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1. INTRODUCTION

By rolling, or better pressing, a sphere $** all around the manifold M %, we will construct
bounded operators on the space of L? middle dimensional forms of M2 analogous to the
classical Ahlfors-Beurling operator on the Riemann sphere C,

1 , 0)dld
0lz, z')dz’=nHSn=<ﬁf (p—(f;%é)dz. (1)
C

The kernel of this classical operator is the biform dz dz'/(z — z')* on txC. Using the
generalized operators and their kernels we obtain explicit local cycle representatives of the
Hirzebruch-Thom characteristic classes for any quasiconformal manifold. At the end of the
introduction we explain how the construction applies to topological manifolds. This
answers a question raised by Bill Browder in lectures at Princeton in 1964.

Generalizations of (1) to all even spheres $** with any bounded measurable pointwise
* operator on middle forms were constructed for the quasiconformal Yang Mills theory [7]
by explicit formulae. For example, here we write

S,=0+m ' (u+SSu+9) "0+, lul<t 2

where S is the conformally invariant operator for the standard sphere (S is the identity on
exact forms and — identity on coexact forms), S, is the corresponding operator related to
the new bounded measurable * and u relates the new # and the standard = (Section 2). The
operator S for the standard sphere S/ can be written out on R?/ as a quadratic expression
in Riesz transforms, see [13]. When ¢ is even, these bounded operators could be called
conformal signature operators, being the phases of the usual signature operators when the
* is smooth (see the proof of Theorem 3.2(4). When ¢ is odd they are generalizations of the
Ahlfors—Beurling operator to general “curved” measurable conformal structures. The
formulae (2) take us beyond the usual pseudodifferential calculus to operators where
symbols (if defined) would only be measurable. However, the important property that
§, commutes with multiplication by continuous functions modulo compact operators is still
true and evident from (2).

* Dedicated to Bill Browder on his 60th birthday,
663
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For a general even dimensional quasiconformal manifold provided with a bounded
measurable conformal structure or, more generally, a bounded measurable * on middle
forms, we do the following:

(i) locally copy via charts the * structure on M % by * structures on S%;

(ii) get locally defined operators on M? from the operators on S% ;

(iif) collect these together on M2’ using a partition of unity to construct global

operators S on the Hilbert space # of middle dimensional forms (Section 2).

Let I(£) denote the ideal of compact operators A on a Hilbert space satisfying
u, = O(n~1%), where pu, is the distance in norm between A and rank-n operators. The
reader may recall that any degree minus one smoothing operator in dimension 27, e.g. the
Poincaré lemma operator, belongs to the ideal I(#). The standard notation for I(£) is £ *
(Section 2).

TueoreM 1.1. Given quasiconformal M2’ with a bounded measurable conformal structure
or, more generally, a bounded measurable x-structure on the {-forms, the local construction
yields an operator S which is determined by * up to the ideal I{¢). Moreover, any such
S satisfies: (i) S agrees mod I1(£ ) with the identity on exact £-forms; (i) S anticommutes modulo
I(£) with the involution y associated to * (y = * if £ is even, y = i* if £ is odd).

Let us say an operator S on the Hilbert space # of middle dimensional forms satisfying
(1) and (i) of Theorem 1.1 belongs to the Hodge class. It is clear from the Hodge
decomposition (Section 2) that given * any two Hodge class operators differ by a compact
operator in I(£). Note also that (i) and (i) imply: (iii) S* = I mod I(/).

There is a canonical nonlocal Hodge class operator S, for the pair (M, ). It is the
involution defined, up to finite rank, by S, is the identity on exact forms and S, anticom-
mutes with y. The projectors associated with S, are compatible with the usual Hodge
decomposition of middle dimensional forms. Examples are the S, defined above for $%.

An interesting analytical consequence corresponding to the part relating to formula (2)
of the proof of Theorem 1.1 is the following corollary.

CoroLrary 1.2. Any Hodge class operator S on # defines a Fredholm module in the
precise sense that for the sup norm dense subalgebra of continuous functions on M?' satisfying
s ldf1* < oo, the commutators [S, f 1, where f denotes the multiplication operator associated
to f, belong to the ideal I(/) of compact operators.

The interest in this corollary comes from Atiyah’s paper [1]. The Dirichlet norm
condition is sharp (see the appendix).

The theorem and corollary answer anew the question of Singer [21] about “constructing
the operator”, cf. [27, 11]. This time the context is bounded operators.

To our locally constructed Hodge class operator which satisfies Sy + yS = 0 exactly, we
apply the algebraic procedure of [6] to construct a refined Hodge class operator H satisfy-
ing the conditions (a) H? = I on # exactly, (b) Hy + yH is trace class. This algebraic
process (Theorem 3.2) preserves locality.

The formula for H in terms of S is

1
H = () + (1 - —;—"’p(e)>q(e>s

where 8 = S — I, q(t) is the polynomial of degree 2/ defined by (1 + )~ 12 = g(r) +
O(t**1Y) and p(1) is the polynomial given by p(t) = (1 + t)q(r)* — 1.
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The trace class operator L = (Hy + yH)H = HyH + y can be used in a simple way to
construct representations of the Hirzebruch-Thom characteristic classes or rather their
Poincaré dual homology classes. Assume M % is oriented; then the kernel of L, L(x, x'), is
a biform on M x M of bidegree (¢, /). The support of L(x, x') is near the diagonal since we
started with a locally constructed Hodge class operator. The trace L(x, x’} on the diagonal
is a 27 form, or since M is oriented it is a measure in the Lebesgue measure class.

More generally, consider the cyclic expression {trace L(xo, x;)L(X;, X3) -+ L(X24, Xo)}
which can be considered as either a top dimensional form or as a measure on
MxMx - xM (2q + 1 factors), supported near the diagonal.

THEOREM 1.3. The cyclic expressions {trace L(xq, x,)L(x, X;)*** LxX24 Xo)}, when con-
sidered as measures on (M)?%*! near the diagonal, define Alexander Spanier cycles. If £ and
q are both even or both odd, these cycles represent the dual Hirzebruch—Thom characteristic
homology classes times 229* *(2ni)~4q!/2q!. In particular, if £ is even, L(x) = trace L(x, x’) is
a locally constructed measure whose total mass is twice the signature of M?‘. All these
measures are absolutely continuous with respect to the Lebesgue measure class.

The algebraic construction used above to refine a Hodge class operator, S — H, and the
check that the odd cyclic expressions in the kernel L(x, y) of L = HyH + y define cycles are
quite brief. However, the basic idea of this calculation is that any Hodge class operator
defines a K-homology element because of the corollary and [1], and we know from [23, 27]
what this element and its Chern character should be. We also know from [3] an explicit
construction of the Chern character starting from K-theory of an algebra and arriving at the
cyclic cohomology of the algebra which, for a manifold, is related to Alexander Spanier [6].
The connection with Hirzebruch—Thom classes is made by using the index theorem as in
[27, 17, 6].

The local construction of the operators and the analytical content of the corollary are
easy consequences of formula (2) on spheres relating the (canonical nonlocal) Hodge
operator S, for any measurable * to the (canonical nonlocal) Hodge operator S for the
standard structure on §¥. Formula (2) also relates to the other discussions, which we
mention now.

On the Riemann sphere one knows the remarkable measurable Riemann mapping
theorem that any bounded measurable conformal structure is related to the standard one by
a quasiconformal homeomorphism w = @(z). Since S, is given by the kernel
dw dw’/(w — w')? on (0, 1)-forms while S is given by the kernel dz dz'/(z — z')? on (0, 1)-
forms, the basic formula (2) has a direct relationship with the measurable Riemann mapping
theorem. Namely, we can calculate w = ¢(z) from the kernel of S, by expanding out the
formula (2).

In dimension 4 the operators S, were used in the analytical underpinnings of the
Yang—Mills discussion [7]. Formulae (2} show, since |4 < 1, that S, determines isomor-
phisms on LP-forms for p a little greater than two. Applied to the curvature 2-forms this
gives the extra regularity to get past the critical Sobolev exponent for the Yang—Mills
connections and gauge transformations. A corollary of this theory and [9] was that some
closed M* have infinitely many distinct quasiconformal structures, and that some topologi-
cal M* have no quasiconformal structure.

Thus our local constructions for characteristic classes based on (2) are higher dimen-
sional relatives of the measurable Riemann mapping in dimension two and the Yang—Mills
theory in dimension four.
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Outside dimension four there is a proof [24] independent of the theory of [17] that
stable topological manifolds have a quasiconformal structure unique up to isotopy. Here
stable refers to the pseudogroup of homeomorphisms of R” in the connected components of
the identity or of a reflection [15]. Thus this paper defines local characteristic classes for
stable topological manifolds independent of Novikov’s theory [17].

We can also apply our constructions and those of [24] to general topological manifolds
outside dimension 4, but this uses Kirby’s result on the stable homeomorphism conjecture
[15]. The proofin [15] properly contains Novikov’s theory needed for his original proof of
the topological invariance of rational Pontryagin classes. Thus our constructions or those
of [26] cannot be construed as a new proof of Novikov’s theorem except for the stable
category. A more appropriate title for [26] would have been “A new analytical proof of the
invariance of rational Pontryagin classes for stable homeomorphisms”. We are indebted to
Sergei Novikov for this clarification.

Historical remark. 1f g, denotes the Jacobian matrices of the overlap homeomorphisms
of charts covering a manifold M”", the curving or nonflatness of M" is measured by
0.5 = {Yap' dgap}, which is a Cech 1-cocycle with twisted values in matrices of 1-forms. Thus
if the overlap homeomorphisms have Lipschitz derivatives (or even second derivatives in
L") there is a Chern Weil type construction of characteristic forms by forming products and
traces.

By considering normal bundles to smooth foliations or discrete group actions and the
Bott vanishing theorem [2] one finds serious obstructions [28] to the possibility of reducing
this smoothness requirement and staying in the context of differential forms.

In our context of Lipschitz or quasiconformal manifolds we have exactly one less
derivative than required above. It seems natural then to try to interpret g ! dg as a distribu-
tion or as an Alexander Spanier cochain. This was attempted in 1976 by the second author
when the possibility of having Lipschitz or quasiconformal coordinates appeared. However,
the distribution idea fails because of the impossibility of forming products. This difficulty is
removed in Alexander Spanier at the expense of noncommuting products. But then the
trace step in the classical Chern-Weil procedure becomes problematic. In other words,
there is either an analytical or an algebraical barrier to copying the pointwise “curvature”
route to characteristic classes for quasiconformal or Lipschitz charts.

In this paper these difficulties are surmounted by using trace ideals of operators on
Hilbert space [3] and an algebraic addition to the Chern-Weil algorithm coming from
cyclic cohomology [3]. The quasiconformal charts provide enough analysis to “quantize
the manifold” in the sense of constructing a Hilbert space and a relevant operator replacing
curvature.

This “quantized curvature” is then treated algebraically in a manner guided by the
formulae of cyclic cohomology. The essence of this algebraic point is that the cocycles in the
cyclic context are just those multilinear functionals which when applied to (projector,
projector, . . .) remain constant when the projector is varied by a homotopy. The reader may
recall that this kind of consideration appears classically when showing that the Chern—Weil
forms are cohomology invariants.

In summary we have treated a problem with one missing derivative in a classical context
using the ideas and tools of “noncommutative geometry” [5].

2. PRELIMINARIES ON QUASICONFORMAL GEOMETRY

A quasiconformal (qc) homeomorphism # between two open domains Q,, Q, in R" is
a homeomorphism with the property that relative distances are boundedly distorted, i.e., for
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each x in Q,,
EmaX{lh(X) —h(y); Ix -yl =r}
r—0 min{|h(x) — h(y)|; Ix — y| =r}

=K(x)< K< w. (3)

We also assume the analogous statement for 4~ 1.

Gehring [10] proved that when n > 1 a qc-homeomorphism is a.e. differentiable;
moreover, the first-order partial derivatives of the component functions of h belong to the
Banach space L}-¢, where ¢ = £(K) > 0. It follows that 4 is a H5lder continuous function
with exponent ¢, h is nonsingular with respect to the Lebesgue measure class, and the best
K that works in (3) almost everywhere for h also works for h~! almost everywhere.

Let g be an arbitrary Euclidean metric on the tangent space to R" at some of its points
Xo. Recall that the metric g and all other similar metrics rg, where r is an arbitrary positive
real number, define the conformal class [ ¢] of the metric g.

If [go] and [g,] are two conformal structures, the conformal distance between them is
by definition

max {|v|,,;|vl, = 1}

d([go]’ [gl]) = log mln{lvi |U| = 1} '

4)

From now on we suppose that the dimension n = 2/ = even, and we choose the
standard orientation on R".

Let A denote the vector space of all differential forms of degree / at x,. For any
Euclidean metric g as above, the Hodge star operator *, associated to g defines an
endomorphism

* A — A
with
*5 =(=1).

The main property of the operator #, acting on A is that it remains unchanged under
dilations of the metric g, i.e. it depends only on the conformal class of g.
We let y, be the involution of the complexification A¢ of A given by

Vg =1"%. )

We let A *(g) be the + 1 eigenspaces of y,. These subspaces are maximal definite subspaces
for the quadratic form

w-woANo.

The conformal distance between two conformal classes [ g,] and [g] may be estimated
in terms of the relative position of the eigenspaces A *. Indeed, there exists a unique linear

mapping
1:A"(go) > A" (go) (6)

with the property that the graph of u is precisely A™(g). The operator norm of u relative to
the metric g, satisfies

[1ly < 1 (7
and

1+ |y, 1+ | plgo
Log Bl < 4(7g,], [9,7) < log -1 Ele

. T Ity ®)

TOP 33-4-E
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A field c(x) of conformal structures over a domain U in R" is called a bounded
measurable (bm) conformal structure on U if there exists a Riemannian metric g over U,
whose components are measurable functions, such that for any x in U, ¢(x} = [g(x)], and

d([gx)), [e]) = C<

where e denotes the standard Euclidean metric.
Equivalently, c is a bounded measurable conformal structure iff the corresponding field
of endomorphisms g, relative to e, is a matrix field with measurable entries, and

Il =sup u(x)] < 1.

If ¢ is a bounded measurable conformal structure on U, then v, is a field of matrices with
bounded measurable entries. If ¢ is a bounded measurable conformal structure on V and
h:U - Vis a gc-homeomorphism, then h*c is a bounded measurable conformal structure
on U because a gc-homeomorphism induces uniformly quasihomotheties on the tangent
spaces, a.e.

A gc-manifold is a topological manifold equipped with an atlas whose changes of
coordinates are gc-homeomorphisms. It possesses a well-defined measure class, the Lebes-
gue measure class, since gc-homeomorphisms are absolutely continuous. The tangent
bundle of a qc-manifold is a measurable real vector bundle.

A bounded measurable conformal structure on a gc-manifold is a field of conformal
structures on its tangent spaces whose restriction to any qc-chart is bounded measurable.
Any paracompact qc-manifold has such structures.

On a compact smooth manifold, a conformal structure is bounded iff the conformal
distance (defined point by point) between it and the underlying conformal structure of
a smooth Riemannian metric is a bounded function.

On a compact qc-manifold M, the space L* (M, A") of r-forms with coefficients in
L"" n = dim M, is well defined. Any bounded measurable conformal structure specifies a
Banach space norm on L"" by

(Hwn)"/':j o]
M

Given w, € L""(M, A"), w, € L""* 1 (M, A" ') we write dw,; = w, iff this holds, in the sense
of distributions, in any qc-local chart. This yields [25] a densely defined closed operator
d:L"" — L""*! which commutes with qc-homeomorphisms. We let Im d be the image of d;
it is closed in L""*! provided r = 1 [7, 25], see the proof of Proposition 4.5(4).

The underlying topological vector spaces only depend on the quasiconformal structure.

3. STATEMENT OF THE MAIN RESULT

Let M be a compact oriented quasiconformal manifold of even dimension 2/. Let [g] be
a bounded measurable conformal structure on M and y, 2 = 1, the associated * operator in
the Hilbert space # = L*(M, A") of square integrable forms of degree / on M.

Given an open neighborhood U of the diagonal in M x M and any bounded operator
Tin # = L*(M, A"), we say that Support (T) c U iff the following holds for any open
Ve M:

we H, Support w < V' = Support(Tw) < UsV 9)
where UsV = {xe M; 3ye V, (x, e U}.
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For any pe[1, oo [ the following conditions define two-sided ideals of compact oper-
ators in Hilbert space. We let, for any compact operator T in #, u,(T) be the nth
characteristic value of 7, ie. the nth eigenvalue of |T| = (T*T)'/2, or the distance in
operator norm between T and rank-n operators.

LrH) = {T compact; iu,,(T)” < oo} (10)

L » N A') = {T compact; u,(T) = O(n~'17)} . (1)

Recall that #! are the trace class operators, #2 are the Hilbert—Schmidt operators, and
£™ ) contains degree-one smoothing operators on R" [20, 29]. We can now define the
following key notion refining that of Hodge class operators in the introduction.

Definition 3.1. Let U be an open neighborhood of the diagonal in M x M. A U-local
Hodge decomposition is a bounded operator H in L2(M, A’/ T¥) such that

() H?> =1,

(B) Support H < U,

(7) (H—1)/Imde £ = (= I(/) of the introduction),
(6) Hy + yH ¢ &' ( = trace class).

Giving H is the same as giving the decomposition of # = L*(M, A’ T¥) as the linear
sum of the two closed subspaces:

{¢e#; HE = + &}, (12)

We shall now explain how to construct for each g € {0,1,. .., 7} an Alexander Spanier
cycle on M from a U-local Hodge decomposition. To define Alexander Spanier homology
on a compact space X we consider for each integer d the linear space A, of totally
antisymmetric measures ¢ on X “*!. Such a measure ¢ is uniquely determined by the value
of o(¢p)=[pdo on bounded Borel antisymmetric functions ¢ on X°*!. We let
0: A, — A, be the boundary operator given by the equality

4
00) (@) =Y (~ D folxe ..., %j ., X do V. (13)
0

Let U be a neighborhood of the diagonal in X x X. We shall say that o € A, is U-local iff
Support o < {(x;) e X**'; (x;\,x;))e U Vi je{0,1,...,d}}. (14)

One checks that condition (14) is preserved by 8. This defines the complex (4, 6) of U-local
elements of (4, ). The Alexander Spanier homology H, (X, R) is obtained as the projective
limit lim H*(Ay, J), when U runs through all open neighborhoods of the diagonal. The
limit is actually achieved on appropriate sufficiently small neighborhoods.

Given a measure space (X, v) and a measurable Hermitian vector bundle A on X, the
Hilbert-Schmidt operators in # = L*(X, A) are all given [20] by measurable kernels,

k(x, yye Hom(A,, A,)), x,yeX (129
such that

fy trace(k(x, yy*k(x, y)) dv(x) dv(y) < . (139
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In particular, for any such kernel k the following expression defines a measure ¢ on
X1 forany d > 1

o(p) = fx‘” trace(k(xq, x1)k(x1, X3) -+ k(xq, Xo}) @(x0, --. , x,,)l_[ dv(x;) (149
as follows from the inequality
lo(@)l < k15" ol YoeL (X4 v, (15)
We shall use the notation
trace(A4* k) = total antisymmetrization of ¢ (16)

(where o is associated to k by (14')). For d = 0 this formula continues to make sense
provided the operator in # = L*(X, A) associated to k is of trace class [20].
We can now state the main result of this paper. The proof occupies the next two sections.

THEOREM 3.2. Let M be a compact oriented quasiconformal manifold of even dimension
24,y the Z/2 grading of # = L*(M, A’ T¥) associated to a measurable bounded conformal
structure [g] on M and U a neighborhood of the diagonal in M x M.

There exists a ln/'n”v constructed U-local Hodge decom

4 nlil CAes & UL LUNRSLrultCh L1CGGE

(1)

(2) Let H be a U-local Hodge decomposition and L = HyH + y with kernel L(x, y). Then
the measure ¢ = trace(A %" ' L) is a U?%local Alexander Spanier cycle of dimension
2q.

(3) The homology class of o among U"-local cycles, r = 2q(6¢ + 2), is independent of the
choice of H.

(4) The homology class of o is equal to A;,(Lys—2, n [M]), where L is the Hirzeb-
ruch—Thom L-class and A, = 2*9*(2ni) ™% q!/2q!.

4. LOCAL CONSTRUCTION OF A U-LOCAL HODGE DECOMPOSITION

Let M be a quasiconformal manifold and [g] a bounded measurable conformal
structure on M. In this section we shall show how to construct local Hodge decompositions
H using a covering of M by domains of qc local charts:

Po: V, = S*.

The obtained formuia for H will be algebraic in terms of the following ingredients:

(1) A partition of unity subordinate to the covering (¥,) of M.
(2) The pull-back by p, of Hodge decompositions on S* associated to a bounded
measurable conformal structure which agrees with p,[g] on p,(V,).

We shall begin by describing the canonical Hodge decomposition on S associated to
a bounded measurable conformal structure.

(a) Canonical Hodge decomposition on §*

Let [go] be the standard conformal structure on the sphere $2¢, and [g] an arbitrary
bounded measurable conformal structure on S% . Let y,, y be the corresponding * opera-
tions in the vector bundle A of middle dimensional forms. If we let A, be the two
eigenspaces of y, we get two subbundles of A and a unique measurable bundle homomor-
phism:

B iAo > Ay
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whose graph at each point p € S* gives the subspace
{we A, yo=—o}.

We endow the vector bundle A with the metric associated to the standard conformal
structure [go). The boundedness of the measurable conformal structure [g] then means
that

4+ oo = Sup [ps(p) < 1. (17)
§%¢

=0'u+
=l o

viewed as an endomorphism of the vector bundle A. One has

Let

HYo = — Yok, M=p* (18)
and so yu is self-adjoint with respect to the wedge pairing:

y=0+mypl+pt. (19)

Indeed y2 = 1 and by definition (1 + y) transports the eigenspaces of y, into those of y using
(18).

Finally, on the vector bundle A the metric associated to the conformal structure [g] is
given by

1 -
{wy, 602>g = {w1, Yo VCU2>g0 = <CU1, (ﬁ)wzlo- (20)

Note that since || u|| < 1 the operator (1 — p)(1 + )~ ! is positive. We now consider the
Hilbert space #, = L*(S%, A) with the inner product given by [go]. We view all the above
endomorphisms of the vector bundle A as operators in 5#,. The equalities (18) and (19)
continue to hold.

The standard Hodge decomposition on S decomposes #, as the direct sum of two
orthogonal subspaces, the exact forms and the coexact forms. Let H, (denoted by S in the
introduction and in formula (2)) be the linear operator such that H; @ = w for any exact

form and Hy w = — w for any coexact form. One has
Hy,=H¢, Hi=1 (21)
Hoyo= —7yoHo. (22)

Moreover, since H, is a standard singular integral operator of order 0, the following
subalgebra A(S%) of the algebra of continuous functions C(S*‘) contains all smooth
functions [13] and is therefore norm dense:

A(S*)={f € C(S*); [Ho,f1e £} (23)

where f € C(S*) is considered as a multiplication operator in L2(S%, A) and recall that
P24} s the two-sided ideal of compact operators in J#, given by the condition

Te 2% o u(T)=O0(m 1) (24)

where u,(T) is the nth characteristic value of 7.
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Let us now consider on the locally convex vector space #, the new inner product given
by the metric g; using (20) this can be expressed by

l—p
W, W) =( W, ——O . 25
<12><11+#2>0 25)
The Hodge decomposition on S* relative to the bounded measurable conformal structure
[4] 1s given by the following proposition.

ProrosiTioN 4.1. (a) The orthogonal complement for the inner product (25) of Imd =
{w; Hyw = w} is equal to y(Im d).
(b) Let H be the linear operator equal to 1 on Imd and to — 1 on y(Im d); then

H=(—u "(Ho—wHo(Ho— )" ' (1 — p).

Proof. Since H = 1 and || u|| < 1 the operator H, — u is invertible. Let us consider the
operator T=(1 — )" '(Hy — ) Ho(Ho — )~ ' (1 — w). It is conjugate to H, so that
T2 = 1. Its eigenspaces are obtained from those of Hy by applying (1 — )™ '(Ho — p).
Hence {£; TE = £} = Imd. One has y = (1 — )" ' y,(1 — ) and hence yT = — Ty which
shows that {&; T¢ = — ¢} = y(Im d). The orthogonality of Im d with y,(Im d) for the inner
product < >, implies the orthogonality of Im d with y(Im d) for the inner product (25), using
voy = (1 — u}/(1 + p). Thus we have shown (a) and (b). O]

COROLLARY 4.2. For any f € L*(S*') and any two-sided ideal J of operators in #, one
has

[Ho,fleJ < [H,fleJ.

Proof. Since u commutes with fand [ H, -] satisfies the Leibniz rule, direct calculation
yields

[H.f1= —(1+ wHo~w "[Ho, fIHo — )™ (1 = ). (26)

This completes the proof. O

CoroLLaRY 4.3. For any two-sided ideal J of operators in Hilbert space the class of
functions f'e€ L*(S*") such that [Hy, f € J is invariant under qc-homeomorphisms.

Proof. Let ¢ be a gc-homeomorphism of §%/; then ¢ is a.e. differentiable and it defines
a bounded operator U(g) in #, = L?(S*, A) by the formula

Ulp)w = (¢ )*ew Ywe H,. 27)

This yields a bounded operator in 2, such that
Ule)fU(@) ' =fop™" VfeL*(S*) (28)
U(@)HoU(p)™ ' = H, (29)

where [g] is the mb conformal structure (¢ ~!)*[go]. To prove (29) note first that U(¢p)
Imd =1Imd (cf. [7]), while {U(@)w;, U(@)w:>e = {1, @3>, Yoy, @, € #,. Thus U(e)
HoU(p) 'isequal to 1 on Imd and to — 1 on its orthogonal complement for the inner
product < »,. Hence U(p)HoU(p)~ ! = H,. Then let fe L*(S*); if [Ho,f]€eJ then
[U(@)HoU(@)™ ", U(g) fU(@) '] € J and [H,, fo@ '] € J so that [Ho, fo9~ '] € J by the
above corollary. O
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We shall now see that, modulo the ideal J = £ ), the class of the operator H, is
locally determined by the bounded measurable conformal structure [g].

PropoSITION 4.4. Let U = S* be an open subset and f,, f> be continuous functions with
support in U. Let gy, g, be two bm conformal structures on S* which agree on U. Then
filHy, — Hg,) f2 € L),

Proof. We can replace f; by smooth functions equal to 1 on the support of the previous
ones. Thus we can assume that f; € A(S*"). By Proposition 4.1 both operators H,, are the
sum of a geometrically norm convergent series:

H, =(1 —,Ui)_l(Ho—lli)Z(lli Ho)l' (1 — ;) (30)
0

whose terms are monomials of the form
ayHoay i Ho - a,;Hoays 1, =T, (31)

where g, ; belongs to the commutant of L*(S*) in #, and f, a, , = f a,_» for all k. It
follows, using [Hy, fi] € £ @ ™), that

T, —T,,e L= (32)

One thus expresses f; (H,, — H,,) as the sum of a series convergent in the Banach space
L2 =) and the conclusion follows. |

(B) The class of H modulo ¥+

Now let M be a quasiconformal manifold of dimension 27.

Let A(M) be the subalgebra of C(M) of functions f such that for any qc-local chart:
V 552 andforany h e C.(p(V)) n A(S* )one hash fop~! e A(S?). By Corollary 4.3 one
has p*(A(S*) n C(p(V))) = A(M) for any qc-local chart ¥V 552 Tt follows that A(M) is
a norm dense subalgebra of C(M) and that it has partitions of unity subordinate to any
finite open covering of M.

Let [¢g] be a bounded measurable conformal structure on M.

Let (¥;) be a finite open cover of M by domains of qc-local charts p,: ¥, » S? and
g, a bounded measurable conformal structure on S?’ which agrees with p,[¢] on p,(V,). For
each o let H, = H, be the corresponding Hodge decomposition on §%'. Let (¢,) be
a partition of unity, ¢, € A(M), Support ¢, = V, and for each « let y, € A(M) be equal to
1 in a neighborhood of Support ¢,, with Support , = V,. We let, as above, A be the
measurable vector bundle A‘T¥ on M and we consider the following locally constructed
operator in L2(M, A):

S =3 v(H,) 0, (33)
where we used p, to let H, act in L*(M, A).

ProposiTION 4.5. The class of S modulo ¥*" ) only depends upon the bm conformal
structure [ g] on M and one has

(1) Sy + 7S € L% =) (the construction yields Sy + yS = 0),
Q) [S,f1e 2P ¥Yfe AM),

(B) S2—1egtr=)

@) (S —1)/Imde £,
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Proof. We first need to show that S — §' € £ ® for any two operators S, S’ construc-
ted by formula (33). Using the compactness of M it is enough to show that for any x e M
there exists fe A(M), f(x) # 0 such that (S — §')fe £?" «). Using a local qc-chart the
proof follows from Proposition 4.4. To check (1) note that any of the operators S given by
(33) satisfies Sy + yS = 0.

The condition (2) follows from Corollary 4.3.

To check (3) we take a representative S = ¥y, H, @, constructed from a covering (¥}) by
domains of qc-charts, such that for any o the open set | ) V3, V;() ¥, # 0 is the domain of
a qc-chart. The result then follows from Corollary 4.3 and Proposition 4.4. Actually (3) also
follows formally from (1) and (4).

Let us check (4). On the sphere S*/ the operators H,, g a bounded measurable conformal
structure, are equal to 1 on Im d (Proposition 4.1). Thus, using Corollary 4.3, the operator
S=Yy.H,p, satisfies (S — 1)/E,e L* ®, where E, is the closure in L?(M, A) of
{dw; w e L*'"~Y(V,, A), dw € L*}. Thus (4) follows if we show that the map (w,) € @ E, —
Y w, € L*(M, A) is surjective on Im d. Let P, (resp. Q, = 7 P,y) be the orthogonal projection
on E, (resp. yE,). For any «, § the closed subspaces E, < Imd and yE; < y(Im d) are
orthogonal. Thus it is enough to show that the following operator is equal to 1 + compact:

T‘—‘Z(Pa + Qa)q)zz-

(Its range is then closed by the Fredholm theory.)

Let us show that for each « the operator (P, + Q,)®, — ¢, is compact. We can assume
that M = S* is the sphere. By Proposition 4.1(a) one has orthogonal decomposition
L*(S*, A)=Imd @y Imd, where d: L2/~ '(§%, A‘"')— L*(S¥, A) has closed range.
(We assume 7 5 1.}

Using a compact operator R:L*(S%, Ay — L¥/“~(§%, A‘~') such that dR =1 on
Im d we thus get a pair of compact operators R;: L*(S*, A) » L*/* - '(§¥, A’~!)such that
dR; + ydR, = 1. The conclusion then follows using the following equality, with ¢ a
smooth function with support in ¥, and equal to 1 in a neighborhood of Support ¢,:

Yo =dyp o) +ydy w3) —dy A wy —y(@dy A wy), o =Ro. 0

Remark The discussion of (4) is tantamount to a proof that d from (¢/ — 1)-forms of
class L?, where p = 2¢/(¢ — 1)), to /-forms of class L? has closed image, £ > 1.

5. PROOF OF THEOREM 3.2

Proof of (1). First choose a neighborhood V of the diagonal such that 1?7 < U,
q = 6/ + 2. Next (Proposition 4.5) let S be an operator such that

(a) Support(S) = V,

(b) $2 —1e L2 =

(C) S'}) = - VS,

d) (S—1)/Imde L3 =,

Then let § = S? — 1. By construction, § commutes with S; it also commutes with y by (c).
Let g(t) be the unique polynomial of degree 2/ such that

A+ Y2=q() + O@¥ 'Y (for t small). (34)
Let p(t) be the polynomial given by
p(t) = (1 +1)q(t)* — 1. (35)
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We shall define an operator H by the formula

H= o)+ (1= (S52)00))a0s. 36

First note that @ is V' 2-local; thus since g (resp. p) has degree 27 (resp. 4/ + 1) we see that
T is U-local as required. Next, as 6 € £ = by (b) and as p(t) = O(t**') we see that
p(0) e £1. We thus have

Hy + yH = 2p(0) e &! (37)

where we used (c) to get the equality. Since p(f)e ¥! and Oe ¥2%* we have
S — H e £ = and hence, using (d),

(H —id)/Imd e L@ (38)

It remains to check that H*> = 1. Note first that the two terms y p(§), H — y p(6) anticom-
mute so that H? is the sum of their squares:

1 1 -
H® = (3p(0)? + q(60) (1 - %p(e)) (1 - —H—p(@) 5

= p(6)’ +q(O*(1 —pO)(1 +6) = 1.
Before we begin the proof of (2) we recall that the cyclic complex (C¥, b) of an algebra
& is given by
3 (/) = {multilinear forms t on &/ x --- x o/ (n + 1 times)

such that 7(a, ..., a" a°) =(— 1)"1(d° ... ,a") Vd'e s} (39)
b1 @®, ...,a"* Y=Y (— 1)@ ...,da’*, ..., a"tY)
(o]

+(— 1)t r@*ta® ...,a") Ve (40)

We also note that if J is an ideal in a larger algebra </ and if B = </ is a subalgebra such
that J n B = {0}, then the natural extension by 0 on B of the cochains t € C*(J) satisfying

1@ at, ...,a’é, @/t .. a") = 1(a% dl, ..., a), baiTY, .., a")

Vaie o/, Vj, VoeB (41)

commutes with the coboundary b of C¥(J + B).

Proof of (2). 1t follows from [6, Lemma 2], but we shall give the details here. By
construction, o = trace(A*** k)is UoUe --- «U-local (d-factors), where UV is as defined in
Section 3. We need to show that bo = 0. We shall first show that, with J the algebra of trace
class operators in 4, the following formula defines a morphism of complexes: (4*, §) =,
(C¥(J), b), where (4*, 9) is the complex of bounded measurable totally anti-symmetric
functions (straight cochains) on M.

7,(k°, ..., k")
(= 1" faer trace (k(xo, x1)k (x4, X3) .. K"(Xn, Xo)) @(Xos -, Xn) [[d¥(x;) Vo e A".(42)
The coboundary d in (4*, §) is given by
n+1

6()0 = Z (_ l)j(pj’ (Pj‘(xo, see ’xn+1) = (P(XO’ ’-ij’ [R] ;xn+1)' (43)
V]
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Next, when one computes t,,, j > 1, the variable x; does not occur in ¢; and thus one gets
T, (KO o k" Yy = — 1 (KO .. kIR, kY. 44)

For j = 0 it is the variable x, which does not occur in ¢, and using the cyclicity of the trace
one gets, using the antisymmetry of ¢,

Toa (KO, o k™Y = (= )" (k" IKO, kY, LK), (45)

Thus, using (43) we get
75, = b1, Ve A" (46)

Next note that the compatibility condition (41) is fulfilled by any element of the algebra
B = {4y + A1 y; A;€ C} generated by the operator y in s#. We shall still denote by 7 the
extension of the above morphism of complexes to (C¥(«/), b), o« =J + B.

Let us now check that bs = 0, i.e. that 6(3¢) = 0 for any ¢ € 4% Using (46) we know that
the cyclic cocycle 1,4, is a coboundary and, thus, that it vanishes when evaluated on an
idempotent:

ts(P, P, ..., P)=0 VP, P>=P, Ped. 47)
Applying this to P = H((1 — y)/2) H = 5((1 + y)/2) + 1 L gives the desired result.

Proof of (3). Let Hy, H, be two U-local Hodge decompositions and ¥ = H, — Hy. We
have

Y/Imde £ (43)
Yy+9Ye¥!. (49)

As Im d @ y(Im d) is of finite codimension in 4 it follows that

Ye L@, (50)
Let then H, = Hy + tY. We have
Support H,c U (51)
H? —1e gt (52)
(H,— 1)/Imde £3 > (53)
H,y+7yH, e . (54)

It follows that S, = 3(H, — yH,y) anticommutes with y and satisfies (51)~(53). Thus with
g and p as in (34) and (35) we get a family H; of U"local Hodge decompositions:

, 1+
H; = 7p(0) + (1 - (—2—y>p(e,)>q(9,>s,, 6= 2~ 1. (55)
For ¢t = 0 (or for ¢ = 1), the operator 8, = S — 1 belongs to .#!; we can thus, keeping the

relation (35), replace the polynomial g by 1 + A(g — 1), 4 € [0, 1] and still get a family of
U"-local Hodge decompositions joining Hg (for 4 = 1) with

1+
Hg=7v60 + <1 - <—22>90>So, 0o = S(2> -1, $§ =%(H0 —vHgy). (56)

Since the obtained path of idempotents (H;((1 — y)/2)H,) in &/ are piecewise polynomial it
follows that the corresponding straight cycles are U"-homologous. This is, using (46),
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a restatement of the homotopy invariance of the pairing of K-theory with cyclic cohom-

ology [3].
It remains to compare, in the same way, Hg with H,. One has by hypothesis
So — Hoe &L, 0, £ thus

Hy— Hoe &'. (57)

It follows that the idempotents

- 1 -
e:H0< > V)HO, e"=Hg(—2 ”)Hg

satisfy the equality " = We W™ ', where W= HjHqoe 1+ J as well as W™, while W is
UZ?-local as well as W™'. One then considers the following smooth path of idempotents

e O 0 0
e(t) € M,(.«7) connecting [0 0] with [O ”] and with support in U3:
e

1 0 e 0 1 0
S P L P L F
0 w 01 0 w!

where R, is a rotation matrix. Using again the homotopy invariance of the pairing of
K-theory with cyclic cohomology, one gets the desired resuit.

Proof of (4). We shall first check directly that {,, L(x, x) = 2 Sign(M). Since the Alexan-
der Spanier cocycle given by the constant function ¢(x°) = 1 is defined everywhere, the
proof of (3) shows that f, L(x, x) is independent of the choice of the Hodge decomposition
H, without any U-locality hypothesis. We can thus choose H = 2P — 1, where P is the
orthogonal projection on the closed subspace Im d. One has P + yPy + K = 1, where K is
the harmonic projection [7]. Thus one gets

HvyH 4+ y = 2Ky
Trace(HyH + y) = 2 Trace(Ky) = 2 Sign(M).

To compute the other homology classes let us first assume that M is a smooth manifold.
By [6] these classes w,, represent 2%¢* ! times the Chern character of the K-homology class
of the operator H = 2P — 1, with P as above.

Thus it is enough to show that the K-theory class of the symbol of H, [¢(H)] €
K°(T*M), is the same as the K-theory class of the symbol of the signature operator. The
latter is given by the odd endomorphism s(x, &) = e, + iz, & € T*¥(M), of the pull-back of
A*TF (oriented by y = i'x( — 1)’ ~ ") to T*M. (Here e;, i, are, respectively, exterior and
interior multiplication by £.) The symbol o(H) of H is the same as the symbol of 2P — 1,
where P is the orthogonal projection on the image of d. Its restriction to the unit sphere
{Ee T*V, ||&| = 1} is thus given by

o(x, &) = esi; — ize; acting on A°TF.

Let u(x, &) = (1/\/5)(1 — e¢ + ig); then for |[{[| = 1, it is an invertible operator in A*T*
with inverse u~!(x, &) = (1/\/5)(1 + e; — iz). One has
(usu™N)(x, &) = esi: — ize, acting on A*T*.

By construction, u commutes with y. This shows that the K-theory class [s] — [¢] is given
by the symbol

plx, &) = egi; — ize; acting on 2 A*TFO N TY
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with the Z/2 grading y. However, using the canonical isomorphism, for p # /,
ANTE = (NTED® A PTHY . o o+ yw)

one checks that the class of p is equal to 0.

This completes the proof that the classes we construct agree with the Hirzebruch-Thom
classes in the smooth case. The extension from the smooth case to the qc-case can be done
using cobordism as in [27]. One can also use K-theory as in [12].

Remarks. (1) Let M be a compact quasiconformal manifold; one can characterize the
subalgebra A(M) of C(M) (Section 4) by the following simple criterion:

fe AM) = dfeL¥ (M, T}).

A proof of = follows from [4] and the converse from [19] plus an identification of the
Besov space there with this Sobolev space. It is sufficient by Section 4 to work with the
standard singular integral operator on the sphere. For a more complete discussion see the
appendix.

(2) Let M be a polyhedron of dimension 2¢ with homological properties to be specified.
Let # = @® 4, be the direct sum of the Hilbert spaces #, of square integrable /-forms on
the 2¢ dimensional simplices. For each vertex v let E, be the closure of the subspace of # of
boundaries of Whitney flat forms [29] with support in the star of v. Let 7 be the * operation
on J# given by the canonical flat metric on each 2/-simplex (with equilateral length). Let
b, be the barycentric coordinate assigned to the vertex v. Then let us consider the following
operator:

(P, —yP))b. =S

where P, is the orthogonal projection on E,,. It is clear that § is localized and anticommutes
with y. Now we assume that E, and y(E,) are a local decomposition, up to compacts, i.e.
(1 — P, — vP,y)is compact on forms on the star. We also assume that S = 1 on the closure
of boundaries of Whitney flat forms modulo I(#). These are the prescribed homological
conditions. They will be satisfied for pL manifolds by the discussion above for gc-manifolds.
Then S? — 1 is in £ and one can use the above formulae to define characteristic
homology classes. The involved Hilbert space theoretical data are of the same nature as
those appearing in transfer matrix theory of statistical mechanics and suggest a purely
combinatorial approach to the K-orientation of [23] in the extended context of spaces with
singularities.

APPENDIX: AN INTERESTING ANALYTICAL POINT'

There is an interesting issue concerning operator theory and classical analysis which is
related to the topics of this paper and which does not seem to have been treated in the
literature. For the sake of clarity we discuss this issue in a restricted setting. Let T be
a zeroth-order pseudodifferential operator on R¢ d > 1, which we also assume to be
translation and dilation invariant and nonzero. Thus 7 could be represented by a Fourier
multiplier which is homogeneous of degree 0, and 7 is a bounded linear operator on
H = L(RY).

* This appendix is a result of collaboration with Stephen Semmes.
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Under what conditions on a function f(x) on R? is it true that [ f, T] e £ *(#)?
(Recall that £ =(#) denotes the space of compact operators A on # such that
Un(A) = O(n~ /%), where p,(A) is the nth eigenvalue of (4* 4)!/2.) This type of question has
been studied extensively (see [14], for instance), but this particular case involves a critical
index and has some special features. It follows from [19] that

[/ T]e L < feOsc**(RY whend > 1 (A1)

where Osc® *(R“) is a variant of a Besov space whose definition will be reviewed soon. For
many purposes it would be preferable to work with a Sobolev space instead of Osc® ®. It
was observed in [18, Theorem 2.2, p. 228] that

W' 4(RY) < Osc* *(R?) when d > 1 (A2)

where W' %(R?) is the Sobolev space of locally integrable functions on R whose distribu-
tional first derivatives all lie in L4(R?). In fact, we have the following theorem.

THEOREM. Whend > 1, W 4(RY) = Osc® ©(R?), and so [ f, T] € L () if and only
if fe W 4R,

It is very important here that the dimension d is the same as the exponent in the function
spaces; otherwise this theorem would not work. This theorem is rather surprising from the
perspective of classical analysis, because Sobolev spaces normally coincide with Besov-type
spaces only when the exponent is 2. Indeed, the second half of the theorem had been
conjectured by Jaak Peetre, and one of us (S.S.) was of the opposite mind.

We need only show that the inclusion opposite to (A2) holds. Our original proof of this
was obtained by understanding the Dixmier trace of |[ £, T]|%, which in fact reduces to
w1 Vf(x)|? dx for certain T [4]. We shall sketch a more direct proof below.

Let us recall the definition of Osc® ®(R?). This space is somewhat nonstandard; at this
critical index, the standard Besov space is distinct from this one.

Given (x, ) e R*x R, = R2"! let B(x, t) denote the ball with center x and radius t. Let
m,..(g) denote the average on B(x, ) of the locally integrable function g(y) on R? For such
a function we let @(x, t) denote its average oscillation on B(x, t), which is given by

O(x, 1) = m, (1g — my (g)]).

We shall define Osc® *(R?) in terms of a global measurement of these localized oscillation
quantities.

Let {(x;, t;)}; denote a reasonably thick hyperbolic lattice in R%*': we require that
every point in R4*! be no further than 10~ 2 from some (x;, ¢;) in the hyperbolic metric and
that no pair of the (x;, ¢,)'s are closer to each other than 10~ 2. Thus the numbers @ (x;, t;)
measure the average oscillations of g at all possible locations and scales.

Let 0,, n=1,2,3, ..., denote the nth largest value of ®(x;, t;). In other words, we
reorder the ©(x;, t;)'s in decreasing size. Then

g€ Osc* *(RY) < 6, =0(m 1.

This definition does not depend on the particular choice of the lattice (x;, t;). (The point of
(A1), incidentally, is that the 6,’s for f can be related to the p, ([ f, T])s.)
The main step in the proof of the theorem is to show that if g is smooth then

(J4.IVg(x)|? dx)'* < C limsup n'/*, (A3)

n— o
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for some constant C which does not depend on g. Once we know this, then we know that the
Osc® ®(R“) norm controls the W' ¢(R¢) norm for smooth functions, and the proof of the
theorem can be finished. with a standard approximation argument (which we omit). (The
main point is that if you convolve g € Osc® ©(R?) with a function in L!(R9) with bounded
norm, then you get a function in Osc® ©(R?) with bounded norm.) The proof of (A3) that
follows is pretty sketchy, but it would not be too difficult to give a detailed argument.

Let us first try to understand the right-hand side of (A3) better. For each 4 > 0 let N(4)
be the number of j’s such that ®(x;, t;) > A. Thus 6y > 4, and so

lim sup n'/46, > lim sup N2, (A4)
n—x A
Now let us try to understand the left-hand side of (A3). For the time being we shall work on
some fixed large cube K. Let {Q,} be a partition of K into tiny cubes of side-length s. If 5 is
small enough, then Vg will be almost constant on each Q,, because ¢ is smooth. Let
G, denote the approximate value of |Vg| on Q,.

Set Q, =Q0,x0,5) < R If(x, ) e Q,,then O(x, t}isapproximately tG,. For each £ let
N,(4) denote the number of j’s such that (x;, t;) e Q, and O(x;, t;) > 4 If sG, < 4 then we
should have that N,(4) is usually 0, while if sG, > 1 then N,(4) should be approximately the
same as the number of j’s such that (x;, t;) € Q( and t; > AG, . Simple considerations of
hyperbolic geometry imply that N,(4) is roughly proportional to (sG,/A) in this case. This is
also about the same as what we got in the first case.

Since N(4) > Y, (N,(4), we conclude that N(4) should dominate 4 ¥,(sG,)?, modulo
controllable errors. From (A4) we get that

1/d
limsup n'/?8, is roughly larger than <z (sG,)") :

no oo 1]

On the other hand, ¥ ,(sG,)" is just a Riemann sum for {¢|Vg(x)|¢ dx. In the limit we get that

n— o0

1/d
(J [Vg(x)4 dx) < C limsup nt/4,
K

where C does not depend on g or K. This implies (A3), and proves the theorem.

Notice, incidentally, that the proof of (A3) works also when d = 1. However, the
approximation argument that gives Osc® *(R?) < W' 4R?) when d > 1 gives only
Osc’* *(R) = BV(R), where BV(R) denotes the space of functions on R of bounded vari-
ation (i.e. whose distributional derivatives are finite measures). The reciprocal inclusion is
false, because jump discontinuities are bad for Osc' *(R).
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