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Abstract

The classical criterion for a circle diffeomorphism to be topologically conjugate to
an irrational rigid rotation was given by A. Denjoy [1]. In [5] one of us gave a new
criterion. There is an example satisfying Denjoy’s bounded variation condition rather
than [5]’s Zygmund condition and vice versa. This paper will give the third criterion
which is implied by either of the above criteria.
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1 Introduction

Given a circle orientation preserving homeomorphism f : S1 → S1, the rotation number

ρ(f) = lim
n→∞

F n(x) − x

n
mod 1

is independent of x and the lift F of f , where F : R1 → R1 is a lift of f and x ∈ R1.
And it is invariant under topological conjugations. The rotation number ρ(f) is a rational
number if and only if f has a periodic orbit. From the theory of Poincaré, for an orientation
preserving homeomorphism f : S1 → S1, if f has a periodic orbit then its dynamics turn
out trivial: any two periodic orbits have the same period and any orbit tends to a periodic
orbit; if f doesn’t have any periodic orbit then it is semi-conjugate to an irrational rigid
rotation. A natural question is whether or not the semi-conjugation could be improved to be
a topological conjugation. In the following context when we say a rigid rotation we always
mean an irrational rigid rotation. Denjoy proved the following.

Theorem A Given an orientation preserving homeomorphism f of the circle S1 with an
irrational rotation number, f is topologically conjugate to a rigid rotation provided f
is C1 and the logarithm of the derivative of f is of bounded variation.

There is an example (Denjoy counterexample) to show that C1 smoothness is not enough [6].
It is shown even C∞ smoothness is not enough yet in [15]. Actually an orientation preserving
circle homeomorphism with an irrational rotation number is topologically conjugate to an
irrational rigid rotation if and only if it has no wandering interval. Denjoy achieved this
by controlling the variation of the derivative. Recently one of us proved the non existence
of wandering interval by assuming the logarithm of the derivative satisfies the Zygmund
condition.

Definition A continuous map f : R1 → R1 satisfies the Zygmund condition if there exists
B > 0 such that

sup
x,t

|f(x + t) + f(x − t) − 2f(x)

t
| ≤ B.

Theorem B Given an orientation preserving homeomorphism f of the circle S1 with an
irrational rotation number, f is topologically conjugate to a rigid rotation if f is C1

and the logarithm of the derivative satisfies the Zygmund condition.

But there is an example satisfying Denjoy’s bounded variation condition and not Zygmund’s
condition and vice versa [section 5]. This paper gives a third criterion which is implied by
either of the above two and which implies f is topologically conjugate to a rigid rotation.

Definition Let I be a closed interval of R1. A continuous map f : I → R1 is of bounded
Zygmund variation if there exists B > 0 such that

sup
{x0,x1,···,xn}

n−1∑
i=0

|f(xi) + f(xi+1) − 2f(
xi + xi+1

2
)| ≤ B,

where {x0, x1, · · · , xn} is a partition of the interval I. The supremum is called Zygmund
variation of f over I. It is denoted by ZV (f |I).
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Definition Let I be a closed interval of R1. A continuous map f : I → R1 is of bounded
quadratic variation if there exists B > 0 such that

sup
{x0,x1,···,xn}

n−1∑
i=0

(f(xi+1) − f(xi))
2 ≤ B,

where {x0, x1, · · · , xn} is a partition of the interval I. The supremum is called quadratic
variation of f over I. It is denoted by QV (f |I).

Theorem C Given an orientation preserving homeomorphism f of the circle S1 with an
irrational rotation number, f is topologically conjugate to a rigid rotation if f is C1

and the logarithm of the derivative has bounded Zygmund variation and bounded
quadratic variation.

2 Cross ratio distortion

In this section we control cross ratio distortion for standard 4-tuples in terms of Zygmund
variation and quadratic variation (compare §1 of [5]). Let a, b, c, d ∈ R1 and a < b < c < d.

One cross ratio [a, b, c, d] = (d−b)(c−a)
(c−b)(d−a)

can be computed by

log[a, b, c, d] =
∫ ∫

S

dxdy

(x − y)2
,

where S is {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.
Another cross ratio (a, b, c, d) is (c−b)(d−a)

(b−a)(d−c)
and, obviously,

[a, b, c, d] = 1 +
1

(a, b, c, d)
.

Given a homeomorphism h, the distortion of the second cross ratio under h is

(ha, hb, hc, hd)

(a, b, c, d)
.

In this paper, by the cross ratio distortion we mean the distortion of the second cross
ratio.

We call a 4-tuple a < b < c < d standard if b − a = c − b = d − c. The cross ratio
distortion under h of a standard 4-tuple is bounded away from zero and from above if and
only if (ha, hb, hc, hd) is also. If h is C1 diffeomorphism, then

log[1 +
1

(ha, hb, hc, hd)
] = log[ha, hb, hc, hd] =

∫ ∫
S
(h × h)∗µ,

where µ is the measure dxdy

(x−y)2
.
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Clearly the cross ratio distortion under f of a standard 4-tuple is bounded away from
zero and from above if and only if log[ha, hb, hc, hd] is also. Calculating the integrand, we
get

h′xh′y

(hx − hy)2
=

1

(x − y)2

h′xh′y

[h′]2xy

,

where [h′]xy is the average of h′ over the interval [x, y].

Since b − a = c − b = d − c,
∫ ∫

S
dxdy

(x−y)2
= log([a, b, c, d]) = log 4

3
. Thus a bound on h′xh′y

[h′]2xy

yields a bound on the cross ratio distortions for standard 4-tuples.
We say h satisfies the bounded Koebe condition if one of the following equivalent conditions

hold:

1)
1

M
≤ h′xh′y

[h′]2xy

≤ M for some M > 0,

2) |logh′xh′y

[h′]2xy

| ≤ M ′ for some M ′ > 0.

The following proposition is trivial.

Prop. 1 If h satisfies the bounded Koebe condition then the cross ratio distortion under h
of a standard 4-tuple is bounded away from zero and from above.

In order to estimate the log in 2), i.e.,

logh′x + logh′y − 2log[h′]xy,

let us consider the following two terms:

a) logh′x + logh′y − 2[logh′]xy

and
b) log[h′]xy − [logh′]xy .

Remark: If both a) and b) are bounded, then 1) and 2) hold.
Expression a) can be controlled by the Zygmund variation of logh′ on the interval [x, y]

because of the following proposition.

Prop. 2 Let φ be a continuous function from R1 to R1. Then

|φ(x) + φ(y) − 2[φ]xy|

is no more than the Zygmund variation ZV (φ|[x,y]) of φcorollary over [x, y].

Remark: As we define the Zygmund variation of φ on the interval [a, b] in the introduction, we
can also define the average Zygmund variation of φ on [a, b] by replacing the value φ(xi+xi+1

2
)

of φ at the middle point by the average 1
|xi+1−xi|

∫
[xi,xi+1]

φ of φ over [xi, x1+1]. Prop. 2 tells us

that the average Zygmund variation of φ over [a, b] is no more than the Zygmund variation
of φ over [a, b]. Conversely one can show that the Zygmund variation of φ over [a, b] is no
more than twice the average Zygmund variation of φ over [a, b]. Hence these two conditions
are actually equivalent.
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Proof: Without loss of generality, assume [x, y] = [0, 1]. Then

[φ]01 =
∫ 1

0
φdx.

Suppose that we define successive approximations to the average of φ over [a, b] by

A0[a, b] = (φ(a) + φ(b))/2

and
An+1[a, b] = (An[a, m] + An[m, b])/2,

where m = (a + b)/2. Similarly, measure non-linearity by expressions

N0[a, b] = A0[a, b] − A1[a, b] = (φ(a) − 2φ(m) + φ(b))/4

and
Nn+1[a, b] = (Nn[a, m] + Nn[m, b])/2,

or equivalently
Nn[a, b] = An[a, b] − An+1[a, b].

Then
A0[0, 1] − An[0, 1] = N0[0, 1] + · · · + Nn−1[0, 1]

with
|Nk[0, 1]| ≤ ZV (φ|[0,1])/2k+2

hence
2|A0[0, 1] − lim

n→∞
An[0, 1]| ≤ ZV (φ|[0,1]),

i.e.,
|φ(0) + φ(1) − 2[φ]01| ≤ ZV (φ|[0,1]).

Next we estimate the expression b) in terms of the quadratic variation.

Lemma 1 If ǫ ≥ δ > −1, assume

log(1 + ǫ) = ǫ − ǫ2

2
∆(ǫ),

then there exists B(δ) > 0 depending on δ such that |∆(ǫ)| ≤ B(δ).

Proof: Since

∆(ǫ) =
ǫ − log(1 + ǫ)

ǫ2/2
,

The proof is an elementary calculation.

Definition 1 A quantity C1 (depending on parameters) is a big O of another quantity C2

(depending on the parameters) if there exists a constant B (independent of the parameters)
such that

|C1| ≤ B|C2|.
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Prop. 3 Suppose the derivative h′ satisfies 1/C ≤ h′ ≤ C for some C > 0. Then the
expression b) is equal to the big O of the quadratic variation of logh′ over the interval [x, y].

Proof: Let h′(x) = a. The expression b) is unchanged if we multiply h′x by 1/a. Write
(1/a)h′ on J = [x, y] as 1 + ǫ where ǫ is a function of (t − x), t ∈ J . Expand the two terms
of b)

log
1

|J |
∫

J
(1 + ǫ) − 1

|J |
∫

J
log(1 + ǫ)

= log(1 +
1

|J |
∫

J
ǫ) − 1

|J |
∫

J
[ǫ − ǫ2

2
∆(ǫ)]

= [
1

|J |
∫

J
ǫ − 1

2
(

1

|J |
∫

J
ǫ)2∆(

1

|J |
∫

J
ǫ)] − [

1

|J |
∫

J
ǫ − 1

|J |
∫

J

ǫ2

2
∆(ǫ)]

= −1

2
(

1

|J |
∫

J
ǫ)2∆(

1

|J |
∫

J
ǫ) +

1

|J |
∫

J

ǫ2

2
∆(ǫ).

By the Cauchy inequality, ( 1
|J |

∫
J ǫ)2 ≤ 1

|J |

∫
J ǫ2. Since 1/C ≤ h′ ≤ C for some C > 0, there

exists δ(C) > −1 such that ǫ = h
′

t

h
′
x
− 1 ≥ δ for any t ∈ J , J = [x, y]. Hence 1

|J |

∫
J ǫ ≥ δ. By

the Lemma 1, there exists B(δ) > 0 such that |∆(ǫ)| ≤ B(δ). Hence |∆( 1
|J |

∫
J ǫ)| ≤ B(δ).

Furthermore we can get that ǫ = h′t
h′x

− 1 is a big O of log h′t
h′x

= logh′t − logh′x. so the
expression b) is a big O of the quadratic variation of logh′ over J . The following proposition
will be used in section 4 to the iterates of a circle diffeomorphism f .

Prop. 4 Suppose h : I → R1 is a C1 diffeomorphism with h′ > 0, and logh′ has bounded
Zygmund variation and bounded quadratic variation over I. Assume J0 ⊂ I and J0 J1 =
h(J0), · · · , Jn = hn(J0) are pairwise disjoint. Then the cross ratio distortion under hn of a
standard 4-tuple in the interval J0 is the big O of the sum of the Zygmund variation and the
quadratic variation of log h

′

on ∪n−1
i=0 Ji.

Proof: From the expression 2) above the Prop. 1, we want to estimate

log
(hn)

′

(x)(hn)
′

(y)

[(hn)′ ]2xy

.

By the chain rule of calculating the derivative of hn,

log
(hn)

′

(x)(hn)
′

(y)

[(hn)′]2xy

=
n−1∑
i=0

log
h

′

(hi(x))h
′

(hi(y))

[h′ ]2
hi(x)hi(y)

.

Each summand can be decomposed into the expression a) and expression b), by the Prop.
2 and Prop. 3, each summand is the big O of the sum of the Zygmund variation and the
quadratic variation of logh

′

over the interval [hi(x), hi(y)], where i = 0, 1, 2, · · · , n − 1. So
the cross ratio distortion under hn of a standard 4-tuple in J0 is the big O of the sum of the
Zygmund variation and the quadratic variation of logh

′

on ∪n−1
i=0 Ji.
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3 Nonwandering set and ergodicity

In this section we review some basic techniques due to Denjoy [1]. Suppose f : S1 → S1 is
an orientation preserving homeomorphism with an irrational rotation number.

For x ∈ S1, let
ω(x) = ∩n∈NCl({fk(x)|k ≥ n}),
α(x) = ∩n∈NCl({f−k(x)|k ≥ n}),

where Cl(A) means the closure of the set A. They are called ω limit set of the orbit of x
and α limit set of the orbit of x respectively.

x ∈ S1 is called a wandering point of f if there exists a neighborhood U of x such that

fk(U) ∩ U = ∅, ∀k ∈ Z \ {0}.
A point is called a nonwandering point if it is not a wandering point. Ω(f) denotes the set
of all nonwandering points, which is called nonwandering set. Clearly it is a closed subset.

A subset A is invariant under f if

f(A) ⊂ A, f−1(A) ⊂ A.

A non-empty subset A is minimal for f if it is closed, invariant under f and there is no
non-empty proper closed subset of A which is invariant under f .

Prop. 5 Suppose f has no periodic point, then
(1) Ω(f) = ω(x) = α(x), ∀x ∈ S1;
(2) Ω(f) is a minimal set of f ;
(3) either Ω(f) is a nowhere dense perfect subset of S1 or Ω(f) = S1.

Proof: (1) ω(x) is a non-empty closed invariant subset of S1. Let (γ, δ) be a component of
S1 \ ω(x), then f j((γ, δ)) is also a component of S1 \ ω(x) for any j ∈ Z. Since f has no
periodic point, {f j([γ, δ])|j ∈ Z} must be pairwise disjoint and hence (γ, δ) is a wandering
interval of f . So S1 \ ω(x) ⊂ S1 \ Ω(f). Hence Ω(f) ⊂ ω(x). Clearly ω(x) ⊂ Ω(f). So
Ω(f) = ω(x). Similarily Ω(f) = α(x).

(2) Clearly from (1).
(3) Let ∂Ω denote the boundary of Ω, ∂Ω is closed. Since

∂Ω ⊂ Ω, f(∂Ω) = ∂f(Ω) = ∂Ω,

either ∂Ω = ∅ hence Ω = S1 or ∂Ω = Ω hence Ω is nowhere dense. For the second case, Ω is
perfect since Ω = ω(y), ∀y ∈ Ω.

Definition 2 Suppose f has no periodic point. We say f is ergodic if Ω(f) = S1, otherwise
we say f is not ergodic.

The following result is well known and its proof can be found in several references ([1], [2],
[3], [4] and etc.).

Prop. 6 Suppose an orientation preserving homeomorphism f : S1 → S1 has no periodic
point and is ergodic, α = ρ(f). Then f is topologically conjugate to an irrational rigid
rotation τα : S1 → S1 given by

τα(ξ) = e2πiαξ.
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4 Proofs of results

A circle homeomorphism with an irrational rotation number is topologically conjugate to a
rigid rotation if and only if it is ergodic, in other words if and only if it has no wandering
interval. Denjoy’s C1+b.v-condition and [5]’s C1+Z-condition both guarantee the nonexistence
of a wandering interval. In this section we prove that the C1-plus bounded Zygmund variation
and bounded quadratic variation guarantee the nonexistence of a wandering interval. Before
we get into the proofs of these results, we need the following technique lemmas.

Prop. 7 (Contraction Principle) ([10], [6]) Suppose f : S1 → S1 is a circle homeomor-
phism has no periodic orbits and I is a subinterval of S1. If infn≥0{|fn(I)|} = 0, then I is
a wandering interval of f .

Proof: Let In = fn(intI) and Σ = ∪n≥0In.
Case 1: If Σ = S1, then S1 is covered by finite Ini

, i = 1, 2, ..., k. Since infn≥0 |In| = 0,
the Lebesgue’s lemma implies that there is Il, l ∈ N , contained in one of Ini

, i = 1, 2, ..., k,
name it Ij. Without loss of generality we assume l > j. Note Il = f l−j(Ij). So f l−j will have
a periodic point in the closure of Ij. This is contradiction.

Case 2: Suppose Σ 6= S1. If there is no component U of Σ such that some iterate of U
intersects with U , then U and hence I are wandering intervals. If there is a component U
of Σ such that fn(U) ∩ U 6= ∅ for some n ≥ 0, then fn(U) ⊆ U and hence fn has a periodic
point in the closure of U . This is again a contradiction.

Lemma 2 (Real Koebe Principle) If h : I → R1 does not increase the cross ratio dis-
tortions for standard 4-tuples too much then the quasisymmetric distortions for standard
interior triples are controlled. More precisely, if x, y ∈ I satisfy |x − y| is as small as the
distance to the boundary ∂I of I and z = (x + y)/2, then

1

C
≤ |h(x) − h(z)|/|h(z) − h(y)| ≤ C,

where C only depends on the bound of the cross ratio distortions for standard 4-tuples.

Proof: See §2 of [5]. The idea to prove this lemma is to use the four interval arguement. Let
J, L, M, R be four contiguous equal lenth intervals. Suppose the lenth of h(L) is much smaller

than h(M). Since the cross ratio distortion |h(M)||h(T )|
h(L)||h(R)|

/3 on L, M, R is greater than the ratio

distortion |h(M)|
|h(L)|

, no bound of ratio distortions implies no bound of cross ratio distortions.

It is easy to use the Real Koebe Principle to get the following Macroscopic Koebe Dis-
tortion Principle.

Definition 3 Let M and T be two intervals with M ⊂ T , and L and R be components of
T \ M . If ǫ > 0 we say T is an ǫ-scaled neighborhood of M if

|L|
|M | ≥ ǫ and

|R|
|M | ≥ ǫ.

8



Prop. 8 (Macroscopic Koebe Distortion Principle) Given any B > 0, ǫ > 0, there
exists δ > 0 only depending on B and ǫ such that, for any homeomorphism f of the circle,
any subintervals M ⊂ T and any n ≥ 0, if the cross ratio distortion under fn of any standard
4-tuple in T is bounded by B and fn(T ) contains an ǫ-scaled neighborhood of fn(M) then T
contains a δ-scaled neighborhood of M .

Proof: Let T \ M = L ∪ R. Without loss of generality, we only need to prove |M |
|L|

can not

be very large. Suppose |M |
|L|

is large, we cut M into pieces Li from left to right with lengths

2i−1|L|, i = 1, 2, 3, · · ·. We also denote L0 = L. From the Real Koebe Principle, there exists
a constant C only depending B such that

|fn(Li)|
| ∪i−1

j=0 fn(Lj)|
≥ 1

C
,

where i = 1, 2, 3, · · ·. Hence
| ∪i

j=0 fn(Li)|
| ∪i−1

j=0 fn(Lj)|
≥ 1 +

1

C
,

where i = 1, 2, 3, · · ·. So
| ∪i

j=0 fn(Li)|
|fn(L0)|

≥ (1 +
1

C
)i,

where i = 1, 2, 3, · · ·. This means

| ∪i
j=1 fn(Li)|
|fn(L0)|

≥ (1 +
1

C
)i − 1,

where i = 1, 2, 3, · · ·.
Clearly i can not be very large, otherwise fn(T ) can not be an ǫ-scaled neighborhood

of fn(M). Hence we can find a bound of i only depending on B and ǫ, which means there
exists δ > 0 only depending on B and ǫ such that T contains a δ-scaled neighborhood of M .

Definition 4 The intersection multiplicity of a collection of sets Xα∈Λ is the maximal car-
dinality of a subcollection with non-empty intersection.

Use the Contraction Principle (Prop. 7), it is easy to get the following proposition.

Prop. 9 Suppose f : S1 → S1 is an orientation preserving homeomorphism without periodic
orbits. Let I be a wandering interval and not contained in any larger wandering interval.
If I is a proper subset of an interval J , then the intersection multiplicity of the pullbacks
{f−i(J) : i = 0, 1, 2, ...} is infinity.

Proof: Suppose the intersection multiplicity of the pullbacks {f−i(J) : i = 0, 1, 2, ...} is finite.
Then |f−n(J)| → 0 as n → ∞. Now apply the contraction Principle to J and the map f−1.
It says that J is a wandering interval. But this is false because I was a maximal wandering
interval.
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Definition 5 Let f : S1 → S1 be an orientation preserving homeomorphism. The variation
of the logarithm of cross ratio distortion under f is defined as

sup
{x0,x1,···,xn}

n−1∑
i=0

sup
bi,ci∈(xi,xi+1)

log
(f(xi), f(bi), f(ci), f(xi+1))

(xi, bi, ci, xi+1)

where bi and ci belong to the open interval (xi, xi+1) from xi to xi+1 counter clockwisely and
{x0, x1, · · · , xn} is a partition of S1.

Let f : S1 → S1 be an orientation preserving homeomorphism with an irrational rota-
tional number. Let I be a wandering interval for f . The following combinatorial machinery
on wandering intervals, In = fn(I) : n = 0, 1, 2, ..., was developed in [10] and can be found
in [6].

Definition 6 If n ∈ N , we say Ik is a left (or right) predecessor of In if there is no Il, 0 ≤
l < n, in the gap (Ik, In) (or (In, Ik)), where (Ik, In) denotes the counter-clockwise gap from
Ik to In. We denote them by IL(n) and IR(n).

In has a successor In+a if
1. In−a is a left (or right) predecessor (with 0 < a ≤ n);
2. fa|[In−a,In+a] (or fa|[In+a,In−a]) contains no predecessor of In;
3. if In is to the left (or right) of In+a, then there is no Ik, 0 ≤ k < n + a in the gap

(In, In+a) (or (In+a, In)).

Furthermore we define the natural neighborhood Tn of In to be the biggest closed interval
containing In which contains no Ii, i ∈ N , except its nearest predecessor or successor.

Remark: Of course In can have at most one predecessor on each side. Moreover In has at
most one successor, denote it by IS(n). Therefore Tn = [IL(n), IR(n)] if In has two predecessors
and no successor and Tn = [IL(n), IS(n)] (or Tn = [IS(n), IR(n)]) if In has a successor.

One can prove the following lemmas ([6], p. 309).

Lemma 3 For every n ∈ N , In can have at most one successor.

Lemma 4 Assume the interval In has two predecessors IL(n), IR(n) and a successor IS(n), If
this successor is to the right of In then the predecessors of IS(n) are In and IR(n) and if IS(n)

has a successor then this successor must be again to the right of IS(n).

Remark: This lemma implies that if In has a successor IS(n) and IS(n) also has a successor
IS(S(n)) then S(n)−n = S(S(n))−S(n) and IS(n) is between In and IS(S(n)). Continuing this
if there exists a maximal integer k such that ISi+1(n) is a successor of ISi(n) for 0 ≤ i ≤ k− 1,
then the intervals ISi(n), 0 ≤ i ≤ k − 1, are ordered and fa acts as a translation on these
intervals, where a = S(n) − n.

Theorem 1 ([6], p. 310) Let n ∈ N and assume that In has two predecessors IL(n) and
IR(n). Let Mn ⊃ In be an interval contained either in [IL(n), In] or in [In, IR(n)]. Assume that
{Mt0 , Mt0+1, ..., Mn} are pullbacks of Mn. If the intersection multiplicity of this collection is
at least 2m and m ≥ 2 then there exists t ∈ {t0, ..., n} such that

(1) IS(t), IS2(t), ..., IS2m−2(t) are defined;
(2) n = Sm(t) and ISj(t) is contained in Mn for j = m, ..., 2m − 2.
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Corollary 1 Assume an interval T ⊃ In and T is contained in the natural neighborhood Tn

of In. Then the intersection multiplicity of the pullbacks of T is at most 15.

Proof: Consider the pullbacks of T ∩ [IL(n), In] and T ∩ [In, IR(n)] seperately. Suppose the
intersection multiplicity of the pullbacks of T is at least 16. Then either the pullbacks of
T ∩ [IL(n), In] or the pullbacks of T ∩ [In, IR(n)] has intersection multiplicity ≥ 8. Take m = 4,
the previous theorem imples that IS2(n) is contained in T ∩ [In, IR(n)]. This is impossible
because of T ⊂ Tn.

Now we can prove the following theorem.

Theorem 2 Let f : S1 → S1 be an orientation preserving homeomorphism with an irra-
tional rotation number. If the logarithm of the cross ratio distortion under f has bounded
variation B, then f has no wandering interval, hence it is topologically conjugate to a rigid
rotation.

Proof: Suppose I is a maximal wandering interval for f and In = fn(I), n ≥ 0, n ∈ Z. There
exists arbitrarily large n ∈ N and l, r < n such that In ⊂ (Il, Ir), Ik ∩ (Il, Ir) = ∅, 0 ≤ k < n,
and |In| ≤ min{|Il|, |Ir|}. This property is proved as follows. Pick up Il and Ir such that
the gap (Il, Ir) contains no Ik for 0 ≤ k ≤ max{l, r}. By the density of any orbit under an
irrational rotation, there exists In first gets into the gap (Il, Ir). If |In| ≤ min{|Il|, |Ir|} then
it is done, otherwise replace Ir by In and go on. Since the sum of the lenths of Ik is bounded,
eventually we will get |In| ≤ |Ir|, furthermore we get |In| ≤ |Il|. We have seen Il and Ir are
two predecessors of In.

Let Tn be the natural neighborhood of In. If In has no successor, then Tn = [Il, Ir]. By
the corollary 1, the intersection multiplicity of the pullbacks of Tn is bounded by 15. Use
the Macroscopic Koebe Distortion Principle, we get a bigger wandering interval J strickly
containing I. This contradicts with the maximality of I. Hence In has a successor Is(n).
Use the same way as the above, we get |Is(n)| < |In|. Inductively we get infinitely many
successors Isi(n), i = 1, 2, ..., and by theorem 1, all successors are contained in [Il, Ir] and are
ordered. Moreover si(n)− si−1(n) is a constant a = s(n)− n. It follows Isi(n) converges to a
fixed point of fa as i → ∞. This contradicts with f has no periodic points.

Proof of Theorem C : Let I be a maximal wandering interval for f and In = fn(I), n ≥
0, n ∈ Z. Let Tn be the natural neighborhood of In. The intersection multiplicity of the
pullbacks of Tn is bounded by 15. By the Prop. 4 the cross ratio distortion of fn on T0 is
uniformly bounded by a constant B. The rest of the proof follows the proof of the above
theorem.

The remainder of this section explains why the conditions of the theorem C is weaker
than Denjoy’s condition and [5]’s condition. It is almost trivial that Denjoy’s condition
implies the conditions of the theorem C.

Prop. 10 Let h : I → R1 be a C1 smooth function and logh′ is of bounded variation, then
logh′ is of bounded Zygmund variation and bounded quadratic variation.
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Proof: By the triangle inequality, the Zygmund variation of logh′ is no more than the
variation of logh′ on the interval I. Let M be the maximal value of |logh′| on the interval
I, then the quadratic variation of logh′ is no more than 2M multiplied by the variation of
logh′ on the interval I.

Clearly the Zygmund condition implies bounded Zygmund variation. Furthermore, the
Zygmund condition implies α-Hölder continuous for 0 < α < 1. The 1/2-Hölder continuity
implies the bounded quadratic variation.

Lemma 5 If φ : I → R1 satisfies the Zygmund condition: there exists B > 0 such that

sup
x,t

|φ(x + t) + φ(x − t) − 2φ(x)

t
| ≤ B,

then φ is α-hölder continuous for any 0 < α < 1.

Proof: Denote D(x, t) = φ(x+t)−φ(x)
t

. Then

D(x, t/2) + D(x + t/2, t/2) = 2D(x, t), |D(x, t/2) − D(x + t/2, t/2)| ≤ B,

D(x, t/4) + D(x + t/4, t/4) = 2D(x, t/2), |D(x, t/4) − D(x + t/4, t/4)| ≤ B,

·
·
·

D(x,
t

2n
) + D(x +

t

2n
,

t

2n
) = 2D(x,

t

2n−1
), |D(x,

t

2n
) − D(x +

t

2n
,

t

2n
)| ≤ B.

These give us
|D(x, t/2n)| ≤ |D(x, t)| + nB,

i. e.,

|φ(x + t/2n) − φ(x)

t/2n
| ≤ |D(x, t)| + nB.

Then

|φ(x + t/2n) − φ(x)

(t/2n)α
| ≤ (|D(x, t)|/n + B)n(|t|/2n)1−α,

which tells us that φ is α-Hölder continuous for any 0 < α < 1.

Prop. 11 If φ : I → R1 satisfies the Zygmund condition, then φ is of bounded Zygmund
variation and bounded quadratic variation over the interval I.
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5 Three examples

In the introduction it is mentioned that there exists an example satisfying Denjoy’s bounded
variation condition but [5]’s Zygmund condition and vice versa. In this section, we will give
these two examples and also we will give an example to show that there is an example being
of bounded quadratic variation but not being of bounded Zygmund variation.

Example 1 Let φ : [−1, 1] → [−1, 1] be the following function

φ(x) = x, x ∈ [−1, 0],

φ(x) =
√

x, x ∈ (0, 1].

Clearly φ is monotone hence it is of bounded variation, but the Zygmund condition fails since
the right derivative of φ at the point 0 is infinite but the left derivative is 1.

Example 2 Let φ0(x) = 2x for x ∈ [0, 1
2
] and φ0(x) = 2 − 2x for x ∈ [1

2
, 1]. And let

φn =
φ(2nx − i)

2n
for x ∈ [

i

2n
,
i + 1

2n
],

where i = 0, 1, ..., 2n − 1.
Let φ(x) =

∑∞
n=0 φn(x). φ is differentiable at a set of measure 0 only. It can’t be of

bounded variation, otherwise it is differentiable almost everywhere which is a contradiction.
[7] and [8] study the general theory about the differentiability of a function satisfying Zygmund
condition.

Example 3 Let φ : [0, 1] → [0, 1] is defined by the figure 1. It is easy to get the quadratic
variation of φ on [0, 1] is equal to

∑∞
n=1

2
n2 which is finite. But the difference between the

left derivative and the right derivative of φ at 1/2n is equal to

2n+2

n + 1
− 2n+1

n
=

2n+1

n

n − 1

n + 1

which tends to ∞ as n → ∞. Therefore it has bounded quadratic variation but has no
bounded Zygmund variation.

Actually the left question is to study whether or not the bounded Zygmund variation property
implies the bounded quadratic variation property.

6 Appendix

The nonexistence of wandering domains for any rational map of the complex sphere was
proved by Dennis Sullivan in 1985 [9]. The analogue of this theorem for one-dimensional
dynamical systems was done for certain smooth multimodal maps by Martens, de Melo and
van Strien in 1992 [10]. In the latest publication [6], the smooth condition used by de Melo
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and van Strien is that a multimodal map piecewise satisfies C1+b.v (or C1+Z) and the map can
be written as a power map (x 7→ |x|α, α > 1) composed by a C1+b.v (or C1+Z) diffeomorphism
around every turning point. Combine the analysis work of getting a bound of cross ratio
distortions in this paper and the combinatorial machinery on wandering intervals in [10] or
[6, p. 308-312], we can get a weak version of Martens, de Melo and van Strien’s theorem of
no wandering intervals for multimaodal maps. Before we state the theorem, let us give the
definition of a wandering interval for a multimodal map of an interval.

Definition 7 Let f : I → I be a continuous map of an interval I. An open interval J ⊂ I
is called a wandering interval of f if

1) fn(J) ∩ fm(J) = ∅ for any n 6= m, n, m ∈ N ;
2) fn(J) does not converge to a periodic orbit.

Theorem 3 [11] Let f : I → I be a C1 smooth map satisfying
1) f is C1+b.Z.v+b.q.v away from critical points;
2) Let Kf be the set of critical points of f . For each x0 ∈ Kf , there exist α > 1, a

neighborhood U(x0) of x0 and a C1+b.Z.v+b.q.v diffeomorphism φ : U(X0) → (−1, 1) such that
φ(x0) = 0 and

f(x) = f(x0) ± |φ(x)|α, ∀x ∈ U(x0).

Then f has no wandering intervals.

Norton, Sullivan and Velling [12, 13 and 14] have begun the work of generalizing the setting
of Denjoy’s theorem to two dimensional dynamical systems by considering diffeomorphisms
of the torus. The quasiconformal theory has found a place there.
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