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1 Introduction
Let p be a prime or 0. A map f: X — Y between topological spaces is

called a p-equivalence if the induced homomorphism
[ Y (Y;Z/p) — H™(X;Z/p)

is an isomorphism. A p-equivalence, however, is not an equivalence relation; in
particular, the symmetricity does not hold in general. In [MT] Mimura and Toda
introduced a class of spaces in which a p-equivalence is an equivalence relation.
They called such spaces p-universal. About 20 years ago the first and the fourth
authors observed in the unpublished draft [BS] that the p-universality does not
depend on a particular prime p but on its rational homotopy type, although they
gave only the outline of the proof. The purpose of the present note is to give
a detailed proof of it and to show that the class of p-universal spaces coincides

exactly with that of spaces whose rational homotopy type has ” positive weights”




in the sense of Morgan and Sullivan. That is, our main theorem is stated as
follows.

Theorem A. Let X be o simply connected finite CW-complex. Then the
Jollowing statements are equivalent:

(1) X is p-universal for a prime p or 0;

(2) the rational homotopy type of X has positive weights;

(3) X is p-universal for any prime p and 0.

We also prove

Theorem B. Let X be o simply connected CW-compler such thot

ZdimQﬂi(X) ®Q < co.
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Then there is a p-universael space K for any prime p having the same rational
homotopy type as X if and only if X has Q-positive weights.

Theorem A does not hold for infinite complexes (see Remark 3.6). In §2 we
study & space whose rational homotopy type has positive weights. In Theorem
2.7 we give a various characterization of it and show that it is independent of
the ground field. In fact, the characterization (1) in Theorem 2.7 is stated in
[BS]. The method there is to show that the closure of Q-split torus of the group
of automorphisms of minimal model in the space of endomorphisms contains a
zero homomorphism. The detailed proof, however, was not given in [BS]. We

give here its proof by using the Galois group action on one parameter subgroups.




In §3 we prove (1) == {2} in Theorem A by using {1) in Theorem 2.7. Then
following the idea of [BS], we realize the one parameter subgroup A(g), where ¢
is a positive integer, by a self map of K which has the same rational homotopy
type as a given complex. From this, we prove Theorem B as well as (2) == (3)
of Theorem A. Finally we show in Proposition 3.7 that homogeneous spaces of
compact Lie groups are p-universal for any prime p and 0,

The authors would like to thank T. Maeda, T.Tasaka and M. Tezuka for the
useful discussions about algebraic groups.

2 Positive weights

Let V = negz V"™ be a graded vector space and denote by m = A(V) a
minimal differential graded-commutative algebra (minimal DGA for short) over
Q ([H] and [Su]). Let K be a field such that @ C K € C. We take a basis
=5, mg‘?} for V™ ® K and assign a positive integer w(mgn)) to each :1:;.").
The integer w(mfin)) is called the weight of xgn) . Let U7 be a subspace of V" @K
spanned by the elements with weight . We extend the definition of the weight
by

w(z{™ - :vg-m)) = w(z{™) + w(a:g-m)).

Then for m* the ideal of positive elements, we have the weight decomposition

mt= @ U, where U,= @ U
>3 n>2




Let X be a CW-complex and denote by m(X} = A(n€|292 V™) its minimal
model with a differential operator d.

Definition 2.1. The K-homotopy type of a CW-complex X, m(X) @ K,
is said to have K-positive weights if we can choose a basis {z{™, ... ,a:g:)} of

V* @K for n > 2 and give weight w(z\™) for each ™ such that it satisfies
w(de™) = w@™) G=1,..., k0= 2). (1)

In this case we simply say that X has K-positive weights.

We denote by m{X)}(n} the sub DGA of m(X) generated by the elements of
degree < n and by m(X)(n)? the subspace spanned by the elements of degree
i. We also denote by G, (Q) the group of Q-DGA automorphisms of m{X)(n).
If we fix a Q-basis of m{X)(n)? for i = 2,...,2n, then G,{(Q) is represented
by the subgroup of GL{(N, Q) defined by polynomial equations with coefficients
in Q, where N = %dimo@ m(X)(n)t. Let Gy be the subgroup of GL(N,C)

i=2
defined by the sam; equations. Then G, is an algebraic group defined over Q
and G,,(Q) is the set of Q-rational points of Gy,

For any field K 2 Q, there is a maximal torus T¥ of the connected component,

of Gy, defined over K by Theorem 18.2 of [B]. Then by Proposition of [B;p.121]

we have a decomposition over K

TE % 7K KK e, @)
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where 7' is the largest anisotropic subtorus defined over K and 775 is the largest
split (i.e., diagonalizable over K) subtorus of T%.

-Let C* be the multiplicative group of C.

Definition 2.2. A group homomorphism A : C* — G, is called o one

parameter subgroup of G, defined over K if it is represented by

1 0
A(t) = . teC
0 ToN
2 .
with respect to some E-basis of é; m{X)(n)*'®K, where ai,...,ay are integers.
=

Proposition 2.3. Let K be a field such that Q CK C C. A CW-complex
X has K-positive weights if and only if, for each n, there is o one parameter
subgroup M(t) of T® defined over K such that P_Ig A(t) = 0, where the topology
of Gy, is the metric one induced from CN ’

Proof. If X has K-positive weights, then the correspondence
Ay cxv— 1%z (z €U, t e KY)

defines a one parameter subgroup of TX satisfying the required property. In
fact, one can take s positive by the assumption that X has K-positive weights.
Conversely, if there is a one parameter subgroup A(t) of 7% defined over K such
that %E% A(t) = 0, one can choose a basis for ;§2 m(X)(n)* ® K and positive

integers a1,...,an so that A() is represented by




o1
M) = teK* ). (3)

o

Then one obtains a weight decomposition of m{X )}{n) ® K by putting
Up, = {zem(X)(n) @K | A(t)x = t*z} for i=1,...,N. QED

Let £, and G, be the set of C-DGA endomorphisms and the set, of C-DGA
automorphisms of m(X)(n)RC respectively. Then F, is an algebraic set defined
over Y and 7, is a Zariski open set of F,. Recall that the Zariski closure of
Gy, in E, coincides with the metric closure of Gy, in Ey, (see for example {M]),
which we denote by G, .

Lemma 2.4. Let B be a Borel subgroup of G,. If the zero homomorphism
is contoined in G'_,,,,E, then so is in the metric closure of B .

Proof. Let M be a compact maximal subgroup of G,,. Then M acts on the

complete variety G,/ B transitively, and hence we have
Gp=M:B.

Let {x,} be a sequence of the points in M - B such that lim z, = 0. Then
o

each z,, can be expressed as

Ty = U * O,

where u, € M,b, € B. There is an accumulation point & of {uy} such that




a € M, since M is compact. Then

m a-b, =0
=300

Hence by multiplying a~! we have

lim b, =0. QED

o

By (4) of Theorem 10.6 of [B] we have a semi-direct product decomposition
B=1T-U,

where 77 is a maximal torus of G, and U is a unipotent subgroup of &, by
Corollary 11.3 of {B], since B is solvable by definiton.

Lemma 2.5. If the closure (metric} of B contains 0, so does the closure of
7.

Proof, Let {z,} be a sequence of B such that nler;o T, = 0. We can express

Zp, by an upper triangular matrix

Bu - Bin
I — T
0 Ban
Since lim gy =0fori=1,2,..., m and since
n—roc
P 0
: S Tl,
0 Byn
we have the lemma. QED




There exists a maximal torus 79 of G, defined over Q. Then, if G_nE
contains 0, so does the metric closure of 7% by Lemmas 2.4 and 2.5, since
maximal tori of Gy, are conjugate. By Corollary 18.8 of [B], T© splits over a
finite normal extension K of @ so that the elements of the K-rational points
TYK) are diagonalizable over K. That is, with respect to some K-basis for
m(X){n) @ K, TV can be represented as

1 1
t‘;l-----t?nm 0

t,..., i € K" 3, (4)

N N
0 B oty
where K* is the multiplicative group of K, m is the dimension of T and ag are
integers for 1 <i<m,1<j<N.

Lemma 2.6. If the closure (metric) of T9 contains 0, there is a one param-

eter subgroup Mt) of T9 defined over K such that
tl% Aty =10.

In particular the metric closure of the K-rational points TUK) contains 0.

Proof. We denote a matrix in (3) by M(£1,...,ty). By the assumption

there is a sequence {M (z®, ...,z )}ie, such that
lim 1A @8 =0 for j=1,...,m. (5)

We choose a positive number ¢ < 1 such that z5" = t° ¢, where of and 6%




are real numbers. Then
|($§k))a§ ces (mgz))aiﬂ g O

T

By (4) for large k, the numbers Zazf -af; for j =1,..., N are simultaneously
=1

positive. Then from the density of @ in R, we can choose rational numbers

b1, ..., Bm 80 that

m -
Zﬁgaﬂ >0 for §=1,...,N.
£=1

Hence we have integers F,. .., P, such that

k14 .
ZPgaﬁ >0 for j=1,...,N.
£=1

Then the one parameter subgroup defined by
Mty = {M(¢5,...,t5) | te C*}

satisfies

Jim A(t) = 0. QED

Thus we have proved, by virtue of Proposition 2.3 together with Lemmas
2.4, 2.5 and 2.6, that m(X)(n) has K-positive weights, if G’_nE contains (, where
K is a finite normal extension of Q.

The one parameter subgroup A(t) defined over K in Lemma 2.6 is represented

2 .
by matrices S(¢) with respect to some (Q-) basis of 65; m(X)(n)* such that each
=




entry by; of S{t) = (b5} is in K if ¢ € K".For an element ¢ of the Galois group
G(K/Q), we set

S(t)° = (b;.’j .
Then the entries of the matrix

Any = [] sy

cEGK/Q)

arein Qif ¢ € K*. Hence A(t) defines elements of T2(Q), the Q-raotional points
2 .

of 7. For t € Q* we decompose Elg; m(X)(n)* into A(t)-invariant, irreducible
=

{J-subspaces

2n . £
_@2 m(X)(n) = @ Vj.
1=

=8
The restriction of A(t) for ¢t ¢ Q* on V; is represented by a matrix A4;(t} whose

entries are in . The matrix A;(¢) is diagonalizable over K; there is an invertible

matrix F; with entries in K such that
k1 (L) 0
Bj{t) = Py A;(t) Py = ;
0 ko, ()
where k1(t),...,ky, (t) are eigenvalues of A;(¢) which are conjugate over Q if

t € Q. For an element o of the Galois group G{K/Q) we set

k(1)
B {t} =
ko (2)7
Then we have
74(t)
cty= [] Bj@®= . ;
oeG(E/Q) T ()

10




where r;(t) is in Q" if ¢t € Q*. Hence if we set

P C1(t) ' P
D(t} g - i - . . . ’
P Ci(t) Pt

then it is of the form

[ () \
71 (%)

e (t)

\ .' re(t) /

Then the matrix D(t) defines a one parameter subgroup () of T2 defined over
@@ such that }1_1% p(ty = 0.

TFhen we have the following:

Theorem 2.7. The following conditions are equivalent:

(1) The Zariski closure of G, in B, contains the zero homomorphism for
each n,

(2) X has C-positive weights,

(3) X has Q-positive weights.

Proof. [(1) = (2)] The metric closure of G, in E,, contains 0 for n > 2.
Then by Lemmas 2.4, 2.5 and 2.6 there is a one parameter subgroup A(t) of
TQ defined over K such that lim A(¢) = 0. Hence by Proposition 2.3 X has

K-positive weights, where [K : Q] < co. In particular, we have (2).

11




[(2) = (3)] If X has K-positive weights for such a that [K : Q] < oo, then
from the above argument we have a one parameter subgroup p(t) of 79 defined
over (@ such that %1_1}(1) 1(t) = 0. Hence by Proposition 2.3 we have (3).

[(3) = (1)] This is obvious by Proposition 2.3. QED

I X is a formal space, then one can see that it has Q-positive weights by
grading automorphisms (see [Su] and [Shi]). Thus, the property ‘having positive
weights” does not depend on the ground field, as does in the case of formal spaces
([Sul).

3 p-universal spaces

In this section, we will prove that the rational homotopy type of a p-universal
space has positive weights. Amoqg the various definitions of the p-universality
(MOTY]), we adopt the following for the sake of our convenience:

Definition 3.1. A simply connected CW-complex X is called p-universal if
for any prime g different from p, there exists a map f: X — X such that

(1} f.: H (X;Z/9Z) — H.(X;Z/pZ) is isomorphic,

(2) fi®1: M(X)Q Z/Z — 7.(X) ® L/qZ is trivial.

Let m(X) = A( e>3 ™) be a minimal model of X. Then we have a diagram
22

Ve — Hom(m(X),Q)

]
Hom(m,{X), Z},

where ¢ is a linear isomorphism of Q-vector spaces ([Suj, [H]). Let L™ be

12




the free abelian subgroup of V*® which is mapped isomorphically by ¢ onto

Hom(m, (X}, Z). We form a multiplicative lattice:
LX) =A@ L.
(X) = A8, 1)

Then L{X) is a free graded commutative algebra over Z. Denote by L{X){n)
the sub Z-module of the elements of degrees < n.

Suppose that X is p-universal. Then the map f: X — X in Definition 3.1
induces an automorphism f : m{X) —> m(X) such that f preserves L(X). Let

{e1,--., €4, 1,..., R} be a basis for ﬁ(X)(n) such that

Ge &L (i=1,...,5)
i=2

Ry e LX) LX) (i=1,...,1),

where L(X)% is the set of the elements of positive degrees. Then by (2} of
Definition 3.1 with respect to this basis, the restriction f|L(X){n} is represented

by a matrix with integer entries

Al =
C =
such that each entry of A and B is divisible by ¢q. Let K be a finite field

extenston of Q containing all the eigenvalues of C. Let v, be a normal valuation

13
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of Q defined by

where a, b are integers prime to ¢. We extend v, to K, which is also denoted
v, by abuse of notation. All the coefficients except the highest degree of the
equation

det(t] —CY =t +ap_1f "+ - +ap=0 (6)
are divisible by ¢, where £ = s+t is the dimension of L(X)(n). Let A be one
of eigenvalues of C. Then we have

yq(Az) = Vq(—(ag,l}\efl + e tag)).
Since A is an algebraic integer, we have
ve(A) < L
Hence we have
Vg(—(@e—1t N7h 4 - + ag)) < max(uy(ae_1),.. ., vglao)) < g%,
from which we have
vg(X) < g7 (7)

Let G, be the set of K-DGA automorphisms of Z{X)(n) @ K. We choose a basis

of L{X){n) ® K so that (" is represented by an upper triangular matrix
Al * A] 0 1 *
C’ jman "L —_ T “.
0 A 0 "y 0 1

14




where A, ..., A¢ are the eigenvalues of C. Then the matrix
M 0
Cs = .
0 Y]
is the semi-simple part of C’. By the Jordan decomposition, one can see that

C is also an element of G,(K), the set of K-rational points of Gi,.

Let a{X11, X1g, - .., Xun) be a polynomial with coefficients in €@ such that
alg) = 0. for all g€ Autc(m(X)(n) @ C).
Then after muliiplying some integer, the equation
alCH =0 (k=12,..)

will become

Yo Y XN Hd=0,

t21dy+ie=t

where a;, .. ;, and d, the constant term of «, are all integers. Then by using (7)

we have

V‘I(Z Z ail--.?lz)\f?:l e )\?h) < q—'#')(-'ﬂ}’
t>1 i1+ tig—t

where 14(k) is an integer such that

lim (k) — co.

k—oo

As k can be arbitrarily large, the constant ferm d must be zero. This implies

that the Zariski closure of G, in E,, contains 0.

15




Thus by Theorem 2.7, we have proved the following:

Propositon 3.2. If X is p-universal for a prime p, the rotional homotopy
type of X has Q-positive weights.

Let X be a CW-complex such that m;(X) @ Q = 0 for ¢ > ny, where ng Is
some positive integer.

Proposition 3.3. If there is a one parameter subgroup A(t) of Aut (m(X))
such that P—I»% At) = 0, then there is a CW-complez K satisfying the following
conditions:

(a) there is o Q-equivalence g : X — K,

(b} for any two distinct primes p, q, there is a p-equivalence fj : K — K
inducing fpa @ 1=0:7(K) @ Z/q% — 7. (K) ® Z/qZ.

Proposition 3.3 follows from Lemma 3.4 below.

‘We can represent A(¢) by

e
At) = teQ”
tﬂm

with respect to some Z-basis for L{X){n}, where a4,..., a,, are positive integers.
In particular, A(s) preserves L(X) for a positive integer s.
Lemma 3.4. For each positive integer n, there is o complez K, such that

the following conditions are satisfied: (a) there is a D:GiAdisomorphism

P m(X)(n) — mUKy)




(b)
_ [ torsion free  for i<n
mi(Kn) = { 0 for i>n’

(¢) for any distinct primes p ond q, there is o p-eguivalence
fo K — K,

satisfying the following conditions:

(1} the induced homomorphism
Jap @ 12 (Ky) @ Z/qZ — 7w, (Kp) @ L/qZ

ig trivial;
(2) the following dingram is commutative:
mX)(m) 5 mX)(n)

Pr Jﬂn

m(Kn) ﬁ-) m(Kn):

where fq is a map induced by fy and Mq)y, is the restriction of A(g) on m(X)(n).

Proof. We will prove the lemma by induction on n. As an inductive hy-
pothesis we assume that there is a complex K, satisfying the cbnditions (a) ~
(c). We can choose a basis {e1,...,es} for L**1 (~ Homg(n,41(X), Z)) such
that each ¢; is an eigenvector of AM(g)p.1. Then de; € m{X)(n) is an either
an eigenvector or 0. Let N be a positive integer such that Nde; (i = 1,...,5)

represents an element of H"2(K,,; Z) via p,. Then (des, ..., de) represents an

17




element

X € [Kn: K(ZS/N,‘R-I- 2)}3

where [ , ] denotes the set of homotopy classes. Since L*t1 ~ Z°*/N as Z-

modules, A, induces a map
Ag K(Z°/N,n+2) — K(Z*/N,n + 2)

so that the diagram

K, -— K,
I x Ix
K(ZN,n+2) % K(Z/N,n+2)

is homotopy commutative. Let

QK(Z°/N,n+2) — P S K(Z°/N,n + 2)

(7

be the path fibration. Let A, : P — P be a map defined by :\q(f)(t) = A £(2)),

where £ € P and t € [0, 1]. Set

Kpii ={(z,£) € Kn x P | x(z) = 7(8)},

Crt1 = {(2,€) € Kn x P | Agx{@) = 7(0)},

Enp = {{z,8) e K x P i xfo(z) =7 (&)}
Then we define a map

)\q Ky — G

by S\q(m, £) = Az, ;\q(ﬂ)). Since A4 0 x is homotopic to x o f,, there is a homotopy

equivalence h : Cpy1 — FEqqq so that the diagram

18




Cn+1 T 41

\ l

Ky ‘“I“(;“’ Ky

is commutative, where the vertical maps are the restrictions of the projection

Ky x P — K, respectively. We define a map
}; By — Kpp

by fo(z,€) = (f,(x),£). Then the diagram

Epri — Kpp
2

! !
K, — K,

q

is commutative. By setting Tq = j‘; oho Xq, we have a commutative diagram

I
Knti —— Kpn

il }

K, K

"
We will show that the map f; : Kp41 —— Ky satisfies (a) ~ (c). First of
all, (a) is easy to show from the construction. The other part is easily obtained

from the following homotopy commutative diagram:

K{Z*/N,n+1) — Ky — K,
LA 1 fq iy (8)
K(Z?°/Non+1) — Ky — Ky,
and the fact that A, is represented on 7p41(K(Z°/N,n + 1)) by a diagonal

matrix whose entries are positive integer power of ¢. QED

Now we will complete the proof of Theorem A.
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Let X be a finite complex whose rational homotopy type has Q-positive
weights, Then by Lemma 3.4 and Proposition 2.2 we obtain a complex K,
satisfying the following two conditions for any two distinet primes p and g¢:

(1) K, has the same rational homotopy type as the n-th stage of the Post~
nikov tower of X;

(2) for any distinet primes p and g, there is a p-equivalence f; such that
fa®1=0: 7 (K,) QZ/qZ — 7, (Ky) ®Z/qZ.

Let n be the dimension of X and K} 11 be the i-skeleton of Kpy;. Then

K

n

41 has the homotopy type of a finite CW-complex. The homomorphism
iy 0 Ho(KPy 1 Z) — Hyp(Kpyr; Z) induced by the inclusion 4, : K3, —
Kpy1 is surjective. From the homology sequence of the pair (Kp 1, K}, ) we

" have an exact sequence

Hu1 (K41 2) — Hoopr (K1, Kip13 Z) —= Hu (B 13 2) — Ha (Bn a3 2)-

VI
Since H,(K?%,;Z) is free, we have a direct sum decomposition of a free Z-
module

Hn+]_(Kn+1, Kn+1;Z) e IHI j* @A,

T
where A is isomorphic to kerd), by J.. We may assume that the map f, :
Kny1 — Kypy is cellular; let f © K7y — K77y be the restriction. Then A

is f;,-invariant. We may regard A as a free submodule of mpi1(Kpt1, K5 yq)-

20
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Let {a@,...,am} be a basis of A. Let K be a complex obtained from K}, by

attaching m cells of dimension n + 1 via &y ({ = 1,..., m), where
Ot M1 (K1, K1) — mn(Kppa)

is the boundary operator. From the construction we may ragard K as a sub-

complex of K, such that

Hi(K:Z) ~ HyKpeiZ) fori<n,
H(K;Z)y — 0 forz>n

The map f7* can be extended to f; : K — K so that the diagram

K,;,r:+1 — K < Kn+1
lf;‘ J}; lfq
Kipn — K = Kup

is homotopy commutative. Then _]F"; is a p-equivalence such that the induced
homomorphism

Fo 1 H*(KG Z/qZ) — H' (K L/qE)
is trivial. Hence by (b) of Theorem 2.1 in [MOT], K is a p-universal for all p.
Finally we construct a O-equivalence ¢ : X — K. Since D.G.A.s m(X)(n -+ 1)
and m(K,, 1) are isomorphic, there is a homotopy equivalence between localised
spaces at zero:

b (Xnt1)y — (Ent) o)

where X, is the (n + 1)-th stage of the Postnikov tower of X. Composing




with the natural map and the localisation map, we obtain a map

Dny1: X — (K'n.+1)(0}-

Since (Kp11) (o) is obtained from (K7, 1)) by attaching ‘local cells’ (cone over
the local sphere) of dimension < n + 1 ([Su 2]). By the cellular approximation
theorem we obtain a map X — (K7}, ). By composing with the inclusion
we have a map ¢ : X — Ko such that ¢* induces isomorphisms on rational
cohomology. Since K is p-universal for every p and 0, the map ¢ factors as
X-LH k-4 K (0y- Then by Theorem 1.3 in [MT], X is also p-universal, and we
have the desired result.

Remark 3.6. Theorem A does not hold for infinite complexes. Recall that
the infinite quaternionic projective space HP* has the same rational homotopy
type as the Eilenberg-Maclane space K (Z, 4), which is formal. Asis well known,
the degree of the induced map on H*(HP*;Z) of a self map is odd square.
Hence HP* is not p-universal (p # 2) in the sense of Definition 3.1. However
K(Z,4) iz p-universal for any prime p.

As an application of Theorem A, we will show that homogeneous spaces of
compact Lie groups are p-universal for any prime p.

Let 7 be a compact connected Lie group and H a closed connected subgroup
of G. Let 8*(G) be the ring of polynomial function with value in R on the Lie

algebra L(G). Then $*(@) is a symmetric algebra of L(G)* = Homg(L(G), R).

22




The degree of the elements of L(G)* is defined to be 2. Let 5*(G)¥ be the
invariant subalgebra under the adjoint action of G. Then §(G) is isomorphic
to a graded polynomial algebra. Let A{G) be the exterior algebra of L(G)*, and
A(G)C the invariant subalgebra under the adjoint action of G- Then A(G)¢
is the exterior algebra of the primitive space P{G). We have the transgression
7: P(G) — S(GYF. Lety: S(G)¥ — S(H)™ be the restriction of polynomial

functions. Then we have a free DGA

A(G/H) = S(H)" @ A(G)“,

where the differential d, is defined as follows:

d(x@1) =0, forzeSH),
d-(1@y)=y(y)®1, forye P(G).

The minimal model of G/H over R is isomorphic to that of A(G/H). Let
m{G/H) @R be the minimal model of A(G/H).

Proposition 3.7. Let G be a compact connected Lie group and H a closed
connected subgroup. Then G/H is p-universal for any prime p.

Proof. By Theorem A, it is sufficient to show that the rational homotopy
type of G/H has positive weights. For any ¢ € R”, there is a one parameter

subgroup A(t) of DGA automorphisms of A(G/H) defined by

Atz ) =t"lrel,
Aoy =t (1ey),
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where |z| denotes the degree of z. The lifting ¢{t) of A(¢) on m({G/H) gives
elements of Aut g(m(G/H) @ R) such that %5% #(t) = 0. Then by Theorem 2.7
it has Q-positive weights. QED
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