _rela,tive to any L2 inner product where multiplication by
functions is self adjoint is itself essentially self adjoint.

Such a Hilbert space norm on forms is determined by a bounded measurable Hodge
* operator and it is not clear a priori but true that d and d* have a common domain. A
key point is that d has closed image which follows as usual from deRham’s theorem. The

self adjoint signature operator d 4+ d* was used by Teleman to develop a version of the



Atiyah-Singer Index theorem for these metric gauges. Other corollaries [3], [4] were a
construction of characteristic classes and the K—homology orientation [17] from the metric
gauge.

One knows the following result [5].

Theorem 1: Locally Euclidean metric gauges exist and are unique up to small

isotopy on every locally Euclidean topological space if the dimension is not equal to four.

This uses [5] together with work of Bing and Moise below dimension four and the
annulus work of Kirby based on Novikov in dimensions above four. (see [5] for further
references).

The existence and uniqueness result of Theorem 1 is also true for locally Euclidean
conformal gauges [5]. By a conformal gauge we mean a maximal class of metrics on a set
where for any two metrics in the class the bounded local relative distances d(x ’y)/d(x,y’)
in one are also bounded in the other. Now differential forms, wedge product, and exterior d
can also be constructed given a locally Euclidean conformal gauge on a set. This is
described in [6] and can be based on either work of the Morrey school or that _of the
Helsinki school. Here one obtains forms that have pth power integrable measurable
coefficients where (degree of form) - (power of integrability) equals (ambient dimension}).
Exterior d will be an unbounded operator and it is interesting to note that the composition
of a local Poincaré lemma singular integral operator with a Sobolev embedding defines a
local inverse of exterior d, {"/kth power integrable k—forms} goes by Poincaré lemma
transform to {1st derivative "/kth power integrable (k—1) — forms} which goes by Sobolev
embedding to {(®/k—1)th power integrable (k—1) — forms}.

Modifications of this picture in dimension zero and the top domension n are
sometimes required e.g.., one can replace bounded measurable functions (L") by functions
of bounded mean ascillation (BMO) and replace integral n—forms (L1} by the Hardy space

n forms (HY). This all makes good sense in the locally Euclidean conformal gauge.



In {6] Teleman’s work was recapitulated for the locally FEuclidean conformal gauge.
The phase of the signature operator (but not its absolute value) could be defined in the
conformal gauge via an algebraic device that circumvented Teleman’s delicate issue of a
common domain of d and d*. This device worked in even dimensions and developing the
picture in odd dimensions presents interesting new features. The Atiyah—Singer theorem
was developed also in the conformal gauge and eventually in dimension four the entire
Yang—Mills—Donaldson theory, {6].

Then using work of Michael Freedman [7] and Simon Donaldson [16] one can prove
the following theorem [6].

Theorem 2: The conformal gauges of Kaehler complex surfaces in one topological
type can form an infinite number of isomorphism classes. Some locally Euclidean

topological spaces in dimension 4 do not admit locally Euclidean conformal gauges.

Using calculations of Donaldson invariants by Friedman and Morgan [8] for Kachler
complex surfaces and the obvious but beautiful fact that two generic algebraic surfaces in a
connected algebraic family are diffeomorphic one can deduce the following result.

Theorem 3: Fixing the conformal gauge of a Kaehler complex surface determines the
diffemorphism type up to finitely many possibilities.

Proof: Friedman and Morgan show that two Kaehler surfaces with the same

Donaldson invariants up to deformation lie in one algebraic family. (8]

Recently, Friedman and Morgan have arrived at a much faster proof of the
statement that two Kaehler surfaces with the same Seiberg Witten invariants up {0
deformation lie in one algebraic family. This swifter calculation does not literally yield a
proof of Theorem 3 even if certain conjectures by Mrowka, Kronheimer, and Witten are

verified [9]. The point is that the Seiberg Witten theory depends on the existence of the

Dirac operator on spinors ("square roots" of differential forms). We conjecture [10] that an



appropriate Dirac package does not exist for a locally Euclidean conformal gauge or a

locally Euclidean metric gauge unless the pauge contains a smooth structure. To

summarize all the above consider the table suggestive of several comjectural statements

some of which are theorems.

Operator Structure

phase of signature operator locally euclidean conformal gauge
signature operator locally euclidean metric gauge

Dirac operator locally euclidean differeniable structure

This table was also discovered by A_l:ﬁn Connes [11] in the context of "non
commutative geometry" where the operator on a Hilbert space h plays the primary role in
extracting the non commutative geometry and analysis from the non commutative
topology (a C* algebra) and its non commutative measure theory (a self adjoint
representation of the C* algebra in the Hilbert space k). The link is provided by Atiyah’s
seminal idea relating K—homology and abstract elliptic operators [12] that the operator and
the representation commute modulo lower order terms.

When Connes developed Chern Weil formalism in the non—commutative context, he
discovered cyclic cohomology [11]. These non commutative ideas come together with [6] in
[13] to develop, using the phase of the signature operator, a local formula for the
characteristic classes of an even dimensional manifold with a locally Euclidean conformal
gauge and a choice of bounded measurable * in the middle dimension. The discussion is
closely related to the measurable Riemann mapping theorem ((Morrey—Ahlfors—Bers) in
2D and the Donaldson Yang Mills theory in 4D. In a related paper [14] a locally Euclidean
metric gauge and a full choice of a bounded measurable * are used to develop local formula

for characteristic classes which converges to the classical Chern—Weil formula when a small



parameter tends to zero, at least in regions where the * is smooth. Both these discussions
[13], [14] can be viewed as an operator theoretic or quantum version of curvature and
Chern—Weil formalism.

Let us come now to the idea of the differential or smooth structure itself. In [10]
one assumes a locally Euclidean metric gauge and makes use of the Whitney forms
mentioned above. One can define a "vector bundle of one forms" — a pair (E,7) consisting
of a Lipschitz vector bundle E and a positive bounded embedding 7 of its Lipschitz sections
into Whitney one forms [10]. It makes sense to define the torsion of a connection on a
Myector bundle of one—forms". A cotangent structure for a metric gauge is by definition a
"yector bundle of one forms" (E,7) which admits a torsion free connection. The main
result of {10] asserts that a cotangent structure on X determines an index function
X — {1,2,3 ...} which depends continuously on (E,7) so that (E,7) is isomorphic (up to € >
0) to the (E’,y’) of a smooth structure iff the index function is identically one, and more
generally there are branched covering "charts" whose local degrees agree with the value of
index function.

Thus the notion of cotangent. structure provides a way to characterize and
generalize the smooth structures inside a locally Euclidean metric gauge.

The connection with Dirac comes from calculé,tions of Cheeger and his former
student Chou [15] for polyhedra. Imagine the branching charts of some cotangent
structures are equivalent to polyhedral branched covers, then [15] shows the geometric
Dirac operator defined away from the branching set is not essentially self adjoint if one
takes as domain the Lipschitz sections of the pulled back spinor bundle by the branched
cover. In other words the Dirac operator "sees" the branching singularities of a cotangent
structure by failing to be essentially self adjoint for the natural domain of Lipschitz
sections of the relevant spinor bundle.

In setting up the Seiberg Witten theory [9] one needs abstractly — 1) differential

forms and exterior d, 2) a Hilbert space structure on forms so that multiplication by



functions is self adjoint, 3) a vector bundle of abstract spinors with the expected algebraic
relation to forms and a torsion free orthogonal connection with its correct algebraic relation
to Clifford multiplication, and finally 4) the essential self adjointness of the associated
Dirac operator with domain the regular sections of the spinor bundle.

It scems that 1), 2), and 3) are generally possible in the locally Euclidean metric
gauge context but tha,t- 1), 2), 3) and 4) are only possible in the smooth context [10].

The discussion in the lectures will concentrate on the above remarks related to

references [1], [2], [6], [10], and {13].
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