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1 Introduction

This paper completes in a definitive way the picture of rational mappings begun in [30]. It
also provides new proofs for and expands upon an earlier version [46] from the early 1980s.
In the meantime the methods and conclusions have become widely used, but rarely stated
in full generality. We hope the present treatment will provide a useful contribution to the
foundations of the field.

Let f : Ĉ → Ĉ be a rational map on the Riemann sphere Ĉ, with degree d > 1, whose
iterates are to be studied.

The sphere is invariantly divided into the compact Julia set J , which is dynamically
chaotic and usually fractal, and the Fatou set Ω = Ĉ−J consisting of countably many open
connected stable regions each of which is eventually periodic under forward iteration (by the
main theorem of [44]). The cycles of stable regions are of five types: parabolic, attractive
and superattractive basins; Siegel disks; and Herman rings. For completeness we provide a
fresh proof of this classification here.

The goal of this paper is to use the above picture of the dynamics to obtain a concrete
description of the Teichmüller space of quasiconformal deformations of f , in terms of a
“quotient Riemann surface” (consisting of punctured spheres and tori, and foliated disks
and annuli), and the measurable dynamics on the Julia set. This development parallels the
deformation theory of Kleinian groups and many features can be carried through for other
holomorphic dynamical systems.

We show the quotient Teich(Ĉ, f)/Mod(Ĉ, f) of Teichmüller space by its modular group
of symmetries is a complex orbifold which maps injectively into the finite-dimensional space
of rational maps of degree d. This gives another route to the no-wandering-domains theorem,
and recovers the finiteness of the number of cycles of stable regions.

It turns out that quasiconformal deformations are ubiquitous: for any family fλ(z) of
rational maps parameterized by a complex manifold X, there exists an open dense subset X0

for which each component consists of a single quasiconformal conjugacy class. In particular,
such open conjugacy classes are dense in the space of all rational maps. We complete here
the proof of this statement begun in [30], using extensions of holomorphic motions [47], [7].

We also complete the proof that expanding rational maps are quasiconformally struc-
turally stable (these maps are also called hyperbolic or Axiom A). Thus the Teichmüller
space introduced above provides a holomorphic parameterization of the open set of hyper-
bolic rational maps in a given topological conjugacy class. In particular the topological
conjugacy class of a hyperbolic rational map is connected, a rather remarkable consequence
of the measurable Riemann mapping theorem.

Conjecturally, these expanding rational maps are open and dense among all rational
maps of a fixed degree. We show this conjecture follows if one can establish that (apart
from classical examples associated to complex tori), a rational map carries no measurable
invariant line field on its Julia set. The proof depends on the Teichmüller theory developed
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below and the instability of Herman rings [29].
In the last section we illustrate the general theory with the case of quadratic polynomials.
An early version of this paper [46] was circulated in preprint form in 1983. The present

work achieves the foundations of the Teichmüller theory of general holomorphic dynamical
systems in detail, recapitulates a self-contained account of Ahlfors’ finiteness theorem (§4.3),
the no wandering domains theorem (§6.3) and the density of structurally stable rational
maps (§7), and completes several earlier arguments as mentioned above.

2 Statement of results

Let f be a rational map of degree d > 1. By the main result of [44], every component of the
Fatou set Ω of f maps to a periodic component Ω0 after a finite number of iterations. The
following theorem is essentially due to Fatou; we give a short modern proof in §3. That the
last two possibilities actually occur in rational dynamics depends on work of Siegel, Arnold
and Herman.

Theorem 2.1 (Classification of stable regions) A component Ω0 of period p in the Fa-
tou set of a rational map f is of exactly one of the following five types:

1. An attractive basin: there is a point x0 in Ω0, fixed by fp, with 0 < |(fp)′(x0)| < 1,
attracting all points of Ω0 under iteration of fp.

2. A superattractive basin: as above, but x0 is a critical point of fp, so (fp)′(x0) = 0.

3. A parabolic basin: there is a point x0 in ∂Ω0 with (fp)′(x0) = 1, attracting all points
of Ω0.

4. A Siegel disk: Ω0 is conformally isomorphic to the unit disk, and fp acts by an
irrational rotation.

5. A Herman ring: Ω0 is isomorphic to an annulus, and fp acts again by an irrational
rotation.

A conjugacy φ : Ĉ → Ĉ between two rational maps f and g is a bijection such that
φ ◦ f = g ◦φ. A conjugacy may be measurable, topological, quasiconformal, conformal, etc.
depending upon the quality of φ.

To describe the rational maps g quasiconformally conjugate to a given map f , it is
useful (as in the case of Riemann surfaces) to introduce the Teichmüller space Teich(Ĉ, f)
of marked rational maps (§4). This space is provided with a natural metric and complex
structure.

Our main results (§6) describe Teich(Ĉ, f) as a product of three simpler spaces:
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Figure 1. The five types of stable regions.
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First, there is an open subset Ωdis of Ω on which f acts discretely. The quo-
tient Ωdis/f = Y is a complex 1-manifold of finite area whose components are
punctured spheres or tori, and the Teichmüller space of Y forms one factor of
Teich(Ĉ, f). Each component is associated to an attracting or parabolic basin
of f .

Second, there is a disjoint open set Ωfol of Ω admitting a dynamically defined
foliation, for which the Teichmüller space of (Ωfol, f) is isomorphic to that of a
finite number of foliated annuli and punctured disks. This factor comes from
Siegel disks, Herman rings and superattracting basins. Each annulus contributes
one additional complex modulus to the Teichmüller space of f .

Finally, there is a factor M1(J, f) spanned by measurable invariant complex
structures on the Julia set. This factor vanishes if the Julia set has measure
zero. There is only one class of examples for which this factor is known to be
nontrivial, namely the maps of degree n2 coming from multiplication by n on a
complex torus whose structure can be varied (§9).

We sum up this description as:

Theorem 2.2 (The Teichmüller space of a rational map) The space Teich(Ĉ, f) is
canonically isomorphic to a connected finite-dimensional complex manifold, which is the
product of a polydisk (coming from the foliated annuli and invariant line fields on the Julia
set) and traditional Teichmüller spaces associated to punctured spheres and tori.

In particular, the obstruction to deforming a quasiconformal conjugacy between two
rational maps to a conformal conjugacy is measured by finitely many complex moduli.

The modular group Mod(Ĉ, f) is defined as QC(Ĉ, f)/QC0(Ĉ, f), the space of isotopy
classes of quasiconformal automorphisms φ of f (§4). In §6.4 we will show:

Theorem 2.3 (Discreteness of the modular group) The group Mod(Ĉ, f) acts prop-
erly discontinuously by holomorphic automorphisms of Teich(Ĉ, f).

Let Ratd denote the space of all rational maps f : Ĉ → Ĉ of degree d. This space can
be realized as the complement of a hypersurface in projective space P2d+1 by considering
f(z) = p(z)/q(z) where p and q are relatively prime polynomials of degree d in z. The group
of Möbius transformations Aut(Ĉ) acts on Ratd by sending f to its conformal conjugates.

A complex orbifold is a space which is locally a complex manifold divided by a finite
group of complex automorphisms.

Corollary 2.4 (Uniformization of conjugacy classes) There is a natural holomorphic
injection of complex orbifolds

Teich(Ĉ, f)/Mod(Ĉ, f) → Ratd /Aut(Ĉ)
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parameterizing the rational maps g quasiconformal conjugate to f .

Corollary 2.5 If the Julia set of a rational map is the full sphere, then the group Mod(Ĉ, f)
maps with finite kernel into a discrete subgroup of PSL2(R)n !Sn (the automorphism group
of the polydisk).

Proof. The Teichmüller space of f is isomorphic to Hn.

Corollary 2.6 (Finiteness theorem) The number of cycles of stable regions of f is fi-
nite.

Proof. Let d be the degree of f . By Corollary 2.4, the complex dimension of Teich(Ĉ, f)
is at most 2d− 2. This is also the number of critical points of f , counted with multiplicity.

By Theorem 2.2 f has at most 2d − 2 Herman rings, since each contributes at least a
one-dimensional factor to Teich(Ĉ, f) (namely the Teichmüller space of a foliated annulus
(§5)). By a classical argument, every attracting, superattracting or parabolic cycle attracts
a critical point, so there are at most 2d − 2 cycles of stable regions of these types. Finally
the number of Siegel disks is bounded by 4d − 4. (The proof, which goes back to Fatou, is
that a suitable perturbation of f renders at least half of the indifferent cycles attracting;
cf. [35, §106].)

Consequently the total number of cycles of stable regions is at most 8d − 8.

Remark. The sharp bound of 2d−2 (conjectured in [44]) has been achieved by Shishikura
and forms an analogue of Bers’ area theorem for Kleinian groups [39], [5].

Open questions. The behavior of the map Teich(Ĉ, f)/Mod(Ĉ, f) → Ratd /Aut(Ĉ)
(Corollary 2.4) raises many questions. For example, is this map an immersion? When is
the image locally closed? Can it accumulate on itself like a leaf of a foliation?1

We now discuss the abundance of quasiconformally conjugate rational maps. There
are two main results. First, in any holomorphic family of rational maps, the parameter
space contains an open dense set whose components are described by quasiconformal de-
formations. Second, any two topologically conjugate expanding rational maps are in fact
quasiconformally conjugate, and hence reside in a connected holomorphic family.

Definitions. Let X be a complex manifold. A holomorphic family of rational maps pa-
rameterized by X is a holomorphic map f : X × Ĉ → Ĉ. In other words, a family f is a
rational map fλ(z) defined for z ∈ Ĉ and varying analytically with respect to λ ∈ X.

A family of rational maps is quasiconformally constant if fα and fβ are quasiconformally
conjugate for any α and β in the same component of X.

1The answer to this last question is yes. The Teichmüller space of certain cubic polynomials with one
escaping critical point is dense in the Fibonacci solenoid; see [9, §10.2].
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A family of rational maps has constant critical orbit relations if any coincidence fn
λ (c) =

fm
λ (d) between the forward orbits of two critical points c and d of fλ persists under pertur-

bation of λ.

Theorem 2.7 (Quasiconformal conjugacy) A family fλ(z) of rational maps with con-
stant critical orbit relations is quasiconformally constant.

Conversely, two quasiconformally conjugate rational maps are contained in a connected
family with constant critical orbit relations.

Corollary 2.8 (Density of structural stability) In any family of rational maps fλ(z),
the open quasiconformal conjugacy classes form a dense set.

In particular, structurally stable maps are open and dense in the space Ratd of all rational
maps of degree d.

See §7 for discussion and proofs of these results.

Remarks. In Theorem 2.7, the conjugacy φ between two nearby maps fα and fβ can be
chosen to be nearly conformal and close to the identity. The condition “constant critical
orbit relations” is equivalent to “number of attracting or superattracting cycles constant
and constant critical orbit relations among critical points outside the Julia set.”

The deployment of quasiconformal conjugacy classes in various families (quadratic poly-
nomials, Newton’s method for cubics, rational maps of degree two, etc.) has been the subject
of ample computer experimentation (see e.g. [28], [12], [15] for early work in this area) and
combinatorial study ([13], [10], [38], etc.).

There is another way to arrive at quasiconformal conjugacies.

Definition. A rational map f(z) is expanding (also known as hyperbolic or Axiom A) if
any of the following equivalent conditions hold (compare [11, Ch. V], [33, §3.4]).

• There is a smooth metric on the sphere such that ||f ′(z)|| > c > 1 for all z in the
Julia set of f .

• All critical points tend to attracting or superattracting cycles under iteration.

• There are no critical points or parabolic cycles in the Julia set.

• The Julia set J and the postcritical set P are disjoint.

Here the postcritical set P ⊂ Ĉ is the closure of the forward orbits of the critical points:
i.e.

P = {fn(z) : n > 0 and f ′(z) = 0}.

The Julia set and postcritical set are easily seen to be invariant under topological con-
jugacy, so the expanding property is too.

7



Theorem 2.9 (Topological conjugacy) A topological conjugacy φ0 between expanding
rational maps admits an isotopy φt through topological conjugacies such that φ1 is quasi-
conformal.

Corollary 2.10 The set of rational maps in Ratd topologically conjugate to a given ex-
panding map f agrees with the set of rational maps quasiconformally conjugate to f and is
thus connected.

The proofs are given in §8.
Conjectures. A central and still unsolved problem in conformal dynamics, due to Fatou,
is the density of expanding rational maps among all maps of a given degree.

In §9 we will describe a classical family of rational maps related to the addition law
for the Weierstrass ℘-function. For such maps the Julia set (which is the whole sphere)
carries an invariant line field. We then formulate the no invariant line fields conjecture,
stating that these are the only such examples. Using the preceding Teichmüller theory and
dimension counting, we establish:

Theorem 2.11 The no invariant line fields conjecture implies the density of hyperbolicity.

A version of the no invariant line fields conjecture for finitely-generated Kleinian groups
was established in [42], but the case of rational maps is still elusive (see [34], [33] for further
discussion.)

Finally in §10 we illustrate the general theory in the case of quadratic polynomials. The
well-known result of [13] that the Mandelbrot set is connected is recovered using the general
theory.

3 Classification of stable regions

Our goal in this section is to justify the description of cycles of stable regions for rational
maps. For the reader also interested in entire functions and other holomorphic dynamical
systems, we develop more general propositions when possible. Much of this section is
scattered through the classical literature (Fatou, Julia, Denjoy, Wolf, etc.).

Definition. A Riemann surface is hyperbolic if its universal cover is conformally equivalent
to the unit disk. Recall the disk with its conformal geometry is the Poincaré model of
hyperbolic or non-Euclidean geometry. The following is the geometric formulation of the
Schwarz lemma.

Theorem 3.1 Let f : X → X be a holomorphic endomorphism of a hyperbolic Riemann
surface. Then either
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• f is a covering map and a local isometry for the hyperbolic metric, or

• f is a contraction (‖df‖ < 1 everywhere).

Under the same hypotheses, we will show:

Theorem 3.2 The dynamics of f are described by one of the following (mutually exclusive)
possibilities:

1. All points of X tend to infinity: namely, for any x and any compact set K in X, there
are only finitely many n > 0 such that fn(x) is in K.

2. All points of X tend towards a unique attracting fixed point x0 in X: that is, fn(x) →
x0 as n → ∞, and |f ′(x)| < 1.

3. The mapping f is an irrational rotation of a disk, punctured disk or annulus.

4. The mapping f is of finite order: there is an n > 0 such that fn = id.

Lemma 3.3 Let Γ ⊂ Aut(H) be a discrete group of orientation-preserving hyperbolic isome-
tries. Then either Γ is abelian, or the semigroup

End(Γ) = {g ∈ Aut(H) : gΓg−1 ⊂ Γ}

is discrete.

Proof. Suppose End(Γ) is indiscrete, and let gn → g∞ be a convergent sequence of distinct
elements therein. Then hn = g−1

∞ ◦ gn satisfies

hnΓh−1
n ⊂ Γ′ = g−1

∞ Γg∞.

Since Γ′ is discrete and hn → id, any α ∈ Γ commutes with hn for all n sufficiently large.
Thus the centralizers of any two elements in Γ intersect nontrivially, which implies they
commute.

Proof of Theorem 3.2. Throughout we will work with the hyperbolic metric on X and
appeal to the Schwarz lemma as stated in Theorem 3.1.

Let x be a point of X. If fn(x) tends to infinity in X, then the same is true for every
other point y, since d(fn(x), fn(y)) ≤ d(x, y) for all n.

Otherwise the forward iterates fn(x) return infinitely often to a fixed compact set K in
X (i.e. f is recurrent).

If f is a contraction, we obtain a fixed point in K by the following argument. Join x
to f(x) be a smooth path α of length R. Then fn(α) is contained infinitely often in an R-
neighborhood of K, which is also compact. Since f contracts uniformly on compact sets, the
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length of fn(α), and hence d(fnx, fn+1x), tends to zero. It follows that any accumulation
point x0 of fn(x) is a fixed point. But a contracting mapping has at most one fixed point,
so fn(x) → x0 for all x.

Finally assume f is a recurrent self-covering map. If π1(X) is abelian, then X is a disk,
punctured disk or annulus, and it is easy to check that the only recurrent self-coverings are
rotations, which are either irrational or of finite order.

If π1(X) is nonabelian, write X as a quotient H/Γ of the hyperbolic plane by a discrete
group Γ ∼= π1(X), and let gn : H → H denote a lift of fn to a bijective isometry of the
universal cover of X. Then gn ∈ End(Γ), and by the preceding lemma End(Γ) is discrete.
Since f is recurrent the lifts gn can be chosen to lie in a compact subset of Aut(H), and
thus gn = gm for some n > m > 0. Therefore fn = fm which implies fn−m = id.

To handle the case in which fn(x) tends to infinity in a stable domain U , we will need
to compare the hyperbolic and spherical metrics.

Proposition 3.4 Let U be a connected open subset of Ĉ with |Ĉ − U | > 2 (so U is hyper-
bolic). Then the ratio σ(z)/ρ(z) between the spherical metric σ and the hyperbolic metric ρ
tends to zero as z tends to infinity in U .

Proof. Suppose zn ∈ U converges to a ∈ ∂U . Let b and c be two other points outside
U , and let ρ′ be the hyperbolic metric on the triply-punctured sphere Ĉ − {a, b, c}. Since
inclusions are contracting, it suffices to show σ(zn)/ρ′(zn) → 0, and this follows from well-
known estimates for the triply-punctured sphere [2].

Proposition 3.5 (Fatou) Suppose U ⊂ Ĉ is a connected region, f : U → U is holomor-
phic, fn(x) → y ∈ ∂U for all x ∈ U , and f has an analytic extension to a neighborhood of
y. Then |f ′(y)| < 1 or f ′(y) = 1.

See [17, p.242ff], [11, Lemma IV.2.4].

Proof of Theorem 2.1 (Classification of stable regions) Let U be a periodic compo-
nent of Ω. Replacing f by fp (note this does not change the Julia or Fatou sets), we can
assume f(U) = U . Since the Julia set is perfect, U is a hyperbolic Riemann surface and we
may apply Theorem 3.2. If U contains an attracting fixed point for f then it is an attract-
ing or superattracting basin. The case of an irrational rotation of a disk or annulus gives
a Siegel disk or Herman ring; note that U cannot be a punctured disk since the puncture
would not lie in the Julia set. Since the degree of f is greater than one by assumption, no
iterate of f is the identity on an open set and the case of a map of finite order cannot arise
either.
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Finally we will show that U is a parabolic basin if fn(x) tends to infinity in U .
Let α be a smooth path joining x to f(x) in U . In the hyperbolic metric on U , the paths

αn = fn(α) have uniformly bounded length (by the Schwarz lemma). Since the ratio of
spherical to hyperbolic length tends to zero at the boundary of U , the accumulation points
A ⊂ ∂U of the path

⋃
αn form a continuum of fixed points for fn. (See Figure 2). Since

fn += id, the set A = {x0} for a single fixed point x0 of f . By Fatou’s result above, this
fixed point is parabolic with multiplier 1 (it cannot be attracting since it lies in the Julia
set), and therefore U is a parabolic basin.

Figure 2. Orbit tending to the Julia set.

4 The Teichmüller space of a holomorphic dynamical system

In this section we will give a fairly general definition of a holomorphic dynamical system and
its Teichmüller space. Although in this paper we are primarily interested in iterated rational
maps, it seems useful to consider definitions that can be adapted to Kleinian groups, entire
functions, correspondences, polynomial-like maps and so on.

4.1 Static Teichmüller theory

Let X be a 1-dimensional complex manifold. For later purposes it is important to allow X
to be disconnected.2 We begin by briefly recalling the traditional Teichmüller space of X.

The deformation space Def(X) consists of equivalence classes of pairs (φ, Y ) where Y is
a complex 1-manifold and φ : X → Y is a quasiconformal map; here (φ, Y ) is equivalent to
(Z,ψ) if there is a conformal map c : Y → Z such that ψ = c ◦ φ.

2On the other hand, we follow the usual convention that a Riemann surface is connected.
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The group QC(X) of quasiconformal automorphisms ω : X → X acts on Def(X) by
ω((φ, Y )) = (φ ◦ ω−1, Y ).

The Teichmüller space Teich(X) parameterizes complex structures on X up to isotopy.
More precisely, we will define below a normal subgroup QC0(X) ⊂ QC(X) consisting of
self-maps isotopic to the identity in an appropriate sense; then

Teich(X) = Def(X)/QC0(X).

To define QC0(X), first suppose X is a hyperbolic Riemann surface; then X can be
presented as the quotient X = H/Γ of the upper halfplane by the action of a Fuchsian
group. Let Ω ⊂ S1

∞ = R ∪ {∞} be the complement of the limit set of Γ. The quotient
X = (H ∪ Ω)/Γ is a manifold with interior X and boundary Ω/Γ which we call the ideal
boundary of X (denoted ideal- ∂X).

A continuous map ω : X → X is the identity on S1
∞ if there exists a lift ω̃ : H → H

which extends to a continuous map H → H pointwise fixing the circle at infinity. Similarly,
a homotopy ωt : X → X, t ∈ [0, 1] is rel S1

∞ if there is a lift ω̃t : H → H which extends to a
homotopy pointwise fixing S1

∞. A homotopy is rel ideal boundary if it extends to a homotopy
of X pointwise fixing ideal- ∂X. An isotopy ωt : X → X is uniformly quasiconformal if there
is a K independent of t such that ωt is K-quasiconformal.

Theorem 4.1 Let X be a hyperbolic Riemann surface and let ω : X → X be a quasicon-
formal map. Then the following conditions are equivalent:

1. ω is the identity on S1
∞.

2. ω is homotopic to the identity rel the ideal boundary of X.

3. ω admits a uniformly quasiconformal isotopy to the identity rel ideal boundary.

The isotopy can be chosen so that ωt ◦ γ = γ ◦ ωt for any automorphism γ of X such that
ω ◦ γ = γ ◦ ω.

See [16, Thm 1.1]. For a hyperbolic Riemann surface X, the normal subgroup QC0(X) ⊂
QC(X) consists of those ω satisfying the equivalent conditions above.

The point of this theorem is that several possible definitions of QC0(X) coincide. For
example, the first condition is most closely related to Bers’ embedding of Teichmüller space,
while the last is the best suited to our dynamical applications.

For a general complex 1-manifold X (possibly disconnected, with hyperbolic, parabolic
or elliptic components), the ideal boundary of X is given by the union of the ideal boundaries
of Xα over the hyperbolic components Xα of X. Then the group QC0(X) consists of those
ω ∈ QC(X) which admit a uniformly quasiconformal isotopy to the identity rel ideal- ∂X.

Such isotopies behave well under coverings and restrictions. For later reference we state:
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Theorem 4.2 Let π : X → Y be a covering map between hyperbolic Riemann surfaces,
and let ω̃t : X → X be a lift of an isotopy ωt : Y → Y . Then ωt is an isotopy rel ideal- ∂Y
if and only if ω̃t is an isotopy rel ideal- ∂X.

Proof. An isotopy is rel ideal boundary if and only if it is rel S1
∞ [16, Cor. 3.2], and the

latter property is clearly preserved when passing between covering spaces.

Theorem 4.3 Let ωt : X → X, t ∈ [0, 1] be a uniformly quasiconformal isotopy of an open
set X ⊂ Ĉ. Then ωt is an isotopy rel ideal- ∂X if and only if ωt is the restriction of a
uniformly quasiconformal isotopy of Ĉ pointwise fixing Ĉ − X.

See [16, Thm 2.2 and Cor 2.4].
Teichmüller theory extends in a natural way to one-dimensional complex orbifolds, lo-

cally modeled on Riemann surfaces modulo finite groups; we will occasionally use this
extension below. For more details on the foundations of Teichmüller theory, see [18], [36],
[23].

4.2 Dynamical Teichmüller theory

Definitions. A holomorphic relation R ⊂ X × X is a countable union of 1-dimensional
analytic subsets of X×X. Equivalently, there is a complex 1-manifold R̃ and a holomorphic
map

ν : R̃ → X × X

such that ν(R̃) = R and ν is injective outside a countable subset of R̃. The surface R̃ is
called the normalization of R; it is unique up to isomorphism over R [21, vol. II]. Note that
we do not require R to be locally closed. If R̃ is connected, we say R is irreducible.

Note. It is convenient to exclude relations (like the constant map) such that U × {x} ⊂ R
or {x} × U ⊂ R for some nonempty open set U ⊂ X, and we will do so in the sequel.

Holomorphic relations are composed by the rule

R ◦ S = {(x, y) : (x, z) ∈ R and (z, y) ∈ S for some z ∈ X},

and thereby give rise to dynamics. The transpose is defined by Rt = {(x, y) : (y, x) ∈ R};
this generalizes the inverse of a bijection.

Examples. The graph of a holomorphic map f : X → X is a holomorphic relation. So is
the set

R = {(z1, z2) : z2 = z
√

2
1 = exp(

√
2 log z1) for some branch of the logarithm} ⊂ C

∗ × C
∗.

In this case the normalization is given by R̃ = C, ν(z) = (ez, e
√

2z).
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A (one-dimensional) holomorphic dynamical system (X,R) is a collection R of holomor-
phic relations on a complex 1-manifold X.

Let M(X) be the complex Banach space of L∞ Beltrami differentials µ on X, given
locally in terms of a holomorphic coordinate z by µ = µ(z)dz/dz where µ(z) is a measurable
function and with

‖µ‖ = ess. supX |µ|(z) < ∞.

Let π1 and π2 denote projection onto the factors of X × X, and let ν : R̃ → R be
the normalization of a holomorphic relation R on X. A Beltrami differential µ ∈ M(X) is
R-invariant if

(π1 ◦ ν)∗µ = (π2 ◦ ν)∗µ

on every component of R̃ where π1 ◦ ν and π2 ◦ ν both are nonconstant. (A constant
map is holomorphic for any choice of complex structure, so it imposes no condition on
µ.) Equivalently, µ is R-invariant if h∗(µ) = µ for every holomorphic homeomorphism
h : U → V such that the graph of h is contained in R. The invariant Beltrami differentials
will turn out to be the tangent vectors to the deformation space Def(X,R) defined below.

Let
M(X,R) = {µ ∈ M(X) : µ is R-invariant for all R in R}.

It is easy to see that M(X,R) is a closed subspace of M(X); let M1(X,R) be its open unit
ball.

A conjugacy between holomorphic dynamical systems (X,R) and (Y,S) is a map φ :
X → Y such that

S = {(φ× φ)(R) : R ∈ R}.

Depending on the quality of φ, a conjugacy may be conformal, quasiconformal, topological,
measurable, etc.

The deformation space Def(X,R) is the set of equivalence classes of data (φ, Y,S) where
(Y,S) is a holomorphic dynamical system and φ : X → Y is a quasiconformal conjugacy.
Here (φ, Y,S) is equivalent to (ψ,Z,T ) if there is a conformal isomorphism c : Y → Z such
that ψ = c ◦ φ. Note that any such c is a conformal conjugacy between (Y,S) and (Z,T ).

Theorem 4.4 The map φ .→ (∂φ/∂φ) establishes a bijection between Def(X,R) and M1(X,R).

Proof. Suppose (φ, Y,S) ∈ Def(X,R), and let µ = (∂φ/∂φ). For every holomorphic
homeomorphism h : U → V such that the graph of h is contained in R ∈ R, the graph of
g = φ ◦ h ◦ φ−1 is contained in S = φ × φ(R) ∈ S. Since S is a holomorphic relation, g is
holomorphic and therefore

h∗(µ) =
∂(φ ◦ h)

∂(φ ◦ h)
=

∂(g ◦ φ)

∂(g ◦ φ)
= µ.
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Thus µ is R-invariant, so we have a map Def(X,R) → M1(X,R). Injectivity of this map is
immediate from the definition of equivalence in Def(X,R). Surjectivity follows by solving
the Beltrami equation (given µ we can construct Y and φ : X → Y ); and by observing that
for each R ∈ R, the normalization of S = (φ×φ)(R) is obtained by integrating the complex
structure (πi ◦ ν)∗µ on R̃ (for i = 1 or 2).

Remark. The deformation space is naturally a complex manifold, because M1(X,R) is an
open domain in a complex Banach space.

The quasiconformal automorphism group QC(X,R) consists of all quasiconformal con-
jugacies ω from (X,R) to itself. Note that ω may permute the elements of R. This group
acts biholomorphically on the deformation space by

ω : (φ, Y,S) .→ (φ ◦ ω−1, Y,S).

The normal subgroup QC0(X,R) consists of those ω0 admitting a uniformly quasicon-
formal isotopy ωt rel the ideal boundary of X, such that ω1 = id and (ωt × ωt)(R) = R for
all R ∈ R. (In addition to requiring that ωt is a conjugacy of R to itself, we require that it
induces the identity permutation on R. Usually this extra condition is automatic because
R is countable.)

The Teichmüller space Teich(X,R) is the quotient Def(X,R)/QC0(X,R). A point in
the Teichmüller space of (X,R) is a holomorphic dynamical system (Y,S) together with a
marking [φ] by (X,R), defined up to isotopy through quasiconformal conjugacies rel ideal
boundary.

The Teichmüller premetric on Teich(X,R) is given by

d(([φ], Y,S), ([ψ], Z,T )) =
1

2
inf log K(φ ◦ ψ−1),

where K(·) denotes the dilatation and the infimum is over all representatives of the markings
[φ] and [ψ]. (The factor of 1/2 makes this metric compatible with the norm on M(X).)

For rational maps, Kleinian groups and most other dynamical systems, the Teichmüller
premetric is actually a metric. Here is a general criterion that covers those cases.

Definition. Let S be an irreducible component of a relation in the semigroup generated
by R under the operations of composition and transpose. Then we say S belongs to the
full dynamics of R. If S intersects the diagonal in X ×X in a a countable or finite set, the
points x with (x, x) ∈ S are fixed points of S and periodic points for R.

Theorem 4.5 Suppose every component of X isomorphic to Ĉ (respectively, C, C∗ or a
complex torus) contains at least three (respectively, 2, 1 or 1) periodic points for R. Then
the Teichmüller premetric on Teich(X,R) is a metric.
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Proof. We need to obtain a conformal conjugacy from a sequence of isotopic conjugacies ψn

whose dilatations tend to one. For this, it suffices to show that a sequence φn in QC0(X,R)
with bounded dilatation has a convergent subsequence, since we can take φn = ψ−1

1 ◦ ψn.
On the hyperbolic components of X, the required compactness follows by basic results

in quasiconformal mappings, because each φn is isotopic to the identity rel ideal boundary.
For the remaining components, consider any relation S in the full dynamics generated

by R. A self-conjugacy permutes the intersections of S with the diagonal, so a map de-
formable to the identity through self-conjugacies fixes every periodic point of R. Each
non-hyperbolic component is isomorphic to Ĉ, C, C∗ or a complex torus, and the same
compactness result holds for quasiconformal mappings normalized to fix sufficiently many
points on these Riemann surfaces (as indicated above).

The modular group (or mapping class group) is the quotient

Mod(X,R) = QC(X,R)/QC0(X,R);

it acts isometrically on the Teichmüller space of (X,R). The stabilizer of the natural
basepoint (id,X,R) ∈ Teich(X,R) is the conformal automorphism group Aut(X,R).

Theorem 4.6 Let R = ∅. Then Teich(X,R) coincides with the traditional Teichmüller
space of X.

Remarks. We will have occasion to discuss Teichmüller space not only as a metric space
but as a complex manifold; the complex structure (if it exists) is the unique one such that
the projection M1(X,R) → Teich(X,R) is holomorphic.

At the end of this section we give an example showing the Teichmüller premetric is not
a metric in general.

4.3 Kleinian groups

The Teichmüller space of a rational map is patterned on that of a Kleinian group, which
we briefly develop in this section (cf. [24]).

Let Γ ⊂ Aut(Ĉ) be a torsion-free Kleinian group, that is a discrete subgroup of Möbius
transformations acting on the Riemann sphere. The domain of discontinuity Ω ⊂ Ĉ is the
maximal open set such that Γ|Ω is a normal family; its complement Λ is the limit set of
Γ. The group Γ acts freely and properly discontinuously on Ω, so the quotient Ω/Γ is a
complex 1-manifold.

Let M1(Λ,Γ) denote the unit ball in the space of Γ-invariant Beltrami differentials on
the limit set; in other words, the restriction of M1(Ĉ,Γ) to Λ. (Note that M1(Λ,Γ) = {0}
if Λ has measure zero.)
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Theorem 4.7 The Teichmüller space of (Ĉ,Γ) is naturally isomorphic to

M1(Λ,Γ) × Teich(Ω/Γ).

Proof. It is obvious that

Def(Ĉ,Γ) = M1(Ĉ,Γ) = M1(Λ,Γ) × M1(Ω,Γ)

= M1(Λ,Γ) × M1(Ω/Γ) = M1(Λ,Γ) × Def(Ω/Γ).

Since Γ is countable and fixed points of elements of Γ are dense in Λ, ω|Λ = id for all
ω ∈ QC0(Ĉ,Γ). By Theorem 4.3 above, QC0(Ĉ,Γ) ∼= QC0(Ω,Γ) by the restriction map, and
QC0(Ω,Γ) ∼= QC0(Ω/Γ) using Theorem 4.2. Thus the trivial quasiconformal automorphisms
for the two deformation spaces correspond, so the quotient Teichmüller spaces are naturally
isomorphic.

Corollary 4.8 (Ahlfors’ finiteness theorem) If Γ is finitely generated, then the Te-
ichmüller space of Ω/Γ is finite-dimensional.

Proof. Let
η : Teich(Ĉ,Γ) → V = Hom(Γ,Aut(Ĉ))/conjugation

be the map that sends (φ, Ĉ,Γ′) to the homomorphism ρ : Γ → Γ′ determined by φ ◦ γ =
ρ(γ) ◦ φ. The proof is by contradiction: if Γ is finitely generated, then the representation
variety V is finite-dimensional, while if Teich(Ω/Γ) is infinite dimensional, we can find a
polydisk ∆n ⊂ Def(Ĉ,Γ) such that ∆n maps injectively to Teich(Ĉ,Γ) and n > dim V .
(Such a polydisk exists because the map Def(Ω/Γ) → Teich(Ω/Γ) is a holomorphic submer-
sion; see e.g. [36, §3.4], [23, Thm 6.9].) The composed mapping ∆n → V is holomorphic, so
its fiber over the basepoint ρ = id contains a 1-dimensional analytic subset, and hence an
arc. This arc corresponds to a 1-parameter family (φt, Ĉ,Γt) in Def(Ĉ,Γ) such that Γt = Γ
for all t. But as t varies the marking of (Ĉ,Γ) changes only by a uniformly quasiconformal
isotopy, contradicting the assumption that ∆n maps injectively to Teich(Ĉ,Γ).

Consequently Teich(Ω/Γ) is finite dimensional.

Remarks. The proof above, like Ahlfors’ original argument [1], can be improved to show
Ω/Γ is of finite type; that is, it is obtained from compact complex 1-manifold by removing a
finite number of points. This amounts to showing Ω/Γ has finitely many components. For
example Greenberg shows Γ has a subgroup Γ′ of finite index such that each component of
Ω/Γ′ contributes at least one to the dimension of Teich(Ω/Γ′) [20]. See also [41].

Kleinian groups with torsion can be treated similarly (in this case Ω/Γ is a complex
orbifold.)

It is known that M1(Λ,Γ) = 0 if Γ is finitely generated, or more generally if the action
of Γ on the limit set is conservative for Lebesgue measure [42].
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4.4 A counterexample

In this section we give a simple (if artificial) construction showing the Teichmüller premetric
is not a metric in general: there can be distinct points whose distance is zero.

For any bounded Lipschitz function f : R → R let the domain Uf ⊂ C be the region
above the graph of f :

Uf = {z = x + iy : y > f(x)}.

Given two such functions f and g, the shear mapping

φf,g(x + iy) = x + i(y − f(x) + g(y))

is a quasiconformal homeomorphism of the complex plane sending Uf to Ug. Moreover the
dilatation of φf,g is close to one when the Lipschitz constant of f − g is close to zero.

Let Rf be the dynamical system on C consisting solely of the identity map on Uf . Then
a conjugacy between (C,Rf ) and (C,Rg) is just a map of the plane to itself sending Uf to
Ug. Therefore g determines an element (φf,g, C,Rg) in the deformation space of (C,Rf ).

A quasiconformal isotopy of conjugacies between Rf and Rg, starting at φf,g, is given
by

ψt(x + iy) = x + t + i(y − f(x) + g(x + t)).

Now suppose we can find f and g and cn → ∞ such that

(a) the Lipschitz constant of f(x) − g(x + cn) tends to zero, but

(b) f(x) += α + g(βx + γ) for any real numbers α, β and γ with β > 0.

Then the first condition implies the dilatation of ψt tends to one as t tends to infinity
along the sequence cn. Thus the conjugacy φf,g can be deformed to be arbitrarily close to
conformal, and therefore the Teichmüller (pre)distance between Rf and Rg is zero. But
condition (b) implies there is no similarity of the plane sending Uf to Ug, and therefore Rf

and Rg represent distinct points in Teichmüller space. (Note that any such similarity must
have positive real derivative since f and g are bounded.)

Thus the premetric is not a metric.
It only remains to construct f and g. This is easily carried out using almost periodic

functions. Let d(x) be the distance from x to the integers, and let h be the periodic Lipschitz
function h(x) = max(0, 1/10 − d(x)). Define

f(x) =
∑

p

2−ph

(
x

p

)
and

g(x) =
∑

p

2−ph

(
x + ap

p

)
,
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where p runs over the primes and where 0 < ap < p/2 is a sequence of integers tending
to infinity. By the Chinese remainder theorem, we can find integers cn such that cn =
−ap mod p for the first n primes. Then the Lipschitz constant of f(x) − g(x + cn) is close
to zero because after translating by cn, the first n terms in the sum for g agree with those
for f . This verifies condition (a).

By similar reasoning, f and g have the same infimum and supremum, namely 0 and∑
2−p/10. So if f(x) = α + βg(x + γ), we must have β = 1 and α = 0. But the supremum

is attained for f and not for g, so we cannot have f(x) = g(x + γ).

5 Foliated Riemann surfaces

In contrast to the case of Kleinian groups, indiscrete groups can arise in the analysis of
iterated rational maps and other more general dynamical systems. Herman rings provide
prototypical examples. A Herman ring (or any annulus equipped with an irrational rotation)
carries a natural foliation by circles. The deformations of this dynamical system can be
thought of as the Teichmüller space of a foliated annulus. Because an irrational rotation
has indiscrete orbits, its deformations are not canonically reduced to those of a traditional
Riemann surface — although we will see the Teichmüller space of a foliated annulus is
naturally isomorphic to the upper halfplane.

More generally, we will analyze the Teichmüller space of a complex manifold equipped
with an arbitrary set of covering relations (these include automorphisms and self-coverings).

5.1 Foliated annuli

Let X be an annulus of finite modulus. The Teichmüller space of X is infinite-dimensional,
due to the presence of ideal boundary. However X carries a natural foliation by circles, or
more intrinsically by the orbits of Aut0(X), the identity component of its automorphism
group. The addition of this dynamical system to X greatly rigidifies its structure.

To describe Teich(X,Aut0(X)) concretely, consider a specific annulus A(R) = {z : 1 <
|z| < R} whose universal cover is given by Ã(R) = {z : 0 < Im(z) < log R}, with π1(A(R))
acting by translation by multiples of 2π. Then Aut0(A(R)) = S1 acting by rotations, which
lifts to R acting by translations on Ã(R). Any point in Def(A(R), S1) is represented by
(φ,A(S), S1) for some radius S > 1, and the conjugacy lifts to a map φ̃ : Ã(R) → Ã(S)
which (by virtue of quasiconformality) extends to the boundary and can be normalized so
that φ̃(0) = 0. Since φ conjugates S1 to S1, φ̃ commutes with real translations, and so
φ̃|R = id and φ̃|(i + R) = τ + id for some complex number τ with Im(τ) = log S.

The group QC0(A(R), S1) consists exactly of those ω : A(R) → A(R) commuting with
rotation and inducing the identity on the ideal boundary of A(R), because by Theorem 4.1
there is a canonical isotopy of such ω to the identity through maps commuting with S1.
It follows that τ uniquely determines the marking of (A(S), S1). Similarly elements of the
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modular group Mod(A(R), S1) are uniquely determined by their ideal boundary values; the
map z .→ R/z interchanges the boundary components, and those automorphisms preserving
the boundary components are represented by maps of the form z .→ exp(2πi(θ1+θ2 log |z|))z.
In summary:

Theorem 5.1 The Teichmüller space of the dynamical system (A(R), S1) is naturally iso-
morphic to the upper half-plane H. The modular group Mod(A(R), S1) is isomorphic to a
semidirect product of Z/2 and (R/Z) × R.

The map x+ iy .→ x+ τy from Ã(R) to Ã(S) has dilatation (i− τ)/(i+ τ)dz/dz, which
varies holomorphically with τ . This shows:

Theorem 5.2 The map Def(A(R), S1) → Teich(A(R), S1) is a holomorphic submersion
with a global holomorphic cross-section.

5.2 Covering relations

More generally, we can analyze the Teichmüller space of a set of relations defined by covering
mappings.

Definition. Let X be a Riemann surface. A relation R ⊂ X × X is a covering relation if
R = (π × π)(S) where π : X̃ → X is the universal covering of X and S is the graph of an
automorphism γ of X̃.

Example. Let f : X → Y be a covering map. Then the relation

R = {(x, x′) : f(x) = f(x′)} ⊂ X × X

is a disjoint union of covering relations. To visualize these, fix x ∈ X; then for each x′ such
that f(x) = f(x′), the maximal analytic continuation of the branch of f−1 ◦ f sending x to
x′ is a covering relation.

It is easy to check:

Theorem 5.3 If R is a collection of covering relations on X, then

Teich(X,R) ∼= Teich(X̃,Γ),

where Γ ⊂ Aut(X̃) is the closure of the subgroup generated by π1(X) and by automorphisms
corresponding to lifts of elements of R.

The case where X is hyperbolic is completed by:

Theorem 5.4 Let Γ be a closed subgroup of Aut(H).
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1. If Γ is discrete, then
Teich(H,Γ) ∼= Teich(H/Γ)

where H/Γ is a Riemann surface if Γ is torsion free, and a complex orbifold otherwise.

2. If Γ is one-dimensional and stabilizes a geodesic, then Teich(H,Γ) is naturally iso-
morphic to H.

3. Otherwise, Teich(H,Γ) is trivial (a single point).

Proof. Let Γ0 be the identity component of Γ. The case where Γ is discrete is immediate,
using Theorem 4.1.

Next assume Γ0 is one-dimensional; then Γ0 is a one-parameter group of hyperbolic,
parabolic or elliptic transformations. Up to conformal conjugacy, there is a unique one-
parameter group of each type, and no pair are quasiconformally conjugate. Thus any point
in Teich(H,Γ) has a representative ([φ], H,Γ′) where Γ′

0 = Γ0. In particular we can assume
φ ∈ QC(H,Γ0).

The group Γ0 is hyperbolic if and only if it stabilizes a geodesic. In this case Γ/Γ0 is
either trivial or Z/2, depending on whether Γ preserves the orientation of the geodesic or
not. The trivial case arises for the dynamical system (A(R), S1), which we have already
analyzed; its Teichmüller space is isomorphic to H. The Z/2 case is similar.

The group Γ0 is elliptic if and only if it is equal to the stabilizer of a point p ∈ H; in
this case Γ0 = Γ. Since an orientation-preserving homeomorphism of the circle conjugating
rotations to rotations is itself a rotation, φ|S1

∞ = γ|S1
∞ for some γ ∈ Γ. By Theorem 4.1,

φ is Γ-equivariantly isotopic to γ rel S1
∞, and so [φ] is represented by a conformal map.

Therefore the Teichmüller space is a point.
The group Γ0 is parabolic if and only if it has a unique fixed point p on S1

∞. We
may assume p = ∞; then Γ0 acts by translations. Since a homeomorphism of R to itself
normalizing the group of translations is a similarity, we have φ|S1

∞ = γ|S1
∞ where γ(z) =

az + b. Again, Theorem 4.1 provides an equivariant isotopy from φ to γ rel S1
∞, so the

Teichmüller space is a point in this case as well.
Now suppose Γ0 is two-dimensional. Then its commutator subgroup is a 1-dimensional

parabolic subgroup; as before, this implies φ agrees with a conformal map on S1
∞ and the

Teichmüller space is trivial.
Finally, if Γ0 is three-dimensional then Γ = Aut(H) and even the deformation space of

Γ is trivial.
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5.3 Disjoint unions

Let (Xα,Rα) be a collection of holomorphic dynamical systems, where Rα is a collection
of covering relations on a complex manifolds Xα. Let

∏′
Teich(Xα,Rα)

be the restricted product of Teichmüller spaces; we admit only sequences ([φα], Yα, Sα)
whose Teichmüller distances from ([id],Xα,Rα) are uniformly bounded above.

Theorem 5.5 Let (X,R) be the disjoint union of the dynamical systems (Xα,Rα). Then

Teich(X,R) ∼=
∏′

Teich(Xα,Rα).

Proof. The product above is easily seen to be the quotient of the restricted product of
deformation spaces by the restricted product of groups QC0(Xα,Rα).

There is one nontrivial point to verify: that
∏′ QC0(Xα,Rα) ⊂ QC0(X,R). The po-

tential difficulty is that a collection of uniformly quasiconformal isotopies, one for each Xα,
need not piece together to form a uniformly quasiconformal isotopy on X. This point is
handled by Theorem 4.1, which provides an isotopy φα,t whose dilatation is bounded in
terms of that of φα. The isotopy respects the dynamics by naturality: every covering rela-
tion lifts to an automorphism of the universal cover commuting with φα. (An easy variant
of Theorem 4.1 applies when some component Riemann surfaces are not hyperbolic.)

Corollary 5.6 The Teichmüller space of a complex manifold is the restricted product of
the Teichmüller spaces of its components.

6 The Teichmüller space of a rational map

Let f : Ĉ → Ĉ be a rational map of degree d > 1. By the main result of [44], every
component of the Fatou set Ω of f is preperiodic, so it eventually lands on a cyclic component
of one of the five types classified in Theorem 2.1. In this section we describe the Teichmüller
space of (Ĉ, f) as a product of factors from these cyclic components and from invariant
complex structures on the Julia set. We will also describe a variant of the proof of the no
wandering domains theorem.
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6.1 Self-covering maps

Let f : X → X be a holomorphic endomorphism of a complex 1-manifold. To simplify
notation, we will use f both to denote both the map and the dynamical system consisting
of a single relation, the graph of f .

Definitions. The grand orbit of a point x ∈ X is the set of y such that fn(x) = fm(y) for
some n,m ≥ 0. We denote the grand orbit equivalence relation by x ∼ y. If fn(x) = fn(y)
for some n ≥ 0 then we write x ≈ y and say x and y belong to the same small orbit.

The space X/f is the quotient of X by the grand orbit equivalence relation. This relation
is discrete if all orbits are discrete; otherwise it is indiscrete.

In preparation for the analysis of rational maps, we first describe the case of a self-
covering.

Theorem 6.1 Assume every component of X is hyperbolic, f is a covering map and X/f
is connected.

1. If the grand orbit equivalence relation of f is discrete, then X/f is a Riemann surface
or orbifold, and

Teich(X, f) ∼= Teich(X/f).

2. If the grand orbit equivalence relation is indiscrete, and some component A of X is
an annulus of finite modulus, then

Teich(X, f) ∼= Teich(A,Aut0(A)) ∼= H.

3. Otherwise, the Teichmüller space of (X, f) is trivial.

Proof. First suppose X has a component A which is periodic of period p. Then Teich(X, f) ∼=
Teich(A, fp). Identify the universal cover of A with H, and let Γ be the closure of the group
generated by π1(A) and a lift of fp. It is easy to see that Γ is discrete if and only if the
grand orbits of f are discrete, which implies X/f ∼= H/Γ and case 1 of the Theorem holds.
If Γ is indiscrete, then A is a disk, a punctured disk or an annulus and fp is an irrational
rotation, by Theorem 3.2; then cases 2 and 3 follow by Theorem 5.4.

Now suppose X has no periodic component. If the grand orbit relation is discrete, case
1 is again easily established. So assume the grand orbit relation is indiscrete; then X has
a component A with nontrivial fundamental group. We have Teich(X, f) ∼= Teich(A,R)
where R is the set of covering relations arising as branches of f−n ◦ fn for all n. The
corresponding group Γ is the closure of the union of discrete groups Γn

∼= π1(fn(A)). Since
Γ is indiscrete, Γ is abelian and therefore 1-dimensional, by a variant of Lemma 3.3.

Thus Γ stabilizes a geodesic if and only if π1(A) stabilizes a geodesic, giving case 2;
otherwise, by Theorem 5.4, the Teichmüller space is trivial.
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6.2 Rational maps

Now let f : Ĉ → Ĉ be a rational map of degree d > 1.
Let Ĵ be closure of the grand orbits of all periodic points and all critical points of

f . Let Ω̂ = Ĉ − Ĵ ⊂ Ω. Then f : Ω̂ → Ω̂ is a covering map without periodic points.
Let Ω̂ = Ωdis 2 Ωfol denote the partition into open sets where the grand orbit equivalence
relation is discrete and where it is indiscrete.

Parallel to Theorem 4.7 for Kleinian groups, we have the following result for rational
maps:

Theorem 6.2 The Teichmüller space of a rational map f of degree d is naturally isomor-
phic to

M1(J, f) × Teich(Ωfol, f) × Teich(Ωdis/f),

where Ωdis/f is a complex manifold.

Here M1(J, f) denotes the restriction of M1(Ĉ, f) to J .

Proof. Since Ĵ contains a dense countable dynamically distinguished subset, ω|Ĵ = id for
all ω ∈ QC0(Ĉ, f), and so

QC0(Ĉ, f) = QC0(Ω
fol, f) × QC0(Ω

dis, f)

by Theorem 4.3. This implies the theorem with the last factor replaced by Teich(Ωdis, f),
using the fact that J and Ĵ differ by a set of measure zero. To complete the proof, write
Ωdis as

⋃
Ωdis

i , a disjoint union of totally invariant open sets such that each quotient Ωdis
i /f

is connected. Then by Theorems 5.5 and 6.1, we have

Teich(Ωdis, f) =
∏′

Teich(Ωdis
i , f) =

∏′
Teich(Ωdis

i /f) = Teich(Ωdis/f).

Note that Ωdis/f is a complex manifold (rather than an orbifold), because f |Ωdis has no
periodic points.

Lemma 6.3 Let ∆n ⊂ Def(Ĉ, f) be a polydisk mapping injectively to the Teichmüller space
of f . Then n ≤ 2d − 2 = dim Ratd, where d is the degree of f .

Proof. Let
η : Def(Ĉ, f) → V = Ratd /Aut(Ĉ)

be the holomorphic map which sends (φ, Ĉ, g) to g, a rational map determined up to con-
formal conjugacy. The space of such rational maps is a complex orbifold V of dimension
2d − 2. If n > 2d − 2, then the fibers of the map ∆n → V are analytic subsets of positive
dimension; hence there is an arc (φt, g0) in ∆n lying over a single map g0. But as t varies,
the marking of g0 changes only by a uniformly quasiconformal isotopy, contradicting the
assumption that ∆n maps injectively to Teich(Ĉ,Γ).
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Using again the fact that Def(Ωdis/f) → Teich(Ωdis/f) is a holomorphic submersion [36,
§3.4], and similar statements for the other factors, we have:

Corollary 6.4 The dimension of the Teichmüller space of a rational map of degree d is at
most 2d − 2.

Next we give a more concrete description of the factors appearing in Theorem 6.2.
By Theorem 2.1, it is easy to see that Ĵ is the union of:

1. The Julia set of f ;

2. The grand orbits of the attracting and superattracting cycles and the centers of Siegel
disks (a countable set); and

3. The leaves of the canonical foliations which meet the grand orbit of the critical points
(a countable union of one-dimensional sets).

The superattracting basins, Siegel disks and Herman rings of a rational map are canon-
ical foliated by the components of the closures of the grand orbits. In the Siegel disks,
Herman rings, and near the superattracting cycles, the leaves of this foliation are real-
analytic circles. In general countably many leaves may be singular. Thus Ωdis contains the
points which eventually land in attracting or parabolic basins, while Ωfol contains those
which land in Siegel disks, Herman rings and superattracting basins.

Theorem 6.5 The quotient space Ωdis/f is a finite union of Riemann surfaces, one for
each cycle of attractive or parabolic components of the Fatou set of f .

An attractive basin contributes an n-times punctured torus to Ωdis/f , while a parabolic
basin contributes an (n + 2)-times punctured sphere, where n ≥ 1 is the number of grand
orbits of critical points landing in the corresponding basin.

Proof. Every component of Ωdis is preperiodic, so every component X of Ωdis/f can be
represented as the quotient Y/fp, where Y is obtained from a parabolic or attractive basin
U of period p be removing the grand orbits of critical points and periodic points.

First suppose U is attractive. Let x be the attracting fixed point of fp in U , and let
λ = (fp)′(x). After a conformal conjugacy if necessary, we can assume x ∈ C. Then by
classical results, there is a holomorphic linearizing map

ψ(z) = lim λ−n(fpn(z) − x)

mapping U onto C, injective near x and satisfying ψ(fp(z)) = λ(ψ(z)).
Let U ′ be the complement in U of the grand orbit of x. Then the space of grand orbits

in U ′ is isomorphic to C∗/ < z .→ λz >, a complex torus. Deleting the points corresponding
to critical orbits in U ′, we obtain Y/fp.
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Now suppose U is parabolic. Then there is a similar map ψ : U → C such that
ψ(fp(z)) = z + 1, exhibiting C as the small orbit quotient of U . Thus the space of grand
orbits in U is the infinite cylinder C/ < z .→ z + 1 >∼= C∗. Again deleting the points
corresponding to critical orbits in U , we obtain Y/fp.

In both cases, the number n of critical orbits to be deleted is at least one, since the
immediate basin of an attracting or parabolic cycle always contains a critical point. Thus
the number of components of Ωdis/f is bounded by the number of critical points, namely
2d − 2.

For a detailed development of attracting and parabolic fixed points, see e.g. [11, Chapter
II].

Definition. An invariant line field on a positive-measure totally invariant subset E of the
Julia set is the choice of a real 1-dimensional subspace Le ⊂ TeĈ, varying measurably with
respect to e ∈ E, such that f ′ transforms Le to Lf(e) for almost every e ∈ E.

Equivalently, an invariant line field is given by a measurable Beltrami differential µ
supported on E with |µ| = 1, such that f∗µ = µ. The correspondence is given by Le =
{v ∈ TeĈ : µ(v) = 1 or v = 0}.

Theorem 6.6 The space M1(J, f) is a finite-dimensional polydisk, whose dimension is
equal to the number of ergodic components of the maximal measurable subset of J carrying
an invariant line field.

Proof. The space M1(J, f) injects into Def(Ĉ, f) (by extending µ to be zero on the Fatou
set), so M1(J, f) is finite-dimensional by Lemma 6.3. The line fields with ergodic support
form a basis for M(J, f).

Corollary 6.7 On the Julia set there are finitely many positive measure ergodic components
outside of which the action of the tangent map of f is irreducible.

Definitions. A critical point is acyclic if its forward orbit is infinite. Two points x and
y in the Fatou set are in the same foliated equivalence class if the closures of their grand
orbits agree. For example, if x and y are on the same leaf of the canonical foliation of a
Siegel disk, then they lie in a single foliated equivalence class. On other other hand, if x
and y belong to an attracting or parabolic basin, then to lie in the same foliated equivalence
class they must have the same grand orbit.

Theorem 6.8 The space Teich(Ωfol, f) is a finite-dimensional polydisk, whose dimension
is given by the number of cycles of Herman rings plus the number of foliated equivalence
classes of acyclic critical points landing in Siegel disks, Herman rings or superattracting
basins.
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Proof. As for Ωdis, we can write Ωfol =
⋃

Ωfol
i , a disjoint union of totally invariant open

sets such that Ωfol
i /f is connected for each i. Then

Teich(Ωfol, f) =
∏′

Teich(Ωfol
i , f),

and by Theorem 6.1 each factor on the right is either a complex disk or trivial. By Theorem
5.2, each disk factor can be lifted to Def(Ĉ, f), so by Lemma 6.3 the number of disk factors
is finite. A disk factor arises whenever Ωfol

i has an annular component. A cycle of foliated
regions with n critical leaves gives n periodic annuli in the Siegel disk case, n + 1 in the
case of a Herman ring, and n wandering annuli in the superattracting case. If two critical
points account for the same leaf, then they lie in the same foliated equivalence class.

Theorem 6.9 (Number of moduli) The dimension of the Teichmüller space of a ratio-
nal map is given by n = nAC + nHR + nLF − nP , where

• nAC is the number of foliated equivalence classes of acyclic critical points in the Fatou
set,

• nHR is the number of cycles of Herman rings,

• nLF is the number of ergodic line fields on the Julia set, and

• nP is the number of parabolic cycles.

Proof. The Teichmüller space of an n-times punctured torus has dimension n, while that of
an n+2-times punctured sphere has dimension n− 1. Thus the dimension of Teich(Ωdis/f)
is equal to the number of grand orbits of acyclic critical points in Ωdis, minus nP . We have
just seen the number of remaining acyclic critical orbits (up to foliated equivalence), plus
nHR, gives the dimension of Teich(Ωfol, f). Finally nLF is the dimension of M1(J, f).

6.3 No wandering domains

A wandering domain is a component Ω0 of the Fatou set Ω such that the forward iterates
f i(Ω0); i > 0 are disjoint. The main result of [44] states:

Theorem 6.10 The Fatou set of a rational map has no wandering domain.

Here is another proof, using the results above.

Lemma 6.11 (Baker) If f has a wandering domain Ω0, then fn(Ω0) is a disk for all n
sufficiently large.
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A simple geometric proof of this Lemma was found by Baker in 1983 (as described in
the last paragraph of [6]). The result also appears in [4], [11] and [3].

Proof of Theorem 6.10. By the Lemma, if f has a wandering domain then it has a
wandering disk Ω0. For all n large enough, fn(Ω0) contains no critical points, so it maps
bijectively to fn+1(Ω0). Thus the Riemann surface Ωdis/f has a component X which is a
finitely punctured disk. (One puncture appears for each grand orbit containing a critical
point and passing through Ω0.) But the Teichmüller space of X is infinite dimensional,
contradicting the finite-dimensionality of the Teichmüller space of f .

6.4 Discreteness of the modular group

Proof of Theorem 2.3 (Discreteness of the modular group). The group Mod(Ĉ, f)
acts isometrically on the finite-dimensional complex manifold Teich(Ĉ, f) with respect to the
Teichmüller metric. The stabilizer of a point ([φ], Ĉ, g) is isomorphic to Aut(g) and hence
finite; thus the quotient of Mod(Ĉ, f) by a finite group acts faithfully. By compactness of
quasiconformal maps with bounded dilatation, Mod(Ĉ, f) maps to a closed subgroup of the
isometry group; thus Mod(Ĉ, f) is a Lie group. If Mod(Ĉ, f) has positive dimension, then
there is an arc (φt, Ĉ, f) of inequivalent markings of f in Teichmüller space; but such an
arc can be lifted to the deformation space, which implies each φt is in QC0(f) (just as in
the proof of Lemma 6.3), a contradiction.

Therefore Mod(Ĉ, f) is discrete.

Remark. Equivalently, we have shown that for any K > 1, there are only a finite number
of non-isotopic quasiconformal automorphisms of f with dilatation less than K.

7 Holomorphic motions and quasiconformal conjugacies

Definitions. Let X be a complex manifold. A holomorphic family of rational maps fλ(z)
over X is a holomorphic map X × Ĉ → Ĉ, given by (λ, z) .→ fλ(z).

Let Xtop ⊂ X be the set of topologically stable parameters. That is, α ∈ Xtop if and
only if there is a neighborhood U of α such that fα and fβ are topologically conjugate for
all β ∈ U .3

The space Xqc ⊂ Xtop of quasiconformally stable parameters is defined similarly, except
the conjugacy is required to be quasiconformal.

Let X0 ⊂ X be the set of parameters such that the number of critical points of fλ

(counted without multiplicity) is locally constant. For λ ∈ X0 the critical points can be
locally labeled by holomorphic functions c1(λ), . . . , cn(λ). Indeed, X0 is the maximal open

3In the terminology of smooth dynamics, these are the structurally stable parameters in the family X.
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set over which the projection C → X is a covering space, where C is variety of critical
points

{(λ, c) ∈ X × Ĉ : f ′
λ(c) = 0}.

A critical orbit relation of fλ is a set of integers (i, j, a, b) such that fa(ci(λ)) = f b(cj(λ));
here a, b ≥ 0.

The set Xpost ⊂ X0 of postcritically stable parameters consists of those λ such that
the set of critical orbit relations is locally constant. That is, λ ∈ Xpost if any coincidence
between the forward orbits of two critical points persists under a small change in λ. This
is clearly necessary for topologically stability, so Xtop ⊂ Xpost.

The main result of this section is the following.

Theorem 7.1 In any holomorphic family of rational maps, the topologically stable param-
eters are open and dense.

Moreover the structurally stable, quasiconformally stable and postcritically stable param-
eters coincide (Xtop = Xqc = Xpost).

This result was anticipated and nearly established in [30, Theorem D]. The proof is
completed and streamlined here using the Harmonic λ-Lemma of Bers and Royden.

7.1 Holomorphic motions

Definition. A holomorphic motion of a set A ⊂ Ĉ over a connected complex manifold with
basepoint (X,x) is a mapping φ : X × A → Ĉ, given by (λ, a) .→ φλ(a), such that:

1. For each fixed a ∈ A, φλ(a) is a holomorphic function of λ;

2. For each fixed λ ∈ X, φλ(a) is an injective function of a; and

3. The injection is the identity at the basepoint (that is, φx(a) = a).

We will use two fundamental results about holomorphic motions:

Theorem 7.2 (The λ-Lemma) A holomorphic motion of A has a unique extension to a
holomorphic motion of A. The extended motion gives a continuous map φ : X × A → Ĉ.
For each λ, the map φλ : A → Ĉ extends to a quasiconformal map of the sphere to itself.

See [30]; the final statement appears in [7].

Definition. Let U ⊂ Ĉ be an open set with |Ĉ − U | > 2. A Beltrami coefficient µ on U is
harmonic if locally

µ = µ(z)
dz

dz
=

Φ

ρ2
=

Φ(z)dz2

ρ(z)2dzdz
,

where Φ(z)dz2 is a holomorphic quadratic differential on U and ρ2 is the area element of
the hyperbolic (or Poincaré) metric on U .
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Theorem 7.3 (The Harmonic λ-Lemma) Let

φ : ∆ × A → Ĉ

be a holomorphic motion over the unit disk, with |A| > 2. Then there is a unique holomor-
phic motion of the whole sphere

φ : ∆(1/3) × Ĉ → Ĉ,

defined over the disk of radius 1/3 and agreeing with φ on their common domain of defini-
tion, such that the Beltrami coefficient of φλ(z) is harmonic on Ĉ − A for each λ.

Remarks. The Harmonic λ-Lemma is due to Bers-Royden [7]. The extension it provides
has the advantage of uniqueness, which will be used below to guarantee compatibility with
dynamics. For other approaches to extending holomorphic motions, see [47] and [40]. These
motions are the main tool in our construction of conjugacies.

Definition. Let fλ(z) be a holomorphic family of rational maps over (X,x). A holomorphic
motion respects the dynamics if it is a conjugacy: that is, if

φλ(fx(a)) = fλ(φλ(a))

whenever a and fx(a) both belong to A.

Theorem 7.4 For any x ∈ Xpost, there is a neighborhood U of x and a holomorphic motion
of the sphere over (U, x) respecting the dynamics.

Proof. Choose a polydisk neighborhood V of x in Xpost. Then over V the critical points
of fλ can be labeled by distinct holomorphic functions ci(λ). In other words,

{c1(λ), . . . , cn(λ)}

defines a holomorphic motion of the critical points of fx over V .
The condition of constant critical orbit relations is exactly what we need to extend this

motion to the forward orbits of the critical points. That is, if we specify a correspondence
between the forward orbits of the critical points of fx and fλ by

fa
x (ci(x)) .→ fa

λ(ci(λ)),

the mapping we obtain is well-defined, injective and depends holomorphically on λ.
Next we extend this motion to the grand orbits of the critical points. There is a unique

extension compatible with the dynamics. Indeed, consider a typical point where the motion
has already been defined, say by q(λ). Let

Z = {(λ, p) : fλ(p) = q(λ)} ⊂ V × Ĉ
π−−−−→ V
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be the graph of the multivalued function f−1
λ (q(λ)). If q(λ) has a preimage under fλ which

is a critical point ci(λ), then this critical point has constant multiplicity and the graph of
ci forms one component of Z. The remaining preimages of q(λ) have multiplicity one, and
therefore π−1(λ) has constant cardinality as λ varies in V . Consequently Z is a union of
graphs of single-valued functions giving a holomorphic motion of f−1

x (q(x)).
The preimages of q(λ) under fn

x are treated similarly, by induction on n, giving a
holomorphic motion of the grand orbits compatible with the dynamics.

By the λ-lemma, this motion extends to one sending P̂ (x) to P̂ (λ), where P̂ (λ) denotes
the closure of the grand orbits of the critical points of fλ.

If |P̂ (x)| ≤ 2, then fλ is conjugate to z .→ zn for all λ ∈ V ; the theorem is easy in this
special case. Otherwise P̂ (x) contains the Julia set of fx, and its complement is a union of
hyperbolic Riemann surfaces.

To conclude the proof, we apply the Bers-Royden Harmonic λ-lemma to extend the
motion of P̂ (x) to a unique motion φλ(z) of the whole sphere, such that the Beltrami
coefficient µλ(z) of φλ(z) is harmonic on Ĉ − P̂ (x). This motion is defined on a polydisk
neighborhood U of x of one-third the size of V .

For each λ in U the map

fλ : (Ĉ − P̂ (λ)) → (Ĉ − P̂ (λ))

is a covering map. Define another extension of the motion to the whole sphere by

ψλ(z) = f−1
λ ◦ φλ ◦ fx(z),

where z ∈ Ĉ− P̂ (x) and the branch of the inverse is chosen continuously so that ψx(z) = z.
(On P̂ (x) we set leave the motion the same, since it already respects the dynamics).

The rational maps fλ and fx are conformal, so the Beltrami coefficient of ψλ is simply
f∗

x(µλ). But fx is a holomorphic local isometry for the hyperbolic metric on Ĉ− P̂ (x), so it
pulls back harmonic Beltrami differentials to harmonic Beltrami differentials. By uniqueness
of the Bers-Royden extension, we have ψλ = φλ, and consequently the motion φ respects
the dynamics.

Corollary 7.5 The postcritically stable, quasiconformally stable and topologically stable
parameters coincide.

Proof. It is clear that Xqc ⊂ Xtop ⊂ Xpost. By the preceding theorem, if x ∈ Xpost then
for all λ in a neighborhood of x we have φλ ◦ fλ = fx ◦ φλ, where φλ(z) is a holomorphic
motion of the sphere. By the λ-lemma, φλ(z) is quasiconformal, so Xpost ⊂ Xqc.

Remark. The monodromy of holomorphic motions in non-simply connected families of
rational maps can be quite interesting; see [31], [32], [19], [8] and [9].
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7.2 Density of structural stability

The completion of the proof of density of topological stability will use the notion of J-
stability developed by Mañé, Sad and Sullivan. Theorems 7.6 and 7.7 below are from [30];
see also [33, §4] and [27].

Theorem 7.6 Let fλ(z) be a holomorphic family of rational maps over X. Then the fol-
lowing conditions on a parameter x ∈ X are equivalent.

1. The total number of attracting and superattracting cycles of fλ is constant on a neigh-
borhood of x.

2. Every periodic point of fx is attracting, repelling or persistently indifferent.

3. The is a neighborhood (U, x) over which the Julia set Jx admits a holomorphic motion
compatible with the dynamics.

Here a periodic point z of fx of period p is persistently indifferent if there is a holo-
morphic map w : U → Ĉ defined on a neighborhood of x such that fp

λ(w(λ)) = w(λ) and
|(fp

λ)′(w(λ))| = 1 for all λ ∈ U .

Definition. The x ∈ X such that the above conditions hold form the J-stable parameters
of the family fλ(z).

Theorem 7.7 The J-stable parameters are open and dense.

Proof. The local maxima of N(λ) = (the number of attracting cycles of fλ) are open and
dense (since N(λ) ≤ 2d − 2) and equal to Xstable by the preceding result.

The next result completes the proof of Theorem 7.1.

Theorem 7.8 The postcritically stable parameters are open and dense in the set of J-stable
parameters.

Remark. A similar result was established in [30].

Proof. Using Corollary 7.5, we have Xpost ⊂ Xstable because Xpost = Xtop and topological
conjugacy preserves the number of attracting cycles. By definition Xpost is open, so it only
remains to prove it is dense in Xstable.

For convenience, we first pass to the subset X0 ⊂ Xstable where two additional conditions
hold:

(a) every superattracting cycle is persistently superattracting, and

(b) the number of critical points of fλ is locally maximized.
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Then X0 is the complement of a proper complex analytic subvariety of Xstable, so it is open
and dense.

Let U be an arbitrary polydisk in X0, and label the critical points of fλ by ci(λ),
i = 1, . . . , n where ci : U → Ĉ are holomorphic maps.

We will show that for each i and j, there is an open dense subset of U on which the
critical orbit relations between ci and cj are locally constant. Since the intersection of a
finite number of open and dense sets is open and dense, this will complete the proof.

Because U ⊂ Xstable, any critical point in the Julia set remains there as the parameter
varies, and the holomorphic motion of the Julia respects the labeling of the critical points.
(Indeed f : J → J is locally m-to-1 at a point z ∈ J if and only if z is a critical point
of multiplicity m − 1; compare [33, §4]). Thus the critical orbit relations are constant for
critical points in the Julia set; so we will assume ci and cj both lie in the Fatou set.

For a, b ≥ 0, with a += b if i = j, consider the critical orbit relation:

fa
λ(ci(λ)) = f b

λ(cj(λ)). (∗)

Let Uij ⊂ U be the set of parameters where no relation of the form (∗) holds for any a, b. If
Uij = U we are done. If Uij is empty, then (by the Baire category theorem), some relation
of the form (∗) holds on an open subset of U , and hence throughout U . It is easy to verify
that all relations between ci and cj are constant in this case as well.

In the remaining case, there are a, b ≥ 0 and a λ0 ∈ U such that (∗) holds, but (∗) fails
outside a proper complex analytic subvariety of U . To complete the proof, we will show
λ0 is in the closure of the interior of Uij. In other words, we will find an open set of small
perturbations of λ0 where there are no relations between the forward orbits of ci and cj .

First consider the case where i = j. Since the Julia set moves continuously over U and
periodic cycles do not change type, there is natural correspondence between components
of the Fatou set of fλ as λ varies. This correspondence preserves the types of periodic
components as classified by Theorem 2.1 (using the fact that superattracting cycles are
persistently superattracting over X0).

We may assume ci lands in an attracting or superattracting basin, or in a Siegel disk,
since (∗) cannot hold in a Herman ring or in a parabolic basin. Thus fa

λ0
(ci(λ0)) lands

on the corresponding attracting, superattracting or indifferent cycle. In the attracting and
superattracting cases, the critical point is asymptotic to this cycle (but not equal to it) for
all λ sufficiently close to λ0 but outside the variety where (∗) holds. In the Siegel disk case,
fa

λ(ci(λ)) lies in the Siegel disk but misses its center when (∗) fails, implying its forward
orbit is infinite in this case as well. Thus λ0 is in the closure of the interior of Uii, as desired.

Now we treat the case i += j. Since we have already shown that the self-relations of a
critical point are constant on an open dense set, we may assume ci and cj have constant
self-relations on U . Then if ci has a finite forward orbit for one (and hence all) parameters
in U , so does cj (by (∗)), and they both land in the same periodic cycle when λ = λ0. Since
each periodic cycle moves holomorphically over U , (∗) holds on all of U and we are done.

33



So henceforth we assume ci and cj have infinite forward orbits for all parameters in U .
Increasing a and b if necessary, we can assume the point

p = fa
λ0

(ci(λ0)) = f b
λ0

(cj(λ0))

lies in a periodic component of the Fatou set. If this periodic component is an attracting,
superattracting or parabolic basin, we may assume that p lies close to the corresponding
periodic cycle.

In the attracting and parabolic cases, we claim there is a ball B containing p such that
for all λ sufficiently close to λ0, the sets

〈fn
λ (B) : n = 0, 1, 2, . . .〉

are disjoint and fn
λ |B is injective for all n > 0. This can be verified using the local models

of attracting and parabolic cycles. Now for λ near λ0 but outside the subvariety where (∗)
holds, fa

λ(ci(λ)) and f b
λ(cj(λ)) are distinct points in B. Thus ci(λ) and cj(λ) have disjoint

forward orbits and we have shown λ0 is in the closure of the interior of Uij.
In the superattracting case, this argument breaks down because we cannot obtain in-

jectivity of all iterates of fλ on a neighborhood of p. Instead, we will show that near λ0,
ci and cj lie on different leaves of the canonical foliation of the superattracting basin, and
therefore have distinct grand orbits.

To make this precise, choose a local coordinate with respect to which the dynamics takes
the form Z .→ Zd. More precisely, if the period of the superattracting cycle is k, let Zλ(z)
be a holomorphic function of (λ, z) in a neighborhood of (λ0, p), which is a homeomorphism
for each fixed λ and which satisfies

Zλ(fk
λ (z)) = Zd

λ(z).

(The existence of Z follows from classical results on superattracting cycles; cf. [11, §II.4].)
Since (∗) does not hold throughout U , there is a neighborhood V of λ0 on which

Zλ(fa
λ(ci(λ))) += Zλ(f b

λ(cj(λ)))

unless λ = λ0. Note too that neither quantity vanishes since each critical point has an
infinite forward orbit. Shrinking V if necessary we can assume

|Zλ(fa
λ(ci(λ)))|d < |Zλ(f b

λ(cj(λ)))| < |Zλ(fa
λ(ci(λ)))|1/d

for λ ∈ V . If we remove from V the proper real-analytic subset where

|Zλ(fa
λ(ci(λ)))| = |Zλ(f b

λ(cj(λ)))|,
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we obtain an open subset of Uij with λ0 in its closure. (Here we use the fact that two points
where log log(1/|Z|) differs by more than zero and less than log d cannot be in the same
grand orbit.)

Finally we consider the case of a Siegel disk or Herman ring of period k. In this case,
for all λ ∈ U , the forward orbit of ci(λ) determines a dense subset of Ci(λ), a union of k
invariant real-analytic circles. This dynamically labeled subset moves injectively as λ varies,
so the λ-lemma gives a holomorphic motion

φ : U × Ci(λ0) → Ĉ,

which respects the dynamics. For each fixed λ, φλ(z) is a holomorphic function of z as well,
since fλ is holomorphically conjugate to a linear rotation in domain and range.

By assumption, f b
λ(cj(λ)) ∈ Ci(λ) when λ = λ0. If this relation holds on an open subset

V of U , then
g(λ) = φ−1

λ (f b
λ(cj(λ)))

is a holomorphic function on V with values in Ci(λ0), hence constant. It follows that (∗)
holds on V , and hence on all of U and we are done. Otherwise, ci(λ) and cj(λ) have disjoint
forward orbits for all λ outside the proper real-analytic subset of U where f b

λ(cj(λ)) ∈ Ci(λ).

From the proof we have a good qualitative description of the set of points that must be
removed to obtain Xtop from Xstable.

Corollary 7.9 The set Xstable is the union of the open dense subset Xtop and a countable
collection of proper complex and real-analytic subvarieties. Thus Xtop has full measure in
Xstable.

The real-analytic part occurs only when fλ has a foliated region (a Siegel disk, Herman
ring or a persistent superattracting basin) for some λ ∈ Xstable.

Remark. On the other hand, Rees has shown that Xstable need not have full measure in
X [37].

Corollary 7.10 If X is a connected J-stable family of rational maps with no foliated re-
gions, then Xpost is connected and π1(Xpost) maps surjectively to π1(X).

Proof. The complement X − Xpost is a countable union of proper complex subvarieties,
which have codimension two.
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Figure 3. Proof of quasiconformality of ψ.

8 Hyperbolic rational maps

In this section we show that two topologically conjugate hyperbolic rational maps are qua-
siconformally conjugate.

Proof of Theorem 2.9 (Topological conjugacy). The stable regions of an expanding
(alias hyperbolic) rational map are either attracting or superattracting basins. Let φ : Ĉ →
Ĉ be a topological conjugacy between two expanding maps f1 and f2. We will deform φ to
a quasiconformal conjugacy.

The map φ preserves the extended Julia set Ĵ and the regions Ωdis and Ωfol introduced
in §6 because these are determined by the topological dynamics. Thus φ descends to a
homeomorphism φ between the Riemann surfaces Ωdis

1 /f1 and Ωdis
2 /f2. These surfaces are

finite unions of punctured tori. By standard surface topology we may deform φ through an
isotopy φt to a quasiconformal map between these surfaces. (Indeed, after deformation we
can arrange that the mapping is the restriction of a smooth map between closed tori.) Lifting
this deformation, we obtain an isotopy of φt : Ωdis

1 → Ωdis
2 , starting at φ and respecting the

dynamics for all t.
It is easy to see this isotopy converges to the trivial deformation along the grand orbits of

the periodic points and critical points in the attracting regions. We claim it also converges
to the trivial deformation along the Julia set. Indeed, the hyperbolic property implies
each map is expanding with respect to some conformal metric near the Julia set. Thus
pulling back the deformation by f−n

i contracts it exponentially, so the limiting deformation
is trivial.

We have arrived at a deformation of our conjugacy which is trivial on the Julia set and
which renders the conjugacy quasiconformal on Ωdis. A similar argument may be employed
to deform the conjugacy on the superattractive regions to get quasiconformality on Ωfol.
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(By taking care to preserve circular symmetry, an isotopy defined on a single annulus or
punctured disk component of Ωfol extends equivariantly to the entire grand orbit.)

By well-known removability results, a homeomorphism which is quasiconformal except
on a closed countable union of isolated points and real-analytic arcs is globally quasicon-
formal [26, §I.8.3]. Thus at the conclusion of the isotopy we obtain a conjugacy ψ which is
quasiconformal on the entire Fatou set Ω.

Finally we claim ψ is quasiconformal on the Julia set. Consider a small circle C centered
at a point x ∈ J(f1) (Figure 3). By the distortion lemma for expanding conformal maps
[43], as long as an iterate fn

1 (C) remains close to the Julia set, fn
1 distorts ratios of distances

between points in C by a bounded amount (it is a quasi-similarity). In particular, the ratio
between the inradius and outradius of fn

1 (C) about fn
1 (x) is bounded independent of C.

By the expanding property, we can also choose n large enough that fn
1 (C) has definite

diameter. Then its image under ψ is still has a bounded ratio of inradius to outradius.
Since ψ is a conjugacy,

ψ ◦ fn
1 (C) = fn

2 ◦ ψ(C).

Applying the distortion lemma once more, we conclude that ψ(C) has a bounded ratio of
inradius to outradius, because it maps with bounded distortion under fn

2 to ψ(fn
1 (C)). Thus

the circular dilatation of ψ is bounded on the Julia set, and therefore ψ is quasiconformal
on the whole sphere.

Remark. In the proof above, the Koebe distortion theorem for univalent functions can
be used in place of the distortion theorem for expanding maps. (One then appeals to the
property J(f) ∩ P (f) = ∅ to construct univalent inverses near the Julia set.)

9 Complex tori and invariant line fields on the Julia set

A central problem in conformal dynamics is to settle:

Conjecture 9.1 (Density of hyperbolicity) The hyperbolic rational maps are open and
dense among all rational maps of a given degree.

In this section we formulate a conjecture about the ergodic theory of a single rational
map which implies the density of hyperbolicity.

Let X = C/Λ be a complex torus; then X also has a group structure coming from
addition on C. Let ℘ : X → Ĉ be a degree two holomorphic map to the Riemann sphere
such that ℘(−z) = ℘(z); such a map is unique up to automorphisms of Ĉ and can be given
by the Weierstrass ℘-function.
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Let F : X → X be the endomorphism F (z) = nz for some integer n > 1. Since
n(−z) = −(nz), there is a unique rational map f on the sphere such that the diagram

C/Λ
F−−−−→ C/Λ

℘

+ ℘

+

Ĉ
f−−−−→ Ĉ

commutes. (Compare [25].)

Definition. A rational map f is double covered by an integral torus endomorphism if it
arises by the above construction.

It is easy to see that repelling periodic points of F are dense on the torus, and therefore
the Julia set of f is equal to the whole sphere. Moreover, F and z .→ −z preserve the
line field tangent to geodesics of a constant slope on X (or more formally, the Beltrami
differential µ = dz/dz), and therefore f has an invariant line field on Ĉ.

Conjecture 9.2 (No invariant line fields) A rational map f carries no invariant line
field on its Julia set, except when f is double covered by an integral torus endomorphism.

Theorem 9.3 The no invariant line fields conjecture implies the density of hyperbolic dy-
namics in the space of all rational maps.

Proof. Let X = Ratd be the space of all rational maps of a fixed degree d > 1, and let Xqc

be the open dense set of quasiconformally stable maps in this universal family. Let f ∈ Xqc.
Then Teich(Ĉ, f)/Mod(Ĉ, f) parameterizes the component of Xqc/Aut(Ĉ) containing f .
Since the modular group is discrete and Aut(Ĉ) acts with finite stabilizers, we have

dim Teich(Ĉ, f) = dim Ratd − dim Aut(Ĉ) = 2d − 2.

Clearly f has no indifferent cycles, since by J-stability these would have to persist on an
open neighborhood of f in Ratd and then on all of Ratd. Therefore f has no Siegel disks or
parabolic basins. Similarly f has no periodic critical points, and therefore no superattracting
basins. By a Theorem of Mañé, f has no Herman rings [29]. Thus all stable regions are
attracting basins. Finally f is not covered by an integral torus endomorphism because such
rational maps form a proper subvariety of Ratd.

By Theorem 6.9, the dimension of Teich(Ĉ, f) is given by nAC + nLF , the number of
grand orbits of acyclic critical points in the Fatou set plus the number of independent line
fields on the Julia set. The no invariant line fields conjecture then implies nLF = 0, so
nAC = 2d − 2. Thus all critical points of f lie in the Fatou set and converge to attracting
periodic cycles, and therefore f is hyperbolic.
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By a similar argument one may establish:

Theorem 9.4 The no invariant line fields conjecture implies the density of hyperbolic maps
in the space of polynomials of any degree.

Remarks. If f is covered by an integral torus endomorphism, then Mod(Ĉ, f) contains
PSL2(Z) with finite index (compare [22]). It seems likely that the modular group is finite
for any other rational map whose Julia set is the sphere. This finiteness would follow from
the no invariant line fields conjecture as well, since then Mod(Ĉ, f) = Aut(f).

10 Example: Quadratic polynomials

To illustrate the general theory, we will describe the topological conjugacy classes of hyper-
bolic maps in the family of quadratic polynomials. Every quadratic polynomial is confor-
mally conjugate to one of the form

fc(z) = z2 + c,

for a unique c ∈ C. Let H ⊂ C be the open set of hyperbolic parameters. From the definition
c ∈ H if and only if the critical point z = 0 tends to an attracting or superattracting cycle
under iteration. Thus H is the disjoint union of the following sets:

H(p): the parameters such that z = 0 tends to an attracting cycle of period
p ≥ 1;

H0(p): those where the critical point itself has order p; and

H(∞): those where the critical point tends to ∞.

Theorem 10.1 The hyperbolic quadratic polynomials are classified up to conjugacy as fol-
lows.

1. Each component of H(p) is isomorphic to a punctured disk and represents a single
quasiconformal conjugacy class. The multiplier of the attracting cycle gives a natural
isomorphism to ∆∗.

2. The set H0(p) is a finite set of points, corresponding to the punctures of H(p).

3. The set H(∞) is isomorphic to a punctured disk and consists of a single quasiconfor-
mal conjugacy class.

Hyperbolic maps belonging to different components of H(p), H0(p) and H(∞) represent
different topological conjugacy classes.
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Proof. Any component U of H(p) or of H(∞) is open, and the forward orbit of z = 0
under fc is infinite for c in U . Thus the critical orbit relations are constant on U , so by
Theorem 2.7 U represents a single quasiconformal conjugacy class.

Pick a basepoint c ∈ U ; then

U ∼= Teich(Ĉ, fc)/Mod(Ĉ, fc)

because any deformation of fc is conformally conjugate to a quadratic polynomial, and
two polynomials are identified by the modular group if and only if they are conformally
conjugate.

If c ∈ H(p), then z = 0 is contained in an attracting basin Ω0 and fp
c : Ω0 → Ω0 is

conformally conjugate to the Blaschke product Bλ : ∆ → ∆, where

Bλ(z) =
z(z + λ)

1 + λz
,

and λ is the multiplier of the attracting cycle of fc. The Julia set of a hyperbolic map has
measure zero, and therefore carries no invariant line field. The superattracting basin of ∞
is conjugate to (∆, z2) and thus has no moduli. Therefore the Teichmüller space of fc is
isomorphic H, the Teichmüller space of the punctured torus

Y = Ωdis/f = (C/Z ⊕ Zτ) − {0}, τ =
log λ

2πi
.

On this torus there is a dynamically distinguished isotopy class of oriented simple closed
curve γ, which lifts to a closed loop around the attracting periodic point. The modular group
of fc is generated by a Dehn twist about this loop, which acts by τ .→ τ + 1. Indeed, the
modular group can be no larger because γ must be fixed. On the other hand, a Dehn twist
about γ gives an element of Mod(∆, Bλ) fixing the ideal boundary of the disk, and so it
can be extended from an automorphism of fp

c on Ω0 to an automorphism of (Ĉ, fc), fixing
every point outside the grand orbit of Ω0. (This Dehn twist can realized as monodromy in
the family Bλ as λ loops once around the parameter λ = 0.) Since λ = exp(2πiτ) ∈ ∆∗

is a complete invariant of a torus Y with a distinguished curve γ, U is a punctured disk
parameterized by the multiplier.

As λ → 0 at the puncture, c remains bounded, so there is a limiting polynomial which
belongs to H0(p). Conversely a punctured neighborhood of c ∈ H0(p) belongs to H(p),
because the multiplier is continuous. The set H0(p) is contained in the roots of fp

c (0) = 0
and is therefore finite.

We now turn to the open set H(∞). It is easy to see that H(∞) contains a neighborhood
of ∞ and it has no bounded component (by the maximum principle), so it is connected. For
c ∈ H(∞), the canonical foliation of the basin of infinity has a countable set of distinguished
leaves meeting the grand orbit of z = 0. Thus Ωfol has a wandering annulus, and therefore
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Teich(Ĉ, fc) ∼= H. The modular group of fc is at most Z, since the critical point z = 0
is distinguished and so any quasiconformal automorphism must fix the boundary of the
wandering annulus pointwise. Since π1(H(∞)) += {1}, the modular group is nontrivial and
H(∞) is isomorphic to a punctured disk.

Any two topologically conjugate hyperbolic maps are quasiconformally conjugate, and
hence belong to the same component of H(p), H0(p) or H(∞), by Theorem 2.9.

Corollary 10.2 (Douady-Hubbard) The Mandelbrot set

M = {c : fn
c (0) does not tend to infinity as n → ∞}

is connected.

Proof. If M were disconnected, then H(∞) = C−M would have fundamental group larger
than Z, contradicting the previous theorem.

Theorem 10.3 Let h(p) denote the number of connected component of H(p). Then:

∑

p|n

h(p) = 2n−1.

Proof. Let Q(c) = fn
c (0). By induction on n, Q(c) is a monic polynomial with integral

coefficients such that Q′(c) = 1mod 2. Thus the resultant of Q(c) and Q′(c) is odd, and
therefore Q(c) has distinct roots. But these roots correspond exactly to the parameters c
such that fc is of type (ii) and p|n. Thus

∑

p|n

h(p) = deg Q = 2n−1

(using Theorem 10.1).

This proof that Q(c) has simple roots was pointed out by Allan Adler and by Andrew
Gleason.

Remarks. It is not hard to show that C− ∂M consists exactly of the J-stable parameters
in the family fc, and that

C = H 2 ∂M 2 Q,

where Q is the open set of c such that the Julia set of fc has positive measure and carries
an invariant line field [33, §4]. Thus hyperbolic dynamics is dense in the quadratic family
if and only if Q is empty.
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Douady and Hubbard formulated these theorems somewhat differently (without qua-
siconformal conjugacy) but proved them using our quasiconformal deformation technique
introduced in [44] together with their explicit description of quadratic maps which amplifies
greatly on the count of Theorem 10.3 [13], [14].

The papers of this series probably would not have been written without the inspiration
and insight of these “bonshommes”.
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