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1. INTRODUCTION 

BY rolling, or better pressing, a sphere S ” all around the manifold Mzc, we will construct 
bounded operators on the space of L2 middle dimensional forms of M2’ analogous to the 
classical Ahlfors-Beurling operator on the Riemann sphere c, 

cp(z,Z)dz=tfHSYf= 
* (1) 

The kernel of this classical operator is the biform dz dz’/(z - z’)~ on c x c. Using the 
generalized operators and their kernels we obtain explicit local cycle representatives of the 
Hirzebruch-Thorn characteristic classes for any quasiconformal manifold. At the end of the 
introduction we explain how the construction applies to topological manifolds. This 
answers a question raised by Bill Browder in lectures at Princeton in 1964. 

Generalizations of (1) to all even spheres SZe with any bounded measurable pointwise 
* operator on middle forms were constructed for the quasiconformal Yang Mills theory [7] 
by explicit formulae. For example, here we write 

S,=(l+~)-l(~+S)S(~+S)-l(f+~), II~ll<l (2) 

where S is the conformally invariant operator for the standard sphere (S is the identity on 
exact forms and - identity on coexact forms), S, is the corresponding operator related to 
the new bounded measurable * and p relates the new * and the standard * (Section 2). The 
operator S for the standard sphere S21 can be written out on Rzc as a quadratic expression 
in Riesz transforms, see [13]. When Z! is even, these bounded operators could be called 
conformal signature operators, being the phases of the usual signature operators when the 
* is smooth (see the proof of Theorem 3.2(4). When 8 is odd they are generalizations of the 
Ahlfors-Beurling operator to general “curved” measurable conformal structures. The 
formulae (2) take us beyond the usual pseudodifferential calculus to operators where 
symbols (if defined) would only be measurable. However, the important property that 
S, commutes with multiplication by continuous functions modulo compact operators is still 
true and evident from (2). 

’ Dedicated to Bill Browder on his 60th birthday. 
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For a general even dimensional quasiconformal manifold provided with a bounded 

measurable conformal structure or, more generally, a bounded measurable * on middle 

forms, we do the following: 

(i) locally copy via charts the * structure on M2’ by * structures on S”; 

(ii) get locally defined operators on M2’ from the operators on S2’ ; 

(iii) collect these together on M2/ using a partition of unity to construct global 

operators S on the Hilbert space 2 of middle dimensional forms (Section 2). 

Let Z(e) denote the ideal of compact operators A on a Hilbert space satisfying 

p, = O(n-iizt), where pL, is the distance in norm between A and rank-n operators. The 

reader may recall that any degree minus one smoothing operator in dimension 28, e.g. the 

Poincare lemma operator, belongs to the ideal 1(e). The standard notation for I(e) is Yzf, O” 

(Section 2). 

THEOREM 1.1. Given quasiconformal M2’ with a bounded measurable conformal structure 
or, more generally, a bounded measurable *-structure on the /-forms, the local construction 
yields an operator S which is determined by * up to the ideal I(G). Moreover, any such 
S satisjies: (i) S agrees mod Z(e) with the identity on exact /-forms; (ii) S anticommutes modulo 
I(e) with the involution y associated to * (y = * if8 is even, y = i* if& is odd). 

Let us say an operator S on the Hilbert space X of middle dimensional forms satisfying 

(i) and (ii) of Theorem 1.1 belongs to the Hodge class. It is clear from the Hodge 

decomposition (Section 2) that given * any two Hodge class operators differ by a compact 

operator in I(/). Note also that (i) and (ii) imply: (iii) S2 = I modI( 

There is a canonical nonlocal Hodge class operator S, for the pair (M, *). It is the 

involution defined, up to finite rank, by S, is the identity on exact forms and S, anticom- 

mutes with y. The projectors associated with S, are compatible with the usual Hodge 

decomposition of middle dimensional forms. Examples are the S, defined above for S2’. 

An interesting analytical consequence corresponding to the part relating to formula (2) 

of the proof of Theorem 1.1 is the following corollary. 

COROLLARY 1.2. Any Hodge class operator S on A? defines a Fredholm module in the 
precise sense that for the sup norm dense subalgebra of continuous functions on M2’ satisfying 

!,,#f12 < cc, the commutators [S, f 1, where f denotes the multiplication operator associated 
tof, belong to the ideal Z(e) of compact operators. 

The interest in this corollary comes from Atiyah’s paper [l]. The Dirichlet norm 

condition is sharp (see the appendix). 

The theorem and corollary answer anew the question of Singer [21] about “constructing 

the operator”, cf. [27, 111. This time the context is bounded operators. 

To our locally constructed Hodge class operator which satisfies Sy + ‘/S = 0 exactly, we 

apply the algebraic procedure of [6] to construct a refined Hodge class operator H satisfy- 

ing the conditions (a) HZ = I on Z exactly, (b) Hy + yH is trace class. This algebraic 

process (Theorem 3.2) preserves locality. 

The formula for H in terms of S is 

H = yp(B) + 
l+Y 

1 - __ 2 

where 0 = S2 - I, q(t) is the polynomial of degree 2& defined by (1 + t)-I” = q(t) + 
O(t’“+ ‘) and p(t) is the polynomial given by p(t) = (1 + t)q(t)’ - 1. 
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The trace class operator L = (Hy + yH)H = HYH + y can be used in a simple way to 

construct representations of the Hirzebruch-Thorn characteristic classes or rather their 

Poincare dual homology classes. Assume M 2L is oriented; then the kernel of L, L(x, x’), is 

a biform on M x M of bidegree (f, e). The support of L(x, x’) is near the diagonal since we 

started with a locally constructed Hodge class operator. The trace L(x, x’) on the diagonal 

is a 2& form, or since M is oriented it is a measure in the Lebesgue measure class. 

More generally, consider the cyclic expression {trace L(xO, xI)L(xI, xz) ... L(x2*, x0)> 

which can be considered as either a top dimensional form or as a measure on 

MxMx ... x M (2q + 1 factors), supported near the diagonal. 

THEOREM 1.3. The cyclic expressions {trace L(x,, x,)L(x,, x2)... L(xz,, x,)}, when con- 

sidered as measures on (M)24f1 near the diagonal, define Alexander Spanier cycles. If / and 
q are both even or both odd, these cycles represent the dual Hirzebruch-Thorn characteristic 
homology classes times 22qi ’ (27ci)-4q!/2q!. In particular, iftf is even, L(x) = trace L(x, x’) is 
a locally constructed measure whose total mass is twice the signature of MZe. All these 
measures are absolutely continuous with respect to the Lebesgue measure class. 

The algebraic construction used above to refine a Hodge class operator, S -+ H, and the 

check that the odd cyclic expressions in the kernel L(x, y) of L = Hy H + y define cycles are 

quite brief. However, the basic idea of this calculation is that any Hodge class operator 

defines a K-homology element because of the corollary and [l], and we know from [23, 271 

what this element and its Chern character should be. We also know from [3] an explicit 

construction of the Chern character starting from K-theory of an algebra and arriving at the 

cyclic cohomology of the algebra which, for a manifold, is related to Alexander Spanier [6]. 

The connection with Hirzebruch-Thorn classes is made by using the index theorem as in 

c27, 7, 61. 
The local construction of the operators and the analytical content of the corollary are 

easy consequences of formula (2) on spheres relating the (canonical nonlocal) Hodge 

operator S, for any measurable * to the (canonical nonlocal) Hodge operator S for the 

standard structure on S2’. Formula (2) also relates to the other discussions, which we 

mention now. 

On the Riemann sphere one knows the remarkable measurable Riemann mapping 

theorem that any bounded measurable conformal structure is related to the standard one by 

a quasiconformal homeomorphism w = q(z). Since S, is given by the kernel 

dw dw’/(w - w’)~ on (0, I)-forms while S is given by the kernel dz dz’/(z - z’)~ on (0, l)- 

forms, the basic formula (2) has a direct relationship with the measurable Riemann mapping 

theorem. Namely, we can calculate w = q(z) from the kernel of S, by expanding out the 

formula (2). 

In dimension 4 the operators S, were used in the analytical underpinnings of the 

Yang-Mills discussion [7]. Formulae (2) show, since 11 ,D /I < 1, that S, determines isomor- 

phisms on LP-forms for p a little greater than two. Applied to the curvature 2-forms this 

gives the extra regularity to get past the critical Sobolev exponent for the Yang-Mills 

connections and gauge transformations. A corollary of this theory and [9] was that some 

closed M4 have infinitely many distinct quasiconformal structures, and that some topologi- 

cal M4 have no quasiconformal structure. 

Thus our local constructions for characteristic classes based on (2) are higher dimen- 

sional relatives of the measurable Riemann mapping in dimension two and the Yang-Mills 

theory in dimension four. 



666 A. Connes, D. Sullivan and N. Teleman 

Outside dimension four there is a proof [24] independent of the theory of [17] that 

stable topological manifolds have a quasiconformal structure unique up to isotopy. Here 

stable refers to the pseudogroup of homeomorphisms of R” in the connected components of 

the identity or of a reflection [ 151. Thus this paper defines local characteristic classes for 

stable topological manifolds independent of Novikov’s theory [ 173. 

We can also apply our constructions and those of [24] to general topological manifolds 

outside dimension 4, but this uses Kirby’s result on the stable homeomorphism conjecture 

[ 153. The proof in [ 151 properly contains Novikov’s theory needed for his original proof of 

the topological invariance of rational Pontryagin classes. Thus our constructions or those 

of [26] cannot be construed as a new proof of Novikov’s theorem except for the stable 

category. A more appropriate title for [26] would have been “A new analytical proof of the 

invariance of rational Pontryagin classes for stable homeomorphisms”. We are indebted to 

Sergei Novikov for this clarification. 

Historical remark. If gRlj denotes the Jacobian matrices of the overlap homeomorphisms 

of charts covering a manifold M”, the curving or nonflatness of M” is measured by 

8,, = { glpl dg,,), which is a Cech 1 -cocycle with twisted values in matrices of l-forms. Thus 

if the overlap homeomorphisms have Lipschitz derivatives (or even second derivatives in 

L”) there is a Chern Weil type construction of characteristic forms by forming products and 

traces. 

By considering normal bundles to smooth foliations or discrete group actions and the 

Bott vanishing theorem [2] one finds serious obstructions [28] to the possibility of reducing 

this smoothness requirement and staying in the context of differential forms. 

In our context of Lipschitz or quasiconformal manifolds we have exactly one less 

derivative than required above. It seems natural then to try to interpret g- ’ dg as a distribu- 

tion or as an Alexander Spanier cochain. This was attempted in 1976 by the second author 

when the possibility of having Lipschitz or quasiconformal coordinates appeared. However, 

the distribution idea fails because of the impossibility of forming products. This difficulty is 

removed in Alexander Spanier at the expense of noncommuting products. But then the 

trace step in the classical ChernWeil procedure becomes problematic. In other words, 

there is either an analytical or an algebraical barrier to copying the pointwise “curvature” 

route to characteristic classes for quasiconformal or Lipschitz charts. 

In this paper these difficulties are surmounted by using trace ideals of operators on 

Hilbert space [3] and an algebraic addition to the Chern-Weil algorithm coming from 

cyclic cohomology [3]. The quasiconformal charts provide enough analysis to “quantize 

the manifold” in the sense of constructing a Hilbert space and a relevant operator replacing 

curvature. 

This “quantized curvature” is then treated algebraically in a manner guided by the 

formulae of cyclic cohomology. The essence of this algebraic point is that the cocycles in the 

cyclic context are just those multilinear functionals which when applied to (projector, 

projector, .) remain constant when the projector is varied by a homotopy. The reader may 

recall that this kind of consideration appears classically when showing that the Chern-Weil 

forms are cohomology invariants. 

In summary we have treated a problem with one missing derivative in a classical context 

using the ideas and tools of “noncommutative geometry” [S]. 

2. PRELIMINARIES ON QUASICONFORMAL GEOMETRY 

A quasiconformal (qc) homeomorphism h between two open domains Q1, Q2 in R” is 

a homeomorphism with the property that relative distances are boundedly distorted, i.e., for 
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each x in Szi, 

lim myxilW - 4y)l; Ix - YI = r> = K(x) I K < co . 
r+~ mm{ Ih(x) - h(y)l; Ix - yl = r} 

(3) 

We also assume the analogous statement for h-i. 

Gehring [lo] proved that when n > 1 a qc-homeomorphism is a.e. differentiable; 

moreover, the first-order partial derivatives of the component functions of h belong to the 

Banach space Lr;“, where E = E(K) > 0. It follows that h is a Holder continuous function 

with exponent E, h is nonsingular with respect to the Lebesgue measure class, and the best 

K that works in (3) almost everywhere for h also works for h-’ almost everywhere. 

Let g be an arbitrary Euclidean metric on the tangent space to 5X” at some of its points 

x0. Recall that the metric g and all other similar metrics rg, where r is an arbitrary positive 

real number, define the conformal class [g] of the metric g. 

If [go] and [gi] are two conformal structures, the conformal distance between them is 

by definition 

4Cgo1, Id) = 1% 
max~l4,,;I4,, = 11 
min(l4,, ;lulgo = 1) 

From now on we suppose that the dimension n = 2L = even, and we choose the 

standard orientation on Iw”. 

Let A denote the vector space of all differential forms of degree P at x0. For any 

Euclidean metric g as above, the Hodge star operator *9 associated to g defines an 

endomorphism 

with 

*g:A-?A 

*; = ( - 1)‘. 

The main property of the operator *4 acting on A is that it remains unchanged under 

dilations of the metric g, i.e. it depends only on the conformal class of g. 

We let ys be the involution of the complexification A, of A given by 

ys = i’* 9’ (5) 

We let A * (g) be the + 1 eigenspaces of ys. These subspaces are maximal definite subspaces 

for the quadratic form 

The conformal distance between two conformal classes [go] and [g] may be estimated 

in terms of the relative position of the eigenspaces A *. Indeed, there exists a unique linear 

mapping 

p: A-(90) + A+(go) (6) 

with the property that the graph of p is precisely A-(g). The operator norm of p relative to 

the metric go satisfies 

I& < 1 (7) 

and 

; log 
1 + I& 
1 IASO I 4Csol. CSJ) s log 

1 + IPI 
9o - 1 - IPISO 

TOP 33-4-E 
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A field c(x) of conformal structures over a domain U in [w” is called a bounded 

measurable (bm) conformal structure on Ii if there exists a Riemannian metric g over U, 

whose components are measurable functions, such that for any x in U, c(x) = [g(x)], and 

where e denotes the standard Euclidean metric. 

Equivalently, c is a bounded measurable conformal structure iff the corresponding field 

of endomorphisms p, relative to e, is a matrix field with measurable entries, and 

II~ll,~~~PIAx)I < 1. 

If c is a bounded measurable conformal structure on U, then yc is a field of matrices with 

bounded measurable entries. If c is a bounded measurable conformal structure on V and 

h : U -+ V is a qc-homeomorphism, then h*c is a bounded measurable conformal structure 

on U because a qc-homeomorphism induces uniformly quasihomotheties on the tangent 

spaces, a.e. 

A qc-manifold is a topological manifold equipped with an atlas whose changes of 

coordinates are qc-homeomorphisms. It possesses a well-defined measure class, the Lebes- 

gue measure class, since qc-homeomorphisms are absolutely continuous. The tangent 

bundle of a qc-manifold is a measurable real vector bundle. 

A bounded measurable conformal structure on a qc-manifold is a field of conformal 

structures on its tangent spaces whose restriction to any qc-chart is bounded measurable. 

Any paracompact qc-manifold has such structures. 

On a compact smooth manifold, a conformal structure is bounded iff the conformal 

distance (defined point by point) between it and the underlying conformal structure of 

a smooth Riemannian metric is a bounded function. 

On a compact qc-manifold M, the space L”“(M, A*) of r-forms with coefficients in 

L”l”, n = dim M, is well defined. Any bounded measurable conformal structure specifies a 

Banach space norm on Lnir by 

(I/O(/p’= IwIn’*. s M 

Given o1 E L”!‘(M, A ‘), a2 E L”‘*” (M, A’+ ‘) we write dwI = w2 iff this holds, in the sense 

of distributions, in any qc-local chart. This yields [25] a densely defined closed operator 
d: Lnir --t L”/‘+ 1 which commutes with qc-homeomorphisms. We let Im d be the image of d; 

it is closed in L”“+’ provided r 3 1 [7, 251, see the proof of Proposition 4.5(4). 

The underlying topological vector spaces only depend on the quasiconformal structure. 

3. STATEMENT OF THE MAIN RESULT 

Let M be a compact oriented quasiconformal manifold of even dimension 2&. Let [g] be 

a bounded measurable conformal structure on M and y, 7’ = 1, the associated * operator in 

the Hilbert space .Z = L2(M, A’) of square integrable forms of degree / on M. 

Given an open neighborhood U of the diagonal in M x M and any bounded operator 

T in .X = L’(M, A 0, we say that Support (T) c U iff the following holds for any open 

Vc M: 

0 E Xx, Support 0 c V a Support c WV 

where U V = {x E M; 3y E V, (x, y) E U} 

(9) 
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For any p E [l, cc [ the following conditions define two-sided ideals of compact oper- 

ators in Hilbert space. We let, for any compact operator T in 2, p,(T) be the nth 

characteristic value of T, i.e. the nth eigenvalue of ITI = (T*T)“‘, or the distance in 

operator norm between T and rank-n operators. 

P?““(s) = T compact; ~P,(T)~ < cc (10) 
1 

~;acp~m)(~) = {T compact; p,,(T) = O(n-“P)j. (11) 

Recall that _Y1 are the trace class operators, Y2 are the Hilbert-Schmidt operators, and 

dp”‘~ ca) contains degree-one smoothing operators on R” [20, 291. We can now define the 

following key notion refining that of Hodge class operators in the introduction. 

Dejinition 3.1. Let U be an open neighborhood of the diagonal in M x M. A U-local 

Hodge decomposition is a bounded operator H in L2(M, A/T,*) such that 

(a) HZ = 1, 

(/I) Support H c U, 
(y) (H - l)/Im d E Yip(2’, n) ( = I(d) of the introduction), 

(6) Hy + yH E Y’ ( = trace class). 

Giving H is the same as giving the decomposition of J? = L2(M, A/T,*) as the linear 

sum of the two closed subspaces: 

{c: E 2”; H5 = k t}. (12) 

We shall now explain how to construct for each 4 E {0, 1, . , f} an Alexander Spanier 

cycle on M from a U-local Hodge decomposition. To define Alexander Spanier homology 

on a compact space X we consider for each integer d the linear space A, of totally 

antisymmetric measures c7 on Xd+ ‘. Such a measure (T is uniquely determined by the value 

of o(cp) = J’p d c on bounded Bore1 antisymmetric functions cp on Xdf ‘. We let 

6: Ad -+ A,_ 1 be the boundary operator given by the equality 

(da)(q) = JfJ - ~)'Jc~(xo, ... ,Xj, ... ,Xd)dO Vq. (13) 
0 

Let U be a neighborhood of the diagonal in X x X. We shall say that 0 E A, is U-local iff 

Supportac{(xj)EXd+‘;(xi,xj)EU Vi,j~{0, 1, . . ..d}}. (14) 

One checks that condition (14) is preserved by 6. This defines the complex (AL,, 6) of U-local 

elements of (A, 6). The Alexander Spanier homology H,(X, [w) is obtained as the projective 

limit ,l& H*(Au, 6), when U runs through all open neighborhoods of the diagonal. The 

limit is actually achieved on appropriate sufficiently small neighborhoods. 

Given a measure space (X, V) and a measurable Hermitian vector bundle A on X, the 

Hilbert-Schmidt operators in 2 = L’(X, A) are all given [20] by measurable kernels, 

such that 

k(x, y) E Horn&, A,), x, y E X (12’) 

jx trace(k(x, y)* k(x, y)) dv(x) dv(y) < K . (13’) 
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In particular, for any such kernel k the following expression defines a measure o on 

Xd+’ for any d 2 1: 

O(V) = sxa*’ trace(k(x,, x,)&i, x1)... k(% x~))cp(%, . . . ? Xd)n dv(xi) (14’) 

as follows from the inequality 

lo( I llkIld2+i Ilcplldo \JvEL”(X~+‘, vd+i). (15) 

We shall use the notation 

trace(Ad+l k) = total antisymmetrization of o (16) 

(where g is associated to k by (14’)). For d = 0 this formula continues to make sense 

provided the operator in # = L’(X, A) associated to k is of trace class [20]. 

We can now state the main result of this paper. The proof occupies the next two sections. 

THEOREM 3.2. Let M be a compact oriented quasiconformal manifold of even dimension 
2&, y the Z/2 grading of Z? = L’(M, ATT,*) associated to a measurable bounded conformal 
structure [g] on M and U a neighborhood of the diagonal in M x M. 

(1) There exists a locally constructed U-local Hodge decomposition H. 
(2) Let H be a U-local Hodge decomposition and L = HyH + y with kernel L(x, y). Then 

the measure a = trace( A 2q+ ’ L) is a CJ2q-local Alexander Spanier cycle of dimension 

2q. 
(3) The homology class of o among U’-local cycles, r = 2q(6[ + 2), is independent of the 

choice of H. 
(4) The homology class of o is equal to A2q(L2e_2q n [Ml), where L is the Hirzeb- 

ruch-Thorn L-class and ,Izq = 22qf ‘(2rueq q!/2q!. 

4. LOCAL CONSTRUCTION OF A U-LOCAL HODGE DECOMPOSITION 

Let M be a quasiconformal manifold and [g] a bounded measurable conformal 

structure on M. In this section we shall show how to construct local Hodge decompositions 

H using a covering of M by domains of qc local charts: 

Pa : v, + s2/. 

The obtained formula for H will be algebraic in terms of the following ingredients: 

(1) A partition of unity subordinate to the covering (V,) of M. 
(2) The pull-back by pa of Hodge decompositions on S2’ associated to a bounded 

measurable conformal structure which agrees with pal [g] on p,( I’&. 

We shall begin by describing the canonical Hodge decomposition on S2’ associated to 

a bounded measurable conformal structure. 

(u) Canonical Hodge decomposition on S2’ 
Let [go] be the standard conformal structure on the sphere S2’, and [g] an arbitrary 

bounded measurable conformal structure on S’“. Let yO, y be the corresponding * opera- 

tions in the vector bundle A of middle dimensional forms. If we let A+ be the two 

eigenspaces of y0 we get two subbundles of A and a unique measurable bundle homomor- 

phism: 
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whose graph at each point p E S2’ gives the subspace 

{wEAp;yW= -o}. 

We endow the vector bundle A with the metric associated to the standard conformal 
structure [go]. The boundedness of the measurable conformal structure [g] then means 
that 

IIP+ Ilm = y IP+(P)I < 1. 

Let 

0 P+ 
p= * 0 

[ 1 P+ 

viewed as an endomorphism of the vector bundle A. One has 

PYO = -YoPL, P =P* (18) 

and so ,u is self-adjoint with respect to the wedge pairing: 

Y = (1 + I*)Yo(l + 4-l. (19) 

Indeed y2 = 1 and by definition (1 + p) transports the eigenspaces of y. into those of y using 

(18). 
Finally, on the vector bundle A the metric associated to the conformal structure [g] is 

given by 

Note that since II p II < 1 the operator (1 - ,u)(l + p)-’ is positive. We now consider the 
Hilbert space X0 = L2(S , 21 A) with the inner product given by [go]. We view all the above 
endomorphisms of the vector bundle A as operators in Zoo. The equalities (18) and (19) 
continue to hold. 

The standard Hodge decomposition on SZe decomposes X0 as the direct sum of two 

orthogonal subspaces, the exact forms and the coexact forms. Let Ho (denoted by S in the 
introduction and in formula (2)) be the linear operator such that Ho o = o for any exact 
form and Ho w = - o for any coexact form. One has 

Ho = HZ, Hz = 1 (21) 

HOYO = - YOHO. (22) 

Moreover, since Ho is a standard singular integral operator of order 0, the following 
subaigebra A(S2”) of the algebra of continuous functions C(Szp) contains all smooth 
functions [13] and is therefore norm dense: 

A(S’“) = (f E C(S2(); [Ho,f] E L@~-)} (23) 

where f E C(S21) is considered as a multiplication operator in L2(S2L, A) and recall that 
_5?(2e.m) is the two-sided ideal of compact operators in Z. given by the condition 

T E f@(.rn) 9 P”(T) = O(n_“2’) (24) 

where ,un(T) is the nth characteristic value of T. 
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Let us now consider on the locally convex vector space Z0 the new inner product given 

by the metric y; using (20) this can be expressed by 

(25) 

The Hodge decomposition on ,S2’ relative to the bounded measurable conformal structure 

[g] is given by the following proposition. 

PROPOSITION 4.1. (a) The orthogonal complement for the inner product (25) of Im d = 
{w; HOo = CO} is equal to y(Im d). 
(b) Let H be the linear operator equal to 1 on Im d and to - 1 on y(Im d); then 

H=(l -,u~~(H,-~)H~(H~-/$‘(~-~). 

Proof. Since Hi = 1 and 11 p I/ < 1 the operator H O - p is invertible. Let us consider the 

operator T = (1 - p)-’ (HO - ,u) H,(Ho - p)-’ (1 - ,u). It is conjugate to H,, so that 

T2 = 1. Its eigenspaces are obtained from those of HO by applying (1 - p)-l(HO - p). 

Hence {r; T< = <} = Im d. One has y = (1 - ,~)-ly,,(l - p) and hence yT= - Ty which 

shows that (5; Tt = - <} = y(Im d). The orthogonality of Im d with yo(Im d) for the inner 

product ( ),, implies the orthogonality of Im d with y(Im d) for the inner product (25), using 

yOy = (1 - ,~)/(l + p). Thus we have shown (a) and (b). 0 

COROLLARY 4.2. For any f E Lx(S2’) and any two-sided ideal J of operators in X0 one 
has 

CHo,flEJ 0 CH,flEJ. 

Proof Since ,U commutes with f and [H, .] satisfies the Leibniz rule, direct calculation 

yields 

CH,fl = - (1 + PL)(Ho - PL)-’ CHo>flWo - PL)-‘U -rd. 

This completes the proof. 

COROLLARY 4.3. For any two-sided ideal J of operators in Hilbert space the 
functions,fE Lx(S2’) such that [Ho,f] E J 1s invariant under qc-homeomorphisms. 

(26) 

El 

class of 

Proof Let cp be a qc-homeomorphism of S 2’; then cp is a.e. differentiable and it defines 

a bounded operator U(q) in X0 = L2(S2’, A) by the formula 

U(cp)o = ((p-l)*w vo E X0. (27) 

This yields a bounded operator in Hi0 such that 

u(~)fu(~)-’ =fo(p-l Vf E L,(S2/) (28) 

U(q)Ho U(V)-’ = Hg (29) 

where [g] is the mb conformal structure (cp-‘)*[gJ. To prove (29) note first that U(q) 

Im d = Im d (cf. [7]), while (U(cp)wI, U((P)~~)O = (01, w2>g VWI> ~2 E =@o. Thus U(Y) 

HO U(Q)-’ is equal to 1 on Im d and to - 1 on its orthogonal complement for the inner 

product ( ),. Hence U(cp)HoU(cp)-’ = H,. Then let f~ L”(S2’); if [Ho, f] E J then 

[U((p)HoU(cp)-‘, U(cp) fU(cp)-‘1 E J and [H,,ficp-‘1 E J so that [H,,,pcp-‘1 E J by the 

above corollary. 0 
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We shall now see that, modulo the ideal J = .9’ (2’, m, the class of the operator H, is 

locally determined by the bounded measurable conforma; structure [g] 

PROPOSITION 4.4. Let U c S2’ be an open subset and fi,f2 be continuous functions with 

support in U. Let gl, g2 be two bm conformal structures on S2’ which agree on U. Then 

fi(H,, - HSz)f2 E _Y(“, =‘). 

Proof: We can replacef;: by smooth functions equal to 1 on the support of the previous 

ones. Thus we can assume that f; E A(S2’). By Proposition 4.1 both operators Hga are the 

sum of a geometrically norm convergent series: 

H,, = (1 - pi)-‘(Ho - pi)f(pi H,Y’(l - pi) (30) 
0 

whose terms are monomials of the form 

a,,iHoaz,iHo ...an,iHoan+l,i = Tn.i (31) 

where ak, i belongs to the commutant of Lco(S2’) in X0 and fi uk, 1 =fi ak, 2 for all k. It 

follows, using [Ho,fi] E 5!‘i4’2’~ =), that ’ 

fi (T,,, 1 - T,, 2) E _!Y”‘, =). (32) 

One thus expresses fi (H,, - H,,) as the sum of a series convergent in the Banach space 

_Y’(“v m), and the conclusion follows. 0 

(/?) The class of H modulo 9”“. m) 

Now let M be a quasiconformal manifold of dimension 2t. 

Let ,4(M) be the subalgebra of C(M) of functions f such that for any qc-local chart: 

V~S2’andforanyh~C,(p(V))nA(S2’)onehashf~p-’~A(S2’).ByCorollary4.3one 

has p*(A(S2’) n C,(p(V))) c A(M) for any qc-local chart V 3s”. It follows that A(M) is 

a norm dense subalgebra of C(M) and that it has partitions of unity subordinate to any 

finite open covering of M. 

Let [g] be a bounded measurable conformal structure on M. 

Let (V,) be a finite open cover of M by domains of qc-local charts pm: V, + S2’ and 

ga a bounded measurable conformal structure on S2’ which agrees with p,[g] on pa(K). For 

each M let H, = H,, be the corresponding Hodge decomposition on S”. Let (cpl) be 

a partition of unity, (Pi E A(M), Support (P= c V, and for each c( let II/= E A(M) be equal to 

1 in a neighborhood of Support cpz, with Support $. c V,. We let, as above, A be the 

measurable vector bundle A ’ T,* on M and we consider the following locally constructed 

operator in L2(M, A): 

(33) 

where we used pal to let H, act in L2(M, A). 

PROPOSITION 4.5. The class of S modulo .Y’2’. 3o’ only depends upon the bm conformal 

structure [g] on M and one has 

(1) Sy + yS E _5Yp(“, ca) (the construction yields Sy + yS = 0), 

(2) [S, f] E P’(“, m, ‘v’f E A(M), 

(3) s2 - 1 E d;p’2/, a’, 

(4) (S - l)/Im d E _!Zc2’, m). 
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Proof: We first need to show that S - S’ E 9’ (2L, 4, for any two operators S, S’ construc- 

ted by formula (33). Using the compactness of M it is enough to show that for any x E M 

there exists f~ A(M), f(x) # 0 such that (S - S’)~E 9 (2L, Cc). Using a local qc-chart the 

proof follows from Proposition 4.4. To check (1) note that any of the operators S given by 

(33) satisfies Sy + yS = 0. 

The condition (2) follows from Corollary 4.3. 

To check (3) we take a representative S = x Ic/, H, (P= constructed from a covering (V,) by 

domains of qc-charts, such that for any c( the open set U V,, I$ n I$ # 8 is the domain of 

a qc-chart. The result then follows from Corollary 4.3 and Proposition 4.4. Actually (3) also 

follows formally from (1) and (4). 

Let us check (4). On the sphere S2’ the operators Hs, g a bounded measurable conformal 

structure, are equal to 1 on Im d (Proposition 4.1). Thus, using Corollary 4.3, the operator 

S = C$nHa~a satisfies (S - 1)/E, E =!Y’2’, m), where E, is the closure in L’(A4, A) of 

(dw; cu E L”‘‘-l (V,, A), do E L2 >. Thus (4) follows if we show that the map (0,) E @ E, -+ 
1 w, E L’(M, A) is surjective on Im d. Let P, (resp. Q, = y P,y) be the orthogonal projection 

on E, (resp. YE,). For any CI, /_I the closed subspaces E, c Im d and y E, c y(Im d) are 

orthogonal. Thus it is enough to show that the following operator is equal to 1 + compact: 

T= c(e + Qa)(~a. 

(Its range is then closed by the Fredholm theory.) 

Let us show that for each CI the operator (P, + Qol)qa - cp. is compact. We can assume 

that M = S2’ is the sphere. By Proposition 4.1(a) one has orthogonal decomposition 

L2(S 9 2p A)=Imd@~Imd,whered:L~‘~‘~’ (S”, A/-i) --) L2(S2’, A”) has closed range. 

(We assume f # 1.) 

Using a compact operator R: L2(S2’, A) + L2”‘- ‘(S2’, A/-l ) such that dR = 1 on 

Im d we thus get a pair of compact operators Rj : L2(S2’, A) + L2”’ i (S”, A ‘-I ) such that 

d RI + y d R2 = 1. The conclusion then follows using the following equality, with II/ a 

smooth function with support in V, and equal to 1 in a neighborhood of Support (Pi: 

$0 = d($ WI) + yd($O2) - d tj A ~1 - Y(d @ A wZ), Wi = Rim. 0 

Remark The discussion of (4) is tantamount to a proof that d from (/ - l)-forms of 

class Lp, where p = 2//(/ - I)), to L-forms of class L2 has closed image, & > 1. 

5. PROOF OF THEOREM 3.2 

Proof qf (1). First choose a neighborhood V of the diagonal such that Vzq c U, 

q = 68 + 2. Next (Proposition 4.5) let S be an operator such that 

(a) Support(S) c V, 

(b) S2 - 1 E 9;a(2’, ‘=‘), 

(c) SY = - YS, 
(d) (S - l)/Im d E gPc2’, m). 

Then let 8 = S2 - 1. By construction, 0 commutes with S; it also commutes with y by (c). 

Let q(t) be the unique polynomial of degree 2/ such that 

(1 + t)-‘12 = q(t) + 0(t2’+‘) (for t small). (34) 

Let p(t) be the polynomial given by 

p(t) = (1 + t)q(ty - 1 . (35) 
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We shall define an operator H by the formula 

(36) 

First note that 0 is V2-local; thus since q (resp. p) has degree 28 (resp. 4/ + 1) we see that 

T is U-local as required. Next, as 8 E JZ’(~‘, m, by (b) and as p(t) = O(P+ ‘) we see that 

p(0) E 9’. We thus have 

Hy + yH = 2p(@ E _Y1 (37) 

where we used (c) to get the equality. Since p (0) E Y’ and 0 E JZ’(~‘, m, we have 

S - H E _Yczr* m) and hence, using (d), 

(H - id)/ Im d E Y(2e, 3o). (38) 

It remains to check that H2 = 1. Note first that the two terms yp(8), H - yp(8) anticom- 

mute so that HZ is the sum of their squares: 

1-Y i - Tp(e) s2 

= p(e)2 + q(e)z(i - p(e))(l + e) = 1. 

Before we begin the proof of (2) we recall that the cyclic complex (CT, b) of an algebra 

J&’ is given by 

C;(d) = {multilinear forms r on d x ... x d (n + 1 times) 

such that r(a’, . . . , 8, d) = ( - 1)” r(aO, . . . ) a”) Va’ E d} (39) 

” 

(bT)(UO, . . ..un+l)= I(- l)jr(uO, . . . ,ujuj+l, . . . .."+I) 

0 

+ (- l)“+‘r(u”+‘uO, . . . ,un) V&E&. (40) 

We also note that if J is an ideal in a larger algebra d and if B c JZ~ is a subalgebra such 

that J n B = {0}, then the natural extension by 0 on B of the cochains T E CT(J) satisfying 

r(uO, al, . . . ) u’6, uj+l, . . . ) a”) = T(UO, d, . . . ) uj, is+l, . . . ) a”) 

VU’E d, vj, v’6 El? (41) 

commutes with the coboundary b of C:(J + B). 

Proof of (2). It follows from [6, Lemma 23, but we shall give the details here. By 

construction, D = trace( A d+ l k) is Uo Uo . . . o U-local (d-factors), where Uo V is as defined in 

Section 3. We need to show that ba = 0. We shall first show that, with J the algebra of trace 

class operators in 2, the following formula defines a morphism of complexes: (A*, 6) ?_, 

(C:(J), b), where (A*, 6) is the complex of bounded measurable totally anti-symmetric 

functions (straight cochains) on M. 

t,Jk’, . . . , k”) 

(- l)“jM”+l trace(k’(x,, x,)k’(xl, ~2) . . . k”(x,, x,J)cp(xo, . . . , x,)ndv(XJ Vcp E A”. (42) 

The coboundary 6 in (A*, 6) is given by 

II+1 
6V = 1 ( - l)jcPj, cPjfxO, *.. ~~n+l)=(P(X0, ...,;j, *..,Xn+l). (43) 

0 
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Next, when one computes rq,, j 2 1, the variable xj does not occur in ‘pj and thus one gets 

r,, (k’, . . . , k”+l) = - qJk”, . . . , kj-‘k’, . . . , k”+l). (44) 

For j = 0 it is the variable x0 which does not occur in cpo and using the cyclicity of the trace 

one gets, using the antisymmetry of cp, 

r,+,. (k’, . . . , k”+l) = (- l)n+lr&“+lkO, k’, . , k”). (45) 

Thus, using (43) we get 

r&0 - - bt, VqlpEAR. (46) 

Next note that the compatibility condition (41) is fulfilled by any element of the algebra 

B = {no + Aiy; lj E @> generated by the operator y in X’. We shall still denote by r the 

extension of the above morphism of complexes to (CT(&), b), szi = J + B. 
Let us now check that bo = 0, i.e. that a(&) = 0 for any cp E Ad. Using (46) we know that 

the cyclic cocycle Tag is a coboundary and, thus, that it vanishes when evaluated on an 

idempotent: 

r&+?(P, p, ... 9 P)=O VP, P2=P, PE&. (47) 

Applying this to P = H((l - y)/2) H = i((l + y)/2) + :L gives the desired result. 

Proofof(3). Let Ho, Hi be two U-local Hodge decompositions and Y = Hi - Ho. We 

have 

Y/Im d E _$?(2p, m, (48) 

Yy+yYEP. (49) 

As Im d @ y(Im d) is of finite codimension in .X it follows that 

YE dp(Zf.30). (50) 

Let then H, = Ho + t Y. We have 

Support H, c U (51) 

H: - 1 E ycze. m) (52) 

(H, - l)/Im d E Yczt, m) (53) 

H,y + yH, E T1. (54) 

It follows that S, = i(H, - yH,y) anticommutes with y and satisfies (51)-(53). Thus with 

q and p as in (34) and (35) we get a family HJ of U”-local Hodge decompositions: 

H:=YP(e,)+(l-(~)p(B,))q(R,)S,, &=Sf-1. (55) 

For t = 0 (or for t = l), the operator 8, = S$ - 1 belongs to 2’; we can thus, keeping the 

relation (35), replace the polynomial q by 1 + r”(q - l), A E [0, l] and still get a family of 

U”-local Hodge decompositions joining Hb (for A = 1) with 

H~=yeo+(~-(~)eo)so, 8o=S;-1, So=;(Ho-yHoy). (56) 

Since the obtained path of idempotents (H;((l - y)/2) Hi) in & are piecewise polynomial it 

follows that the corresponding straight cycles are U”-homologous. This is, using (46), 
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a restatement of the homotopy invariance of the pairing of K-theory with cyclic cohom- 

ology c31. 
It remains to compare, in the same way, Hb: with Ho. One has by hypothesis 

Se - Ho E 9, o0 E 9”; thus 

Hb:-HeE9. (57) 

It follows that the idempotents 

satisfy the equality e” = We W-l, where W = Hb: Ho E 1 + J as well as W- ‘, while W is 

U2-local as well as W- ‘. One then considers the following smooth path of idempotents 

e(t) E M2(&) connecting [i :] with [: ey,] and with support in U3: 

where R, is a rotation matrix. Using again the homotopy invariance of the pairing of 

K-theory with cyclic cohomology, one gets the desired result. 

Proofof(4). We shall first check directly that JM L(x, x) = 2 Sign(M). Since the Alexan- 

der Spanier cocycle given by the constant function cp(x’) = 1 is defined everywhere, the 

proof of (3) shows that JM L(x, x) is independent of the choice of the Hodge decomposition 

H, without any U-locality hypothesis. We can thus choose H = 2P - 1, where P is the 

orthogonal projection on the closed subspace Im d. One has P + yPy + K = 1, where K is 

the harmonic projection [7]. Thus one gets 

HyH + y = 2Ky 

Trace(HyH + y) = 2 Trace(Ky) = 2 Sign(M). 

To compute the other homology classes let us first assume that M is a smooth manifold. 

By [6] these classes ozq represent 22q+ ’ times the Chern character of the K-homology class 

of the operator H = 2P - 1, with P as above. 

Thus it is enough to show that the K-theory class of the symbol of H, [a(H)] E 
K’(T*M), is the same as the K-theory class of the symbol of the signature operator. The 

latter is given by the odd endomorphism s(x, 4) = er + i,, 5 E T,*(M), of the pull-back of 

A*T,* (oriented by :’ = i’*( - 1) p(p ““2) to T*M. (Here et, i, are, respectively, exterior and 

interior multiplication by 4.) The symbol o(H) of H is the same as the symbol of 2P - 1, 

where P is the orthogonal projection on the image of d. Its restriction to the unit sphere 

{r E T* V, 11 i 11 = 11 is thus given by 

a(x, 5) = e<i, - iset acting on ACT,*. 

Let u(x, 5) = (1 /a)(1 ~ et + i<); then for I/ < II = 1, it is an invertible operator in A*T,* 

with inverse up ’ (x, 4) = (1 /$)(I + eg - it). One has 

(usu- ‘)(x, 5) = e,is - i,e, acting on A * T,*, 

By construction, u commutes with y. This shows that the K-theory class [s] - [o] is given 

by the symbol 

p(x, 5) = es& - ices acting on 2 A* Tz@ A/T,* 
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with the Z/2 grading 7. However, using the canonical isomorphism, for p # /, 

APT,*=(APT,*@ II~~-~T;)‘; w+;(cufl/w) 

one checks that the class of p is equal to 0. 

This completes the proof that the classes we construct agree with the Hirzebruch-Thorn 

classes in the smooth case. The extension from the smooth case to the qc-case can be done 

using cobordism as in [27]. One can also use K-theory as in [12]. 

Remarks. (1) Let M be a compact quasiconformal manifold; one can characterize the 

subalgebra A(M) of C(M) (Section 4) by the following simple criterion: 

f E A(M) 9 dfE L2’(M, T,*). 

A proof of j follows from [4] and the converse from [19] plus an identification of the 

Besov space there with this Sobolev space. It is sufficient by Section 4 to work with the 

standard singular integral operator on the sphere. For a more complete discussion see the 

appendix. 

(2) Let M be a polyhedron of dimension 2e with homological properties to be specified. 

Let 2 = @ ;xh be the direct sum of the Hilbert spaces 2; of square integrable /-forms on 

the 2e dimensional simplices. For each vertex c’ let E, be the closure of the subspace of X of 

boundaries of Whitney flat forms [29] with support in the star of c. Let y be the * operation 

on X given by the canonical flat metric on each 2P-simplex (with equilateral length). Let 

b, be the barycentric coordinate assigned to the vertex v. Then let us consider the following 

operator: 

1 (P,, - y P,y) b,. = S 

where P, is the orthogonal projection on E,. It is clear that S is localized and anticommutes 

with y. Now we assume that E, and ?;(E,) are a local decomposition, up to compacts, i.e. 

(1 - P, - yP,y) is compact on forms on the star. We also assume that S = 1 on the closure 

of boundaries of Whitney flat forms modulo I(/). These are the prescribed homological 

conditions. They will be satisfied for pL manifolds by the discussion above for qc-manifolds. 

Then S2 - 1 is in _Y(“, aa’ and one can use the above formulae to define characteristic 

homology classes. The involved Hilbert space theoretical data are of the same nature as 

those appearing in transfer matrix theory of statistical mechanics and suggest a purely 

combinatorial approach to the K-orientation of [23] in the extended context of spaces with 

singularities. 

APPENDIX: AN INTERESTING ANALYTICAL POINT + 

There is an interesting issue concerning operator theory and classical analysis which is 

related to the topics of this paper and which does not seem to have been treated in the 

literature. For the sake of clarity we discuss this issue in a restricted setting. Let T be 

a zeroth-order pseudodifferential operator on Rd, d > 1, which we also assume to be 

translation and dilation invariant and nonzero. Thus T could be represented by a Fourier 

multiplier which is homogeneous of degree 0, and T is a bounded linear operator on 

2 = Lqrw”). 

+ This appendix is a result of collaboration with Stephen Semmes. 
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Under what conditions on a function f(x) on aBd is it true that [f; r] E YCds “j(X)? 

(Recall that _YCd* “‘(2) denotes the space of compact operators A on X such that 

h,,(A) = O(n-‘Id), where p,,(A) is the nth eigenvalue of (,4*A)‘j2.) This type of question has 

been studied extensively (see [14], for instance), but this particular case involves a critical 

index and has some special features. It follows from [19] that 

[f; 7-I E 5?Cd, Ja) o f’~ 0s~~. “(IWd) when d > 1 (Al) 

where Oscd, a, ( Rd) 1s a variant of a Besov space whose definition will be reviewed soon. For 

many purposes it would be preferable to work with a Sobolev space instead of Oscd* m. It 

was observed in [lS, Theorem 2.2, p. 2281 that 

W’xd(lWd) 5 0s~~~ “(R”) when d > 1 (A2) 

where I+“, “(iWd) is the Sobolev space of locally integrable functions on lRd whose distribu- 

tional first derivatives all lie in Ld(rWd). In fact, we have the following theorem. 

THEOREM. When d > 1, W’*d(Rd) = Oscd- “(Rd), and so [f; T] E LYtd- “‘(A?) ifand only 
ifSE w’, d(Rd). 

It is very important here that the dimension d is the same as the exponent in the function 

spaces; otherwise this theorem would not work. This theorem is rather surprising from the 

perspective of classical analysis, because Sobolev spaces normally coincide with Besov-type 

spaces only when the exponent is 2. Indeed, the second half of the theorem had been 

conjectured by Jaak Peetre, and one of us (S.S.) was of the opposite mind. 

We need only show that the inclusion opposite to (A2) holds. Our original proof of this 

was obtained by understanding the Dixmier trace of /[L r]Id, which in fact reduces to 

SwaIVf(x)ld dx for certain T [4]. We shall sketch a more direct proof below. 

Let us recall the definition of Oscd, J, (rWd). This space is somewhat nonstandard; at this 

critical index, the standard Besov space is distinct from this one. 

Given (x, t) E Rd x R, = lR”,+’ , let B(x, t) denote the ball with center x and radius t. Let 

m,. r(g) denote the average on B(x, t) of the locally integrable function g(y) on Rd. For such 

a function we let 0(x, r) denote its average oscillation on B(x, t), which is given by 

@(x7 r) = m,,,(lg - %,1(9)1). 

We shall define Oscd, “([Wd) in terms of a global measurement of these localized oscillation 

quantities. 

Let { (xj, rj)}j d enote a reasonably thick hyperbolic lattice in rW”,+ ‘: we require that 

every point in R”,+ ’ be no further than lo-’ from some (Xj, tj) in the hyperbolic metric and 

that no pair of the (xj, tj)‘s are closer to each other than 10m3. Thus the numbers @(xi, tj) 

measure the average oscillations of g at all possible locations and scales. 

Let 0,, n= 1,2,3, . . . . denote the nth largest value of @(Xi, tj). In other words, we 

reorder the O(Xj, tj))S in decreasing size. Then 

g E oscd. “(Iwd) 0 6, = O(n_“d). 

This definition does not depend on the particular choice of the lattice (Xj, tj). (The point of 

(Al), incidentally, is that the 8,‘s forScan be related to the p,,([f; r])‘s.) 

The main step in the proof of the theorem is to show that if g is smooth then 

( lwd IVg(x)ld dx)‘jd I C lim sup nlidO, 
n-cc (A3) 
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