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Introduction

Given a polynomial-like mapping P acting on a plane domain, we denote
the forward iterates of P under composition by P”. These iterates determine
a dynarnical system acting on a neighborhood of the Julia set. If we assume
the Julia set is connected, we may uniformize the complement of the Julia
set by a Riemann mapping r, mapping the complement to the exterior of the
unit disk. The forward iterates P are conjugated to iterates r o P* or™1,
which forms a dynamical system acting on the exterior of the unit disk and
which extends to an action on the unit circle. This conjugated dynamical
system is expanding along the unit circle, which is a repeller.

The chief result of this paper is that such dynamical systems, for a given
degree, form part of a Teichmiiller space. It is an infinite dimensional com-
plex manifold modeled on a Banach space and it has a Teichmiiller’s metric
which is complete. The Banach space is a space of quadratic differentials and,
for a special case, this space is identifiable with certain lacunary series. There
is an associated infinite dimensional Banach space for every polynomial-like
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mapping and these Banach spaces generalize lacunary series. The homogene-
ity of smoothness of lacunary series and of more general vector fields for the
dynamical system can be seen as a form of Mostow rigidity.

In order to create this complete Teichmiiller space, we pick out a natural
class which is larger than the class of polynomial-like mappings. It is the
class UAC of uniformly asymptotically conformal dynamical systems with a
fixed topological type, acting on an open neighborhood of the repeller and
factored by asymptotically conformal equivalence.

These concepts are defined in section 1. For now we say only that there
is a type of uniform almost isometric behaviour, with respect to the Poincaré
metric, satisfied by the forward powers of a polynomial-like mapping P. This
almost isometric behaviour is shared by elements of U AC. That polynomial-
like mappings have almost isometric behaviour is the content of the hyperbolic
distortion lemma, (Lemma 3). The lemma shows that single-valued branches
of an P™ are nearly isometric and, in this sense, the dynamical system for
P resembles a Fuchsian group. Of course, the transformations of a Fuchsian
group are exact isometries.

Teichmiiller’s metric on the factor space T' of U AC becomes the dynami-
cal boundary dilatation metric, a metric which is defined in [4]. This metric
identifies two elements of U AC if they have the same behaviour at fine scales;
in particular, if two elements are identified, the limits of their scaling ratios
will be identical. Flements of T have well-defined eigenvalues at repelling
periodic fixed points. The fibers of the tangent space to T are spaces of
holomorphic quadratic differentials for analytic realizations of the quasicon-
formal dynamical system. The fibers over the special polynomial-like maps
of the form P(z) = z? are given by certain lacunary series. Our proof of
the existence of fibers over the other polynomial-like mappings depends on a
discussion of Bers’ £-operator [1] and another distortion lemma, called the
Schwarzian distortion lemma, (Lemma 7). Its proof is a familiar chain rule
and geometric series argument.

There is a Riemann surface lamination associated to the expanding map-
ping P. It is obtained from the germ of the action of the iterates of  on
small open neighborhoods of the repeller, which is the intersection of the
descending sequence of sets, P~(V). Elements of the lamination are tails of
strings of points (..., z3, 22, 21, Z0) Which have the property that zpis in V-{the
repeller} and P(z,41) = 2 for each n. This space can be viewed locally as
the direct product of a Cantor set with complex disks. The global form of the
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space is determined by the dynamics of P and we call it the Riemann surface
lamination L for the mapping P. The theory of the Teichmmiller space for a
general Riemann surface lamination all of whose leaves are hyperbolic is de-
veloped in [6]. That theory encompasses the Teichmiiller theory we consider
here for U AC systems and some of the lemmas used in this article could be
deduced from the more general theory.

We are indebted to Adam Epstein and Mitsu Shishikura for several helpful
conversations.

Section 1. Uniformly asymptotically conformal
dynamical systems |

Let A* be the set of points z in complex plane for which |z| > 1 and
let U be an arbitrary annular neighborhood in A* of the unit circle. By the
annular neighborhood U we mean a doubly connected open subset of A* for
which there are numbers r; and r; greater than 1 such that {z : 1 < 2| <
m} CU C{z:1 < |z] <r}. As a matter of technical convenience, we
assume that P is defined on all of A*, but the ingredients of P important
to us depend only on its values on small annular neighborhoods of the unit
circle.

We make the following assumptions on P. It is a quasiregular mapping
defined on A*, it is expanding of degree d in an annular neighborhood of the
unit circle and it is uniformly asymptotically conformal.

By quasiregular we mean that P factors into a quasiconformal homeo-
morphism from A* onto A* followed by a holomorphic mapping.

By expanding of degree d in an annular neighborhood of the unit circle,
we mean that there are annular neighborhoods U; and Uy with U7 C Uy
such that Uy — Uy is a topological annulus with positive modulus and such
that P restricted to [/; is an unbranched degree d covering of U. We also
assume that the sets I/, = P™"(Up) form a descending chain of annuli Uy D
Uy--- D U, --- whose intersection is empty and that each ring w, = U, — U, 1
is an annulus of positive modulus surrounding the unit circle. From the
geometric neighborhood lemma (Lemma 5), the rings w, are contained in
{z:1 < |z] <1+ ¢} where ¢ converges to zero exponentially as n converges
to co. The family of rings w, related to P in this way is called a sequence of
ring domains for P.




By uniformly asymptotically conformal, we mean that the branches of
P-" are nearly conformal on sufficiently small annular neighborhoods for all
nonnegative integers n. More precisely, for every € > 0, there is an annular
neighborhood U, such that for every integer n > 0 and every z in P7"(U),
the dilatation of P* at z is less than 1 + €. :

Definition. Let UAC be the set of all mappings P which are quasiregular
and defined on A*, which are ezpanding and of degree d in an annular neigh-
borhood of the unit circle and which are uniformly asymptotically conformal.

The most obvious examples of degree 2 mappings P in UAC are P(z) = 2*

or P(z) = z[ Z-g ] with |a] < 1. Other examples can be obtained by

1—az
conjugating the action of a polynomial-like mapping on the exterior of the
filled-in Julia set to an action on the exterior of the unit circle. We will
eventually see that there are elements of UAC which are not in the same
conjugacy class as a polynomial-like map.

Let P and P be elements of /AC. Then there are annular neighborhoods
Uy and Uy for P and U 1 and U, for P on which P and P are unbranched degree
d coverings. By trimming the boundaries of Uy, U, U, and Uy, we can assume
that the outer boundaries of these annular neighborhoods are quasicircles.
Then we can construct a quasiconformal homeomorphism [ from wp to Wy
such that fo P(z) = Po f(z) for values of z on the inner boundary of wg.
By pulling back the quasiconformal mapping f defined in wp, the conjugacy
f extends to a quasiconformal homeomorphism f from w; Uwg onto o U,
satisfying f o P(z) = P o f(z) and which has maximal dilatation bounded
by the product of the dilatation of f restricted to wy and of the dilatations
of P and P. In a similar manner, f can be extended to the union of all the
wy’s satisfying the relation fo P(z) = Po f(z). We call a homeomorphism f
constructed in this manner a puliback homeomorphism. The hypotheses that
the backwards branches of P* and P uniformly asymptotically conformal
implies, in particular, that they are uniformly quasiconformal and, thus, the
pullback homeomorphism f is quasiconformal on Us.

We see that any two elements in I/AC are conjugate in some annular
neighborhood by a quasiconformal homeomorphism f. The conjugating map-
ping f is called asymptotically conformal if, for every € > 0, there exists a
number r > 1, such that the dilatation of f in the annulus 1 < [2| < r is less
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that 1+ ¢&. By demanding that f be asymptotically conformal, we obtain an
equivalence relation on UAC.

Definition. Two elements P and P in UAC are equivalent if there is a qua-
siconformal homeomorphism f asymptotically conformal at the boundary of
A* and defined on some annular neighborhood U such that foP(z) = Pof(2)
for all z with |2} = 1. The Teichmiller space T of uniformly asymptotically
conformal ezpanding degree d mappings is the space UAC factored by this
equivalence relation.

Remarks. 1. Every element P of UAC can be symmetrized by Schwarz
reflection. It becomes a quasiregular mapping P of C onto C which fixes the
unit circle and is invariant under conjugation by the reflection j(z) = 1/Z.
Therefore, it makes sense to speak of the values of P(z) and f(P(z)) for
values of z on the unit circle.

9. Even though mappings P in UAC are not differentiable, if ¢ i1s a
periodic point of P of order m on the unit circle, then the notion of the
eigenvalue of P at g 1s well-defined on the equivalence class of P in T. Since
P™ fixes g, it must map a sufficiently small disk neighborhood of g over itself
leaving an intervening annulus. The hypothesis that P™ 1s asymptotically
conformal implies that the modulus of this annulus, viewed as a function of
the selected disk neighborhood, has a limit as the disk neighborhood shrinks
towards the point g. If we define the eigenvalue of P at the periodic point
g to be the exponential function applied to 2r times this limiting modulus,
then it coincides with the usual notion of eigenvalue, namely, df: (g), when
P is holomorphic at q.

Choose an element P in UAC and annular neighborhoods Uy and U
such that P is a degree d, unbranched cover of Uy over Us. Define QS(P) to
be the set of quasiconformal homeomorphisms h mapping Up onto annular
neighborhoods of the boundary of the unit disk such that the dynamical
system h o P" o R=! is uniformly asymptotically conformal. The Beltrami
coefficient of a mapping h, which we denote by the symbol Beltr(h), is defined
to be % g—i’.

For h in QS(P), we consider three different Beltrami coefficients:

i) the Beltrami coefficient g of h,

i) the Beltrami coeflicient on of ho P",
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iii) the Beltrami coefficient p, = P pu(2) defined by
. n* — d n
pn(2) = p(P" (2))a/q where ¢ = 2-FP"(2).

Lemma 1. (P-equivariant deformations) Assume h is a quasiconformal
homeomorphism of A*. The following conditions on h are equivalent:

i) h is an element of QS(P),

ii) for every € > 0, there ezists an annular neighborhood U such that for
all positive integers n and for all z in P7™(U),

joa(z) — u(2)| < e.

ii1) for every € > 0, there exists an annular neighborhood U such that for
all positive integers n and for all z in P~"(U),

ial2) — u(2)] < e.

Proof. The Beltrami coefficient of (Ao P*) o h™' is ¢, — p divided by a
term which is bounded away from zero. Therefore, the assertion that the
dilatation of ko P™o k' is uniformly near to 1 for z in P~*(U) is equivalent
to ii). Let v, be the Beltrami coefficient of P*. Observe that p,, v, and o,
are related by the equation

Vp + pin
Oy = ———
1+ Uyt
and, therefore,
Up — F‘im
Tp = g = 77— -
# 1+ T g,

Since we can make |v,(z)| as small as we like by suitably choosing U/ and
letting z be in P™"(U) and since |pn(2)| is uniformly bounded for these z,
the equivalence of 1) and iii) is a consequence of this last formula. 0

We denote by M(P) the space of Beltrami coefficients of mappings h
in @S{P). By the preceding lemma any element of M(P) is a measurable
complex valued function defined on U satisfying the following properties:
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a) esssup, i 1 l(2)] <1
b) for every ¢ > 0, there exists an annular neighborhood U of the

boundary of the unit disk, such that for all positive integers n and all 2
in P~(U), [P p(z) — p(2)| <e.

Conversely, if p satisfies these two properties, then by solving the Beltrami
equation for a mapping with Beltrami coefficient g, we obtain a mapping h
such that ko P o k-1 is uniformly asymptotically conformal.

Let S be the group of quasiconformal homeomorphisms of A* onto A*
which are asymptotically conformal. This group determines an equivalence
relation on QS(P) by declaring two elements Ay and hy of QS(P) to be
equivalent if there is an element s of S such that so ha(z) = hy(z) for |z| = L.
We let QS(P)/S be the space of equivalence classes for this equivalence
relation.

There is a mapping from QS(P) to UAC; for any h in QS(P), the map-
ping is h +— P where P = ho Poh~'. By the pullback construction, we see
that this mapping is surjective and, since T is a quotient space of UAC, we
obtain a mapping from QS(P) onto T'. Take two elements of hy and hy of
QS5 (P) which conjugate P into Py and P, respectively. Assume that ko and
hy are equivalent modulo S. Then there is an asymptotically conformal map-
ping s in S such that soke(z) = hu(2) for |z] = 1. Then soPyos71(2) = PA(2)
for || = 1 and, consequently, Fp is equivalent to P; in UAC.

Conversely, if Py and Py are equivalent in U AC, there is an asymptotically
conformal mapping s such that s0Pyos™(z) = Pi(z) for all z on the boundary
of the unit circle. If ko and hy conjugate P to Py and P, respectively, then
we find that so hgo P?o(sohg)™ = h_joPmo hy! for all positive integers n.
Since repelling periodic points of P are dense in the unit circle, we conclude
that s o ho(z) = h1(2) for z on the boundary of the unit circle and, hence, hg
and hy are in the same equivalence class for Q5 (P)/S. We have proved the
following theorem.

Theorem 1. The natural mapping from QS(P) onto T factors to an iso-
morphism from QS(P)/S to T.

Theorem 2. The boundary dilatation metric on QS(P)[S makes T into a
complete metric space and the metric is independent of the base point P.

Proof. In [5] it is shown that the boundary dilatation metric on @S modS
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is complete. The issue here is to show that QS(P) is a closed subset of
QS. Assume that A is a quasiconformal mapping and that k; is a sequence
of quasiconformal mappings such that ||Belir(h;) — Beltr(h)|l.. < € for
sufficiently large j. It follows that for z in P~"(Us),

| Beltr(h; o P*)(2) ~ Beltr(ho P*)(2)| < €,

where ¢/ = ¢/(1 — k%) and k is a uniform bound on the absolute values of the
Beltrami coefficients of P*. On the other hand, since each k; is in QS(P),
we know that for every € > 0, there exists jo , such that for all § > jo and
for all z in P7(U;),

|Beltr(h; o P*)(z) - Beltr(h;)(z)| <e.
Therefore, for all n and z in P (U},),

|Beltr(h o P*)(z) — Beltr(h)} < 2¢ + €.

The fact that the metric on QS(P)/S is independent of base point follows
from the fact that composition on the right induces an isometry for the
respective Teichmiiller metrics. O

Section 2. Polynomial-like mappings

An element of UAC which is conformal in some annular neighborhood
U of the boundary of A* is called polynomial-like. TFirst we prove that
polynomial-like mappings are dense in 7.

Given an element P in UAC and a positive number &, select annular
neighborhoods U and U such that P restricted to Uy is a degree d cover
over Uy and the dilatation of P on U is less than 1 + &. As before, we let
U, = P™™(U,). Let u be the Beltrami coefficient of P in U, and let p be
identically zero outside of U/,. Form the quasiconformal homeomorphism g
of A* which fixes oo and which has Beltrami coefficient g. The mapping g is
conformal in |z| > 1 + & provided that the circle of radius 1 4 é contains Us.
Moreover, g is 1 + e-quasiconformal in |z| > 1. Since § approaches zero as n
approaches 0o, by the Holder continuity of g, we may choose n large enough
so that g(U/;) is contained in U and so that the complement of g(Us) in Up
is an annulus of positive modulus.




Let P = Pog" and U; = g(U4). Then P(Uy) = P(U;) =Up and Pis a
degree d unbranched covering of Uy over Up and the closure of U, is compact
in Uy. Moreover, P is conformal in U. Therefore, P is a polynomial-like
element of U AC whose distance in the Teichmiiller metric on QS(P)/S is
less than log(1 + &) from P. We obtain the following result.

Lemma 2. (Density of polynomial-like mappings) The set of polynomial-
like mappings is dense in the Teichmiller space of uniformly asymptotically
ezpanding degree d mappings with Teichmiiller’s boundary dilatation metric.

The Poincaré metric for A* is A(z)|dz|]l = [|dz|/|z|log|z|]. We are
concerned only with how this metric measures the sizes of objects which are
very near to the boundary of the unit circle. If §(z) is the distance from
2 to the boundary, the formula for A(z) is asymptotically equal to (1/6(z))
for values of z with |z| near to 1. The Poincaré metric for A* U {oco} is
[2|dz|/(|z:|2 - 1)] and this has the same asymptotic values for |z| near to
1. For the purposes of the next lemma, we could use cither one of these
two metrics. The lemma says that if P is polynomial-like, the branches
of P", restricted to neighborhoods sufficiently near to the boundary, are
approximate isometries in the Poincaré metric. It is a kind of distortion
lemma, because it gives a bound on distortion for branches of P", which is
independent of n.

Lemma 3. ( Hyperbolic Distortion) Assume P is a polynomial-like mapping
acting on A*. Then for everye, there exists an annular neighborhood U, such
that for every positive integer n and every z in P7"(U),

1 APH2))| P (2)]
T1e= ) sl+e

Proof. (This proof was explained to me by Mitsu Shishikura.) One views
A" — {o<} as a half-cylinder, the upper half plane factored by the cyclic
group generated by z + z + 1. Let A(z) by the Poincaré metric for this
half plane. One lifts the mapping P restricted to U; to a mapping P defined
on a periodic strip Sy in the upper half plane bounded by the real axis and

B=s
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a periodic curve which is the lift of the outer boundary of Uy. This lifted
mapping maps 51 over itsell and onto a domain Sp which is the 1ift of the
domain Up. P restricted to S) is one-to-one and P is a mapping from.
the strip Sp into itself. The natural extension of P! acts as an isometry
of a hyperbolic plane. Let p be the hyperbolic metric for this plane. This
hyperbolic plane contains the strip So. Let A be the hyperbolic metric for
So. The inequalities A < X and p < Ag follow from Schwarz’s inequality.
On the other hand by shrinking to strips smaller than S, whose boundaries
are straight lines, we can use the exact formulas for the Poincaré metrics to
deduce the following fact; given any ¢ > 0, there exists § > 0, such that for
any z = x+1y with 0 <y <4, (1+6) —1 < p(2)|dz|/M(2)|dz] < 1+¢. Because
the natural extension of £~ is a non-Euclidean isometry for the p-metric,
we obtain the uniformity condition of the lemma. O

Section 3. Quadratic differentials for polynomial-
like mappings

For the purposes of clarity of exposition, in this section we assume the
degree d of our mappings is two; the case for general degree follows by triv-
ial modifications, usually no more complicated than the replacement of the
symbol 2 by d.

The first requirement is to construct a set of domains for the dynamical
system generated by the branches of the mappings P" which are analogous
to a fundamental domain for a Fuchsian group. By assumption, £ 1s a cover
of a domain U, over Uy, U; is properly contained in Up and the domain
wo = Up — Uy is an annulus of positive modulus. We arbitrarily choose a
cross-cut of wg, that is, a simple arc which joins a point (1 on the inner
boundary component of wp to a point Qo on the outer boundary component
of we with the property that P(Q;) = Q. We let §y equal wy with this arc
deleted and call the simply connected set Gy the Carleson box at level zero.
Since we assume P is a regular covering of degree 2, this arc pulls back to
two disjoint arcs joining the boundary contours of wy; these two arcs divide
wy into two boxes at level one. Continuing in this manner, w, = Un — Up_1,
where U, = P™"(Uy), is divided into 2" boxes at level n. Branches of the
mapping P™ , for different values of n, give holomorphic homeomorphisms
between boxes in the ring wy 4 and boxes in the ring wg. As a consequence of
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the hyperbolic distortion lemma, if we take any two boxes, one from w,, and
one from w, for sufficiently large n and n, the homeomorphism of these two
boxes will be almost an isometry. Even if m and n are not large, each box
is quasi-isometric to a square with unit area and unit side length measured
in the Poincaré metric. A bound on the constant of quasi-isometry depends
only on the geometry of P. In contrast, the side length of any box in a ring
w, measured in the Euclidean metric and its distance from the boundary
of the unit circle are bounded below and above by positive constants times
el and €}, where 0 < go < &1 < 1. This fact follows from Lemma 5, the
geometric neighborhood lemma.

The Carleson boxes, so constructed, are quite arbitrary; nonetheless, they
lead to definitions and properties which are invariant under the choices made
in their construction.

Consider the Banach space B of bounded holomorphic functions ¢ defined
in A* for which

[lells = sup [A(2)p(2)] < oo

Tt is a matter of technical convenience that i is defined in the whole domain
A*; in the end, we only care about its values near the boundary of of the
unit circle.

B contains a closed subspace By consisting of those ¢ such that |]A72(2)e(z)]
vanishes at the boundary of the unit circle. More precisely, ¢ is in By if for
every ¢ > 0, there exists a number r > 1, such that

sup [N2(=)e(2)] < e.
1<lz|<r
For a quadratic-like mapping P, there is an annular neighborhood U, in-
side which it is possible to take the derivative, %, and the derivatives % are
2
defined inside the sets P~"(Ug). Define P™ (¢)(2) to be ¢(P"(2)) [din (z)]

for z in the set P~™(U;). We can now define quadratic differential forms for
P.

Definition. The space B(P) of bounded holomorphic quadratic differentials
for P consists of all functions ¢ holomorphic in the exterior of the unit circle
and such that
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i) @ is contained in B and
1) for every €, there ezists an annular neighborhood U C Uy, such thal
for all n and for all z in P7"(U),

[P (0)(2) — p(2)] < eX’(2).

The key element of this definition is that the inequality is uniform in n; it
says that if we look in a deep enough annular neighborhood Uy, ¢ on the ring
wnyr 1s nearly the same as the pullback by P* of ¢ on wy and the amount
by which ¢ and the pullback of ¢ differ is independent of n.

Proposition. By is a closed subspace of B(P) and B(P) is a closed subspace
of B. Moreover, the natural Banach norm for the quotient space B(P)/ By is

llellagp) = fim sup |A™*(2)(2)];
zinl)

where the limit is taken as the annular neighborhood U shrinks to the boundary
of the unit circle.

Proof. First we show that By is contained in B(P). If ¢ is in By, then for
any ¢ > 0, there exists r > 1 so that

sup [A7H(z)p(2)] <e.
1<|zl<r

Thus, for z is in P™(U), |A73(P™(2))p(P"(2))| < e. But by the distor-
tion lemma, we can shrink the annular neighborhood U sufficiently so that
MP(2))|P¥(2)] < (1 +€)M2). We obtain [A72(2)(P" ¢)(2)| < &(1 + ¢€)
and, finally, [P™ (¢)(z) — ¢(2)| < {e(1 + €) + £}A7%(z), which implies that
@ € B(P).

We omit the proof that B(P) is a closed subspace of B since it is so
stmilar to the proof of Theorem 2; the one new ingredient is the hyperbolic
distortion lemma (Lemma 3). o

Section 4. An L;-norm on for B(P) when P(z) =

2,2
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We now construct a second norm for the Banach space of holomorphic
quadratic differentials which are automorphic for the dynamical system de-
termined by P. Our definition will depend on the choice of Carleson boxes,
but since the norm will turn out to be equivalent to the patural norm for
B(P)/By, this dependence is only apparent.

We assume that P(z) = 2% and that a system of Carleson boxes for P
has been constructed. Consider the space A(P) of functions ¢ holomorphic
in A satisfying

1) supy [ fgleldzdy < oo, where the supremum is over all Carleson boxes
3, and

ii) for every € > 0, there exists an annular neighborhood U, such that for
all positive integers n and for all 2 in P7"(U ),

S?L/wwwm—wmw@<a

Let area () denote the Poincaré area of 8. We define the A(P) norm of
 to be

) 1
lellagn =t sup ——z5 [ [lo(e)ldads,

gin U area

where the supremum is over all Carleson boxes in U and the limit is taken
as the annular neighborhood U shrinks towards the boundary. Since the
Poincaré areas of all of the Carleson boxes are comparable, the area factor
in this definition is superfluous. However, the area factor is necessary if we
expect to show that the norm, up to a constant factor, is independent of the
choice of Carleson boxes. From the inequality

1

1 / Jle@ldzdy < sup o\ / [ (@)dady),

area(f)

it follows that !¢llaw < lellsp) since the second factor on the right hand
side of this inequality is equal to 1. The same type of inequality shows that
if ¢ satisfies condition ii) for B(P) then it satisfies condition ii} for A(P). It
follows that restriction of a function ¢ defined on A* to a function defined on
Up defines a mapping from B(P) into A(P) which is continuous and that the
A(P)-norm of any element of By is equal to zero. Provided we show that the
automorphy condition ii) for A(P) implies condition ii) for B(P), then the
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restriction mapping induces a surjection from B(P)/ B, to A{(P)/Bg because
any function holomorphic in Uy differs by an element of By from a function
which is holomorphic in A* and vanishes of order |z|™* as z approaches co.
Any Carleson box is surrounded by eight adjacent Carleson boxes. If these
boxes are at level n, the Euclidean diameter of each of these eight neighbors
is on the order of a constant times 1/2", which is the same as the order
of the value of the Poincaré metric in these boxes. From the areal mean
value theorem for the subharmonic function |¢(z)|, we obtain a constant C
depending on the geometry of the mapping P such that

sup [N () < O [le(o)ldrdy

zin B
and it follows that ||o||sry < Clle|lap). The same argument shows that
the automorphy condition ii) for A(P) implies the automorphy condition for
B(P).

Theorem 3. In the case that P(z) = z* the mapping from B(P)/By to
A(P)/By induced by the restriction of an element of B(P) to A(P) is an

isomorphism of Banach spaces.

Section 5. Lacunary series as quadratic differen-
tials

The preceding theorem gives us equivalent norms for the Banach space
B(P)/By. At this point, we have no examples of nontrivial elements in this
Banach space. In this section, we show that B(P)/By is infinite dimensional
in the case that P(z) = 2°.

From P(z) = 22, it follows that P*(z) = 2%" and £ P*(z) = 2%22*~1. For
any holomorphic function @, considered as a quadratic differential, define
P¥ ®(z) to be equal to ®(P*(2))(LP*(z)). If we let (2) be a function
holomorphic in A*, by looking at a power series for ¢, we find that it is
impossible to solve the equation P* ¢(z) = ¢(z). On the other hand, if we
only require equality modulo By, this equation has many solutions. They
take the form of any linear combination of

oo 22k o ) .
wilz) = ;) T where j is an odd integer > 1.
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The exponents 2 4+ j2%, for k& > 0, coincide with the orbit of j + 2 under
the mapping a — 2a — 2 acting on the positive integers. Therefore, if we
take two unequal odd values of j > 1, say j; and jj, the exponents of z
appearing in the summation for ¢; will all be distinct from the exponents
of z appearing in the summation for ¢;,.

Notice that ¢;(z) also can be written in the form

A 1
wilz) = kX—%Pk ®;(z) where ®;(2) = g,

and so @; is a theta-series of the holomorphic function @; whose absolute
value is integrable over A*. Thus

oi{z) — P ps(2) = Z P* 0(2)

and, therefore, if 3 is a Carleson box for P in P~"(U),

[G/IP”*QDJ'(Z) —;i(2)} dzdy < /,GUP(ﬁ)...uPn—l(g)/ |®;(z)| dzdy.

Since ®; is integrable, this inequality shows that ¢; satisfies the automorphy
condition for B(P).

The function @; is an element of B(A*) because its A(F) norm is bounded
by a constant times [y, [ |®;|dzdy.

A second way to see that p; is bounded in B(A*) is to use the Banach
space isomorphism between B(A*) and the Zygmund bounded vector fields
on the unit circle. The isomorphism involves two steps. The first s to
integrate (; in A* three times to a vector field Vi(z)£. The second step is
take the real part of this vector field and restrict its values to the unit circle.
For the substitution z = €, restricting z to the unit circle is the same as
restricting @ to the real axis. We find that
iy g 00 - 2%% sin(j2°0)
real part of Vi(e")/1e"df ng GF GG =)
This function is an element of the Zygmund class A* and, on making the
substitution m = j2* and using the identity
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m? 1 1
i D) D - m D

b

we obtain
part of V(0)fic*do = =3 — (1 . n(j20
real part of V;(0)/ie"df = ]_2;;.@{ + (3’22%——1)} sin(j2"°8).

The second term inside the curly bracket approaches zero as k approaches oo
and, therefore, by the Zygmund-Jackson theorem [8], the contribution of this
second term to the summation corresponds to an element of A*. Under the
isomorphism between A* and B(A*), this means it corresponds to a cusp form
which vanishes at the boundary, namely, to an element of By. Since we only
care about the class of this function modulo A*, which is isomorphic to By,
we may neglect the second term inside the curly bracket, and the summation
takes exactly the form of the classical Weierstrass example, [7, page 48-50].
Our computation shows that the Zygmund norm of V; is asymptotic to 772,

Theorem 4. For the case P(z) = 2*, the functions @; for j equal to an odd
integer bigger than or equal to 1 form « linear independent set in the Banach

spacez B(P)/Bo.

Proof. We have already shown that the ¢; determine elements of B(P)/By.
We now show that the ¢;’s are linearly independent in the quotient Banach
space. That is, we show, if a linear combination of the ¢;’s is in By, then
each constant in the linear combination is zero. We actually show much more,
namely, that there is a convergent notion of inner product defined for pairs
of elements of B(P)/B, and that, with respect to this inner product, the
functions ¢; form a orthogonal family of elements not contained in By. This
notion of inner product is defined when P is any polynomial-like mapping.

Lemma 4. (Convergence of inner product) Let i be ¢ P-automorphic
Beltramz differential and © be in A(P). Let w, be a sequence of ring domains

determined by P. Then Jil&(m‘”ea(w))_2f/ e dzdy converges.
Proof. Because u and ¢ are automorphic, we know that for every £ > 0,
there exists an annular neighborhood U, such that for all integers £ > 0 and

for all z in P~5(U),
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|P¥ u(z) = ()] < £ and |P¥' () = o(2)] < eX(2).

To show the sequence of the lemma is a Cauchy sequence, we must show that
for every € > (), there exists an n, such that for all & > 0,

I/ /!W““Zkf /Wl = I/ f#so—f fP’“'sol < (const)e2™**.
Wtk Wn Wn Wntk

Inside the absolute value we subtract and add the term [ [ P* o, with
integration over the domain ws.s, and then apply the triangle inequality.
The resulting two terms are seen to be less than or equal to

ELn+kj|@| + [z i:u£+,, |pk*#(z)|]s[dn+k/A2.

The first term is less than a constant times ¢ 2°7* because ¢ is in A(P). The
second term is bounded similarly because p is bounded and because of the
hyperbolic distortion lemma. (]

From the hyperbolic distortion lemma, one can show that for ¢ in A(P),
A2 is P-automorphic Beltrami differential, (see Lemma 3 of section 2).
From the above lemma we conclude that the limit in the following imner
product converges:

<, >= lim /wn/np ¥(z) daedy

n—ce grea(wy,)

It is easy to see that < sp->Y2< Yollpepysy~ The.ring domains_for
P(z) = 2% can be taken to be bounded by concentric circles. If we take
two P-automorphic forms ; and ¢;, with j; not equal to j» we obtain
< @j,,i, >= 0 since none of the exponents of z occurring in the series for
@;, coincides with any exponent of z occurring in the series for ¢j,.

We now show that < w;,¢; > is asymptotic to a positive constant times
7% and this will complete the proof of the theorem. We take w, to be
the region between (1 + ¢) and (1 + ¢)®. Then the Poincaré area of wy, is
asymptotic to 27 /e and
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< Wiy = 111116

e—0

1 24k(r log r)? ) 4 — 24k
fm L TR rdr = lim4 ¢ gm

Since the omission of any finite number of terms in this summation does not
affect the limit as e approaches zero, we see that the inner product norm of
; depends only on the tail of the infinite series of its definition. To estimate
this limit, we replace the summation by an integral and integrate by parts
three times. We obtain < @j,p; >= (constant) j=* and so the Zygmund
norm of V; and the inner product norm of ¢; are both asymptotic to j72, O

Section 6. The Bers’ L-operator

The Bers’ L-operator [1} is a device which converts Beltrami differen-
tials into holomorphic quadratic differentials. The L-operator arises from
analyzing the derivative of composition of mappings representing points in
Teichmiiller space. More precisely, for the quasisymmetric mappings f and
A, if we hold  fixed and let f vary, the mapping [f] — [foh] is differentiable.
Calculating the expression for its derivative, followed through the conformal
welding process, gives rise to the L-operator.

In the next section, we use the L-operator and the existence of quadratic
differentials for the special polynomial mapping P(z} = z¢ which was shown
in the previous section to deduce the existence of quadratic differentials for
arbitrary polynomial-like mappings of degree d. In this section we show that
Bers’ L-operator preserves P-automorphic forms.

It is convenient to transport our spaces of differentials to spaces of dif-
ferential forms on the logarithmic covering space. The lifting of a degree d
mapping to this covering is an injective mapping. This convenient fact was
already used in section 2 to prove the hyperbolic distortion lemma. As be-
fore, for simplicity of notation, we assume that d = 2, but all the theorems
apply for arbitrary positive integers d > 2.

In our set-up, we assume we have a quasiconformal conjugation of the
lifting of a quadratic-like mapping. The picture is of a quasicircle C, which
is periodic in the sense that C+2w¢ = C'. (Think of C as the imaginary axis or
a periodic quasiconformal distortion of the imaginary axis.} The complement
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of €' consists of two simply connected domains, L and £, which we refer to as
the left side and the right side. There is a one-to-one conformal mapping a,
the lift of the quadratic-like mapping P, which is defined in a neighborhood
of (', periodic in the sense that afz + 272} = afz) + 41, leaves C invariant,
and is expanding in the following sense. There are periodic open sets Uy and
U; contained in L and V and V; contained in R such that U; U C UV 1s an
open neighborhood of C' in the complex plane. The mapping « fixes the set ¢
and maps U; onto Uy and V; onto V. The topological periodic strip domains
Uy — Uy and V — V4 factored by the translation z — z + 271 are conformal
cylinders with positive moduli. By following the backwards images of Up
under iterates of @, we obtain a sequence of strips Up D U1 D --- D Us D
and the modulus of each cylinder (Up_y — Un)/(z — z + 2mi) has twice the
modulus of the preceding cylinder (Uy — Unga)/(z ¥+ z + 271). We have a
similar picture on the right hand side R where there is a sequence of strip
domains Vo O Vi D -+ D V, -, which are the backwards images of V; under
the iterates of . It is convenjent to let W, = U, UCU V,, so o maps W,
injectively and holomorphically onto Wo. The log of the absolute value of the
derivative of « is bounded above and below by positive constants throughout
the closure of W.

We need a lemma concerning strip neighborhood systems. For any z, let
6(z) be the minimum Euclidean distance from z to C'. Consider the sequence
of neighborhoods of C' given by Up(e) = {z: 2 € R and §(z) < €*} We call
such a sequence U, (¢) a geometric system of neighborhoods.

Lemma 5. (Geometric neighborhoods) Given any strip neighbor-
hood U contained in R, there exists geometric systems of neighborhoods U,.(&0)
and Un(e1) with 0 < g9 < &1 <1 and an integer k such that Unyx(o) C
a™U) C Un—il(eyr) for all n > k. The numbers o and €, depend on the
largest and smallest values of |o'} in W1

Proof The lemma is obviously true in the case that Fo(z) = 2% with eg =
g1 = 1/2. Any P is related to o by the equation ho Pyoh™ = P, where h is
quasiconformal and h preserves the unit circle. The lemnma follows from the
observation that % is quasiconformal and, hence, both k and h~1 are Holder
continuous. O

In the right hand side R, we consider the Banach space L,(e) of Beltrami
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differentials for a. It consists of L., -complex-valued functions y defined on
R satisfying

1) u(z + 27i) = p(z) and

it) for every £ > 0, there exists a periodic strip neighborhood V of (' in
R, such that for all n > 0 and for all z in «™(V),

a™(z)

Mo () oy~ M) < e

On the left side L, we consider the Banach space B{«a) of holomorphic
functions ¢ which are bounded cusp forms in the sense that, if A is the
Poincaré metric for L, then sup, ;, 1 |¢(2)A7%(z)| < oo,

i) o(z + 277) = ¢(z) and

i) for every ¢ > 0, there exists a periodic strip neighborhood U of C in
L, such that for all n > 0 and for all z in o™ *(U),

f

p(a”(2))a™ (2)" — (2)] < eX*(z).
The next lemma enables us to view condition ii) in an apparently weaker
form.

Lemma 6. (Bootstrapping) Suppose ¢ is a funclion holomorphic in L
such that ¥(z + 2m1) = ¢(2) and the sup |A72(z)¢(z)| over z in L is bounded.
Suppose further that there exists a positive integer 3, such that for everye > 0,
there exists a strip neighborhood U, such that for all positive integers n and

for all z in o= (U), |b(e™(2))a™ (2) 72 —(2)] < €X¥(2). Theny is in B(a).
Proof. We apply the hypothesis j times. For z in o™(U),
|ajm¢ _ aj(n—l)‘¢| < aan(j_l]‘,\g,
P 1 S
lo? 4 — ] < e A%
Summing these inequalities and using the hyperbolic distortion lemma, we

find that for every z in a=™(U), |0/ ¥(2) — ¥(2)]l < (const)jer?(z). A
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simple modification of this argument applies to arbitrary integers of the form
jn + m, where m is between 0 and 7 — 1. ()

Lemma 7. (Schwarzian distortion) There is a constant go with 0 < g9 <
1/2 depending on a, such that for every e with 0 < e < & and every z and (
in W,, with |z — (| < eeg,

o™ (2)a™ (¢) 1 €

A @ —aOF G0 =P
Moreover,
a”(2fe™ (0?1 :
B) Gt —aQp G- 0F S

Proof. The Schwarzian derivative Sf of a holomorphic function f is equal
to

FEMQ Ly

= §1im = 1og P =IO gy
51() = 8lim 5ogptoo ¢ =S\ = 507~ =07

We define the bi-Schwarzian derivative S to be the same expression without
the constant 6 and without taking the limit as { approaches z:

0* z) —
55(2,0) = poprlosl 2L,

The composition law for the bi-Schwarzian is

S(f 0 g)(=,¢) = (81)(g(2),9(0)g'(2)g'(C) + Sg(2, ()-

Since « is assumed to be univalent in an open neighborhood of Wy, Sa(z) is
bounded on W; and the bi-Schwarzian Sz, ¢) is bounded on W, XW;. On
taking the bi-Schwarzian of o, we obtain

(Se)(@™1(z),a" ()" (2)a" M ()

+(Sa) (@™ %(2), & 2 ())a F ()" () + -+ + Se(z,()
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and, on letting K7 be a bound for Sa on Wy XW; and k; a bound for o' on
W1, we see that if z and ( are in W, this expression is bounded by

2n
K{l+ &+ + (k)< K kkg T < (const)k".
: 1

Thus, if |z — | < €, then |z — (|* multiplied by the left hand side of A)
is less than (const)e?e2"k?". Part A) follows by choosing &g small enough so
that coko < 1 and (const)ep < 1.

To prove part B), we apply the factorization 0 - D*=(C—-D}C+D)
and the result of part A). On multiplying both sides of the inequality in B)
by |z — (%, the result follows from part A and the bound

@O
(a*(z) —o(()* "~
where k, is chosen so that |o'(p)/e/(q)] < ko for every p and ¢ in Wh.
Of course, the maximum value of |a”/¢/| times the Euclidean diameter of
WiN(the horizontal strip between y =0 and y = 2x) is a bound for log k3 .
To guarantee the inequality in part B, we choose £o so that goki1kz < 1 and
(const)eo < 1. This completes the proof of the Schwarzian distortion lemma.

3

The L-operator is defined by the formula

Lp(z)dz? = p(z)dz* = /Vo / %dﬁ.

In this definition we could take the domain of integration to be the lift of
any annular neighborhood of the circumference of the unit circle, since, in
the end, we only care about the equivalence class of 1» modulo Bg.

Theorem 5 The L-operator is a bounded linear mapping from the Banach
space Loo(a) to the Banach space B(a)/Bo.

Proof. In the classical case, the domain of integration is the whole right hand
side, R, and « is a Mobius transformation preserving R and the conditions
i} in the definitions of Leo(a) and B (@) are replaced by exact automorphy,
(the inequalities are true for & = 0). Then this Theorem follows by changing
variables and using the identity (a(z) — a(())? = o/(2)e/({)(z — ¢)?, which is
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true if o is a Mobius transformation. In the situation at hand, we only know
that the holomorphic mapping ¢ arises from an expanding polynomial-like
mapping and, hence, we may not use this identity.
4
Let K(2,0) = (2 — )% 0" K(2,0) = o/(2)%a/(2)? (of2) — a(¢)] and

=

a*p(z) = y(a(z)g,v{%. To prove the theorem we must estimate

Lop(a”(2))a™ (2) — Loo(z)-

We write this difference as a sum of three terms:

1) = [ [(@ 0" K(z,0) = K (=, 0)dedn,
@) = [, [ (e (0 = #O) Kz, Odedn, and

1) = [, [ HOKG Odedn.

Each of these integrals is a periodic function of z and holomorphic for values
of z in L. To prove ii) in the definition of B(a) we repeatedly use the fact
that

[M_ZM ] ¢ — 2[*dEdny = =y

From the bootstrapping lemma, it suffices to find j such that for alle > 0,
there exists a k, such that for all n > 0 and for all z in a‘j”(Uk_) = Ujntks
la™ 1(z) — ¥(2)| < eA(2)?. From the geometric neighborhood lemma, select
B and k so that U, C Up—r(1). If z is in Ujpypr, then 8(z) < Bi". Select
j so that 8] < eo, where g is the value in the Schwarzian distortion lemma.
To estimate the integral Iz}, take a disk of radius &g centered at z and write
the integral as a sum of two integrals, the first over the V.N(the disk) and the
second over V,((the complement of the disk). By the Schwarzian distortion
lemma, the first integral is bounded by

oo g
el [ 75 < emllilld()™
—2nk22n)

The second integral is bounded by 7||gl|e(€n 2 e . Now, put the
additional condition on j that 3] < eo/k2 and we obtain the desired estimate.
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To estimate 1/(z), the assumption 1i) in the definition of x implies, for
every ¢ > 0, there exists an ng, such that for all n > 0 and for all z with
6( ) < egt™ 1P u(z) — p(2)] < e. Consider a disk centered at a point z
in I and of radius 57, The integral I1(z) is bounded by the sum of an
integral over V,,U(this disk) plus an integral over V,U(the complement of this
disk). The first integral is bounded by a constant times

ot d < 512
6/2() r—3_6(con3t) (2)~*%
The second integral is bounded by 2{|4|]o0(1/£5*7%™). Pick £y so that o« (U)
U,_x($1). If j is so large that 8] < €q and if §(z) < (8,7, then this term grows
much more slowly than §(z)~2 and we again obtain the desired estimate.

To estimate I11(z), select systems of geometric neighborhoods V,,(g0) and
Un(B1) and a positive integer k, such that V, i{gq) C V,, and U, C U,_i(B1).
Then 111(z) is bounded by ||i||eo/( dist(z, right hand bdry of V,,))? which
is less than 7 ||p]|eo/(6(2) +€0)? = 7|ipt| o/ 8(2)*(1 +-515/8(2))2. If we pick
z in Ujnqk, then z is in an(ﬂl) then ept*/6(2) > ep™ /81" and, by choosing
j large enough, this fraction is as large as we like. We obtain the desired
inequality and this concludes the proof of the theoremi. O

Theorem 6. The Bers’ L-operator induces an isomorphism from B(a, R)/ By
onto B(a, L)/ By, where By is the Banach space of periodic bounded cusp
forms which vanish at C.

Proof of theorem. We define a modified £-operator, £ by

9=, ] G
Vo

We have already observed that the hyperbohc dlstortion lemma implies that
if 4 is an element of B(a, R) then A%} is an element of Lo, (a, R). The
previous theorem then implies that £ is an element of B(a, L). It is obvious
that £ preserves the periodic bounded cusp forms which vanish at C'. It 1s
shown by Bers in [1] that £ from Loo(R) to B(a, L) and that £ from B(R) to
B(L) is an injection. Thus £ restricted to B{a, R) is injective. Bers’ method
of proof relies on a reproducing formula and an antiquasiconformal involution
¥ which fixes the curve C pointwise, which is periodic and which commutes
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have a uniform lower bound on the Teichmiiller radius of the open sets on
which these charts are defined. O

Recently, Jeremy Kahn has shown that any of the coordinate chart map-
pings described in this theorem are globally one-to-one. They therefore em-
bed 7" as a domain in B(P)/By. The argument is elementary and applies to
the QS/S5 Teichmiiller space described in [4].
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