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Introduction

Dog-eared copies of the Milnor-Thurston unpublished preprint “On Iter-
ated Maps of the Interval” were common sights among topologists and
dynamicists for more than a decade since the earliest versions appeared
around 1975. The article contained an elegant and complete exposition of
the topological or combinatorial structure of 1-fold mappings of the line
for example {x — x? 4 a}, in the sufficient range a > —2.

In this quadratic family one finds that all points tend to infinity outside
a unique (possibly empty) invariant interval of points. Inside this interval
uncountably many different dynamical patterns can occur as a varies. These
patterns are classified by the Milnor-Thurston kneading sequences which are
themselves ordered systematically in a 1-dimensional continuum.

A striking feature is the theorem from “On Iterated Maps of the Inter-
val” that any family of smooth 1-fold mappings of an interval that sweeps
across the interval must also sweep through all these infinitely many Milnor-
Thurston kneading sequence patterns. Moreover any pattern that occurs
in any family actually occurs in the quadratic family. Nowadays one refers
to this phenomenon as the Milnor-Thurston topological universality of the
quadratic family.

* We note Myrberg, Sharkovski, Metropolis-Stein-Stein, and Smale-Williams contributed to the
topological universality of Milnor-Thurston. Coullet-Tresser independently discovered the
celebrated quantitative universality of Feigenbaum. Teichmiiller began the work culminating
in Ahlfors-Bers Universal Teichmuller Theory.
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The first really interesting dynamical pattern in the natural ordering on
patterns occurs after an infinite cascade of period doublings. The limiting
pattern has a Cantor set on which the motion of the critical point is quasi-
periodic—in fact conjugate to adding ! in the 2-adic integers. Immediately
after this pattern the entropy or as the famous article explains, the expo-
nential growth rate of the number of turns in the n' iterate, is positive and
moves continuously as a varies to the maximum value log2. Milnor, in a
beautiful exposition before the AMS in 1982 explained this theory and his
interest in the ten year old question of monotonicity of the entropy as a
function of a for the x — x? 4 a family.

Holomorphic methods, especially conformal mapping, entered around
1982 to resolve the entropy question for the quadratic family. This devel-
opment is related, I suppose, to Milnor’s longtime interest in holomorphic
dynamics—see his survey “Dynamics in One Complex Variable.” Perhaps it
also helped delay publication until 1988 of the paper, “On Iterated Maps of
the Interval” [4], since I recall Milnor being puzzled that these and other
statements about the dynamics of mappings of the real interval should de-
pend so definitely on complex methods.

Nowadays, there are many examples of this holomorphic dependence
and in this note I would like to discuss one of the most recent connections
between real dynamics and the theory of conformal mappings.

The first interesting pattern mentioned above, the limit of period dou-
bling, plays a decisive role in this story because of a remarkable discovery
made by Mitchell Feigenbaum in 1975, about the time the Milnor-Thurston
article first appeared. Feigenbaum discovered the 1,2,4,8,... cascade of
period doubling and the limiting “2°°” Cantor set possessed self similar geo-
metrical structure which was common or universal for a variety of different
smooth families. In his 1976 paper Quantitative Universality in Non linear
Dynamics, Feigenbaum described a renormalization scenario in the space of
all smooth 1-fold mappings which would explain his numerical discoveries
and their universal validity.

The numerical convergences of Feigenbaum, for example,

d,,/d,,+1 — 4.6692. .. l,,+1/ln — .3995...

were so robust that Lanford was able to produce a rigorous computer as-
sisted proof of Feigenbaum’s renormalization scenario. Here d, denotes
the parametric distance between the n™ period doubling and the limiting
parameter and /, is the length of the central interval at level n in the natural
presentation of the 2-adic Cantor set of the limiting parameter.
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We now have a conceptual proof of Feigenbaum’s renormalization sce-
nario in a more general form which reveals quantitative universality for
uncountably many of the Milnor-Thurston patterns [11]. In the last part
of that proof we need to make an abstract or conceptual computation
of the length of an infinitesimal change in the complex structure on a
“solenoidal Riemann surface” i.e., a compact space locally homeomorphic
to a (two disk) x (Cantor set) enhanced with a complex structure.

We will describe the theory of complex structures underlying this abstract
computation—which is the denouement of the proof of Feigenbaum’s quan-
titative universality. We note that even the statement of the quantitative
universality of Feigenbaum depends on the Milnor-Thurston qualitative or
topological universality for its very formulation. The theory of complex struc-
tures used is an adaptation of the Ahlfors-Bers theory of Universal Teichmiiller
Space to solenoidal Riemann surfaces.

We will skip part of the story suggested by the following figure:

take renormalization limit

/—N complexify

”’J

[ ]

real folding mapping
of an interval

complex
quadratic-like mapping

take
holomorphic germ

near Julia set
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1. Topology of solenoids and laminations

A (k-dimensional) solenoid is a compact space X locally homeomorphic
to a (k-ball) product a totally disconnected space. A solenoid is naturally
foliated or laminated by the path components which are called leaves. More
generally a foliated space or lamination is a space covered by charts of the
form (ball) x (transversal space) so that overlap homeomorphisms preserve
the first factor. Thus for a solenoid the foliated or laminated structure is
intrinsic to the topology. If a solenoid has a non-locally closed dense leaf the
transversal space will be a Cantor set. This usually happens in the dynamical
examples studied here.

Example 1. Take the inverse limit space X; of {--- —d> S! —d> S! —d> St}
where d is a degree 2 covering map of the circle. This is the well known
2-adic solenoid. This 1-dimensional solenoid fibres over the circle with fibre
the 2-adic Cantor set. The “going around” map of the fibre is equivalent to
adding 1 in the 2-adic integers so every leaf is dense.

Example 2. The 1-dimensional solenoid X; above admits a natural self
mapping d which is the inverse limit of the degree 2 self mapping of the
circle. For the second example form X; x {y | y > 0} with the free, properly
discontinuous action of the integers generated by (x, y) — dx, 2y). The
orbit space L of this action is a compact 2-dimensional solenoid since we
have compact fundamental domains, {x,y : a < y < 2a}. This is the basic
solenoidal surface or lamination L required in the dynamical theory of
Feigenbaum’s discovery.

In this example every leaf is dense. Countably many leaves are annuli
and the rest are disks. In the next sections we will study complex struc-
tures on these spaces. In this example the simply connected leaves are
conformal disks and the annular leaves have finite modulus. These moduli
correspond to eigenvalues at periodic points of an associated dynamical
system (Appendix). These parameters insure that the Teichmiiller space of
homotopy classes of complex structures is infinite dimensional. It will be
modeled on a complex Banach space.

Example 3. Form (a pair of pants) product (2-adic Cantor set) and glue
the legs into the waist by adding the pant label as the first symbol in the
infinite binary expansion. This lamination is similar to Example 2 with all
dense leaves (but of infinite topology) and a countable set of special leaves
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(with 1 extra handle) corresponding to periodic points of an associated
dynamical system.

We can build in a transversally continuous hyperbolic metric as follows.
A pair of pants is determined by the waist length and the two cuff lengths.
Choose waist lengths and twist parameters in an arbitrary continuous fashion
along the Cantor set transversal to the waist. The length of the cuffs are
determined by the gluing. The twist parameters determine the gluing.

Example 4. Form the inverse limit of the directed set of pointed isomor-
phism classes of all finite sheeted coverings spaces of a compact manifold.
This solenoid is the same, up to homeomorphism, for any manifold chosen
as base from among the finite coverings used in the construction. Thus
in dimension 2 there are two non-trivial examples: one Eo with dense
Euclidean planes, and one Hy with dense non Euclidean planes.

Example 5. There are many examples of 1-dimensional solenoids: map-
ping tori for homeomorphisms of Cantor sets, geodesic laminations in sur-
faces, general inverse limits of expanding mappings on branched 1 mani-
folds [23]. It seems interesting to study their classification up to homeo-
morphism. For example, for a Markov homeomorphism of the Cantor set
determined by a matrix A of nonnegative integers, the integer det(/ — A)
is an invariant of the homeomorphism type of the associated solenoid [16]
which is a complete invariant when it is square free [17].

2. The Teichmiiller set of classes of complex structures and its “metric”

A complex structure on a lamination L is a maximal covering of L by
lamination charts (disk) x (transversal) so that overlap homeomorphisms
are complex analytic in the disk direction. Two complex structures are
Teichmiiller equivalent if they are related by a homeomorphism which is ho-
motopic to the identity through leaf preserving continuous mappings of L.
The set of classes is called the Teichmaiiller set T (L).

THEOREM. (a) Each complex structure on L determines a smooth struc-
ture on L (see definition below).
(b) If L is a solenoidal surface then

(i) L has smooth structures.
(ii) Any two smooth structures are conjugate by a homeomorphism
homotopic to the identity.
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COROLLARY. Any (oriented) solenoidal surface L has complex structures
and the Teichmiiller set T'(L) can be represented by the smooth conformal
structures on L relative to a chosen background smooth structure modulo
the equivalence relation generated by diffeomorphism homotopic to the
identity.

DEFINITION (Smooth category for laminations). The only subtlety is the idea
that the objects should be smooth in the disk direction and continuous in the
transverse direction for the smooth topology on the objects. Thus to define
a smooth structure the overlap homeomorphisms are C*® diffeomorphisms
on the horizontal disks and the transversal variation is continuous for the
C* topology on C* diffeomorphisms. Riemannian metrics, conformal
structures, and tensors are treated similarly [13].

PROOF OF THEOREM. Part (a) follows from the fact that C° convergence
on a disk of holomorphic homeomorphisms implies these C* diffeomor-
phisms also converge as C* diffeomorphisms on proper subdisks, say using
the Cauchy formulae for the derivatives.

Part (b) follows by considering a local relative approximation proof of
the corresponding result for surfaces and observing a choice made for one
example can be extended continuously for nearby examples. Using the
totally disconnected nature of the transversal now allows this result to go
over to solenoids.

Problem Assignment. Prove part (b) for general laminations using a more
elaborate families approximation result for surfaces.

PROOF OF COROLLARY. By part (b) there are smooth structures. Choose
one. Then choose a smooth conformal structure. By Ahlfors-Bers [6]
we can integrate these to get a complex structure. By (a) and (b) any
complex structure on the topological solenoid is Teichmller equivalent to
one constructed this way.

CONVENTION. We now fix smooth structures on each solenoid (or
lamination if possible) denote by 6(L) the smooth conformal structures
(corresponding precisely by Ahlfors-Bers to those complex structures with
the given underlying smooth structure) and consider 6(L)/~, the space of
equivalence classes of these smooth complex structures modulo homeomor-
phisms (which become diffeomorphisms because the underlying smooth
structure is the same) homotopic to the identity.
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We continue the discussion with this changed presentation of T(L). For
solenoids we have the same set. For laminations we have a set depending
on a chosen smooth structure. Once the problem assignment is carried out
for laminations the two sets will be the same. Otherwise the subsequent
discussion applies to Teichmiiller theory of a general lamination based on
the choice of an underlying smooth structure.

DEFINITION. The Poincaré distance on 6(L) the set of smooth conformal
structures, is the sup over points of L of the Poincaré distance between
the conformal structures on the tangent spaces. (Recall the set of positive
definite inner products up to scale on a 2-dimensional vector space V is a
homogeneous space of GL(V) with isotropy the similarity group of the inner
product structure, Thus it is naturally a model of non-Euclidean geometry
and carries a natural Poincaré metric.)

The “Teichmuller metric” on T'(L) is defined by the Poincaré distance in
(L) between the equivalence classes of smooth complex structures defined
above. We will see below (sections 3 and 6) this defines a metric on T (L) in
case L is hyperbolic—every leaf is conformally covered by the disk.

DEFINITION (TLC, the transversally locally constant theory). For a solenoid,
one can define an interesting subtheory TLC defined by objects which are
continuous and locally constant in the transverse direction. Thus we have
TLC complex structures defined by charts whose overlap homeomorphisms
preserve both factors, TLC smooth structures, TLC conformal structures,
TLC tensors, etc.

Let us fix a TLC smooth structure and define €(L)" and T' (L)’ using TLC
objects as above.

THEOREM. If L is a solenoid, 6(L)’ C 9(L) is dense. The Teichmiller
equivalence relation in ‘€(L)’ x €(L)’ is dense in the Teichmiiller relation in
%(L) x 6(L). The Poincaré distance in 6(L) restricted to (L)’ equals the
Poincaré distance in 6(L)’ (by definition) so the natural map T(L) — T (L)
is distance preserving and has dense image.

Remark. We know T (L)' — T(L) is an injection for the lamination in
Example 2 because the conformal moduli are a determining set of invariants
for elements of T(L)" (Appendix). But at present we don’t have a general
argument showing injectivity of T(L) — T (L).
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PROOF. (i) Using a partition of unity and the fact that continuous functions
on a totally disconnected space can be approximated by locally continuous
constant functions we see that in a TLC smooth structure conformal struc-
tures can be approximated by TLC conformal structures. Note also vector
fields can be approximated by TLC vector fields.

(ii) This approximation also works for diffeomorphisms because families
of the close C* diffeomorphisms can be averaged. Thus the TLC smooth
structure on L is unique up to isotopy because the smooth structure on L is
unique up to isotopy (section 2). This means the two ways, as discussed in
the convention above, of defining T (L)’ are equivalent.

Observation (i) means €(L)" C 6(L) is dense. Observation (ii) means
that the equivalence relation in 6(L)" x €(L)’ is dense in the equivalence
relation of €(L) x €(L).

CONVENTION TLC. The point of the smooth convention assumed
above for general laminations is that transversal pointwise convergence a.e.
is needed to develop several steps in the theory. Fixing the smooth structure
is a convenient way to make sense of this transversal continuity.

In the TLC context this subtlety disappears because objects are transver-
sally locally constant. Thus we can work also with non-smooth objects where
appropriate. For example, leafwise bounded measurable conformal struc-
tures which are TLC work fine for the Ahlfors-Bers integration of a confor-
mal structure to obtain 71L.C complex structures.

We will make use of this extra freedom in the dynamical application
of section 10. We note that [25] generalizes to transverse continuity of
measurable conformal structures in the sup norm topology, which makes
sense in the presence of TLC quasiconformal charts.

3. The mjective map from 7' (L) to T(laf) for hyperbolic laminations

If each leaf in a lamination L with complex structure is conformally
covered by the 2-disk we say L is hyperbolic. Then by Candel’s thesis [12]
the Poincaré metric on each leaf defines a smooth metric on L.

Problem.  Give a topological definition or characterization of the hyper-
bolic property of compact laminations.

A leaf preserving homotopy of the identity on a hyperbolic lamination L
is bounded in the Poincaré metric so it becomes the identity on the ideal
boundary of the disk covering of any leaf. This means we have a well-defined
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restriction mapping T(L) — T (I) from homotopy classes of conformal
structures on L to the universal Teichmiiller space of bounded homotopy
classes of bounded smooth conformal structures on the universal cover [ of
any leaf /.

THEOREM. 1If l is a dense leaf then the restriction map T(L) — T() is an
injection.

PROOF. Recall thatifa conformal map of the disk / moves points abounded
amountin the Poincaré metric it must be the identity. Ifan almost conformal
map of [ moves points a bounded amount it must be close to the identity.
The latter statement works if the map is defined on alarge enough Poincaré
disk. Namely, it must be close to the identity on a ball of half the radius, say,
by a limit contradiction argument.

If two conformal structures ¢; and ¢, on L when restricted to ! become
equivalent in T (/) this means they are related in / by a map 7 which moves
points a bounded distance.

If © were continuous on L it would transport ¢; to c; on every leaf be-
cause ¢ and ¢; are transversally continuous for almost everywhere pointwise
convergence.

Claim. w determines a continuous map of L.

Proof of the claim. For simplicity suppose [ is simply connected. Take a large
Poincaré disk in / and move it transversally by an almost conformal map /,
to a large disk in a very nearby passage of ! (first conformal structure).
Apply 7 to these disks. Since m only moves a bounded amount in the
Poincaré metric large subdisks of the image disks in the second structure
are related by an almost conformal map /> using a very small transversal
motion. The composition /|~ '7 =1L is almost conformal (structure one)
on a large Poincaré disk and moves points a bounded amount so it must
be close to the identity on a large subball. This proves the claim when [ is
simply connected.

When [ is not simply connected, the same argument can be applied to
deduce that 7 commutes with the covering group of I — I. This proves
the claim and shows 7 on L is homotopic to the identity using geodesics
between x and 7 (x), constructed first in I then everywhere by density.

COROLLARY OF PROOF. If l, is a collection of leaves whose union is
dense, then T(L) — [], T () is an injection.

551



DENNIS SULLIVAN

PROOF. Take the m, and use the same argument to show | Jm, extends
continuously to L and is homotopic to the identity.

4. A continuity property of the Ahlfors-Bers construction on the upper half
plane

There is a map constructed by Ahlfors-Bers g: € — B from bounded
smooth conformal structures on the upper half plane to holomorphic
quadratic differentials in the lower half plane whose pointwise norm is
bounded by 6 in the Poincaré metric [6]. If ¢ is the conformal structure on
the sphere which is ¢ on the upper half plane and standard on the lower
half plane, then B(c) is the Schwarzian of w(c) on the lower half plane
where w(c) is any quasi conformal homeomorphism which carries ¢ to the
standard conformal structure on the sphere. The bound 6 above is Nehari’s
Inequality for univalent mappings.

PROPOSITION. The value of f(c) at a point z in the lower half plane
depends continuously on ¢ for bounded a.e. pointwise a.e. convergence in
the upper half plane.

PROOF. One knows w(c) for the topology of uniform convergence on the
sphere depends continuously on ¢ in the above sense. On the lower half
plane w(c) is holomorphic so uniform convergence on the sphere implies
uniform convergence of the derivatives on compact subsets of the lower half
plane.

Remark.  Ahlfors-Bers and Ahlfors-Weill showed that 8 is holomorphic
and covers the ball of radius 2 [6], [7], [8]. In the next section we adapt
this to hyperbolic laminations.

5. The Ahlfors-Bers construction for hyperbolic laminations

Let t be the unit tangent bundle of L. Then for each ¢ in T we can
construct a canonical covering isometry of the upper half plane U onto the

leaf containing ¢, U —7& L. Namely, send a fixed unit vector in U to ¢ and
extend isometrically to preserve orientations.

The map t x U — L defined by the | J 7, is the quotient map of an action
of PGL(2, R), the isometry group of U, on T x U. Namely, if we identify t
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with the leafwise isometric maps of U into L, Isom(U, L), then the natural
action on Isom(U, L) x U'is (I,u) = (I - g~ !, gu) and T x U — L becomes
(1, u) = I(u) which is constant along the orbits of the action. Thus objects
on L are in one-to-one correspondence with invariant objects on 7 x U.

For example, given a second complex structure ¢ on L we pull back c to U
using 7, to obtain ¢;, a complex structure on the upper half plane depending
ont and invariant by the action. Then let ¢; denote the quadratic differential
B(c;) transported by symmetry to the upper half plane. The collection {¢;}
is invariant for the action. In the transversal direction t — ¢, is continuous
by the Proposition of section 4.

In the reverse direction there is the Ahlfors-Weill section ¢ — iy, where
e = p(Poincareé metric) 2 of the Ahlfors-Bers construction defined on the
ball of radius 2. In both directions we use C° convergence of holomorphic
objects implies convergence in the C* topology.

THEOREM. For each complex structure ¢ on L, the Ahlfors-Bers construc-
tion defines a map g8: 6(L) — B(c) from smooth conformal structures on
the lamination to the transversally continuous holomorphic quadratic dif-
ferentials on L. The map B is holomorphic, the image contains the ball
of radius 2, and the fibres of g are precisely the Teichmiiller equivalence
classes.

PROOF. The first parts are proved above. We prove the last part. If 8 maps
c1 and ¢; to the same holomorphic quadratic differential then for every ¢ the
¢;’s are also the same. Thus for every leaf / the restrictions to T(l~) are the
same and conversely. Now apply the theorem of section 3 and its corollary.

Remark. The Ahlfors-Bers construction works for a TLC complex struc-
ture and each bounded measurable TLC conformal structure. The image
holomorphic quadratic differential is not TLC but only transversally contin-
uous.

6. The metric of T (L) is locally Banach*
From section 5 we have for each conformal structure co on L a composi-
tion B(cop)

6(L) —> 6(L)/~ — B(co)

* This section is based on joint work with Frederick Gardiner {25] [26].
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induced by the Ahlfors-Bers construction on the upper half plane where ~
is the Teichmiiller equivalence (c; ~ c; if there is a homeomorphism of L
homotopic to the identity, carrying c; to c2.) We denote as usual é(L)/~
by T'(L), the Teichmuller space of L.

THEOREM. The Poincaré metric on smooth conformal structures 6(L)
induces a metric on homotopy classes T (L), called the Teichmiller metric,
which enjoys the following property: for each point (co) of T (L) there is a
quasi isometry with universal constants between a neighborhood of (cp) in
T (L) with the Teichmiiller metric and the unitball in the Banach space B(co)
so that (cp) is mapped to the origin.

PROOF. By Schwarz’s lemma the distance between fibres is at least the
distance between their images in the Poincaré metric P(6) on the ball of
radius 6 which contains image B(co).

Using the Ahlfors-Weill section, section 5, we see the Poincaré metric P(2)
on the ball of radius 2, by Schwarz’s lemma again, is greater than the (L) dis-
tance between the fibres cut by the section.

Now P(6) and P(2) are equivalent to the Banach metric on the ball of
radius 1 with universal constants.

COROLLARY. As c ranges over complex structures on L all the Banach
spaces B(c) are locally bi-Lipschitz equivalent and T'(L) is a Lipschitz mani-
fold modeled on this one isomorphism class.

PROOF. Since €(L) is path connected by geodesics T (L) is connected by
rectifiable curves. We cover this curve by a finite union of “unit ball”
neighborhoods as in the theorem. The overlap homeomorphisms between
intersecting balls are locally bi-Lipschitz.

7. The tangent, cotangent, and manifold structure of T (L)*

First some definitions. A tangent vector to €(L) at a point c is a tensor v
of the form v(z, A)dZ/dz and is called a Beltrami vector. Equivalence classes
of those will be the tangent vectorsto T (L). A cotangent vector to T'(L) will be

an object in a chart of the form ¢(z, A) dz? d) where ¢(z, A) is holomorphic

* The theorem, the remark and the second corollary of this section are needed for the dynam-
ical application of section 10.
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in z and |¢| |dz|>dA is a finite measure on L. Here dA is a measure on the
chart transversal. Such an object is called a cotangent holomorphic quadratic dif-
ferential. The following theorem characterizes “Teichmiiller trivial” Beltrami
vectors.

THEOREM. l.et v be a_smooth Beltrami vector, a tensor of the form
v(z, A)dZ/dz. Then v = 8V where V is a smooth vector field on L if and
only if for all cotangent holomorphic quadratic differentials ¢, f; vo = 0.

PROOF. Assume the test integrals vanish. If we lift the problem to the
universal cover of a leaf, thought of as a disk D we see that V would have to
vanish on the boundary and so by the Pompeiu formula

() V(z) = —l-f vE)dEds
p z-§

2mi

Now on the disk it is known V defined by (%) is the unique solution of 3V = v
and V = 0 on 38D if and only if [, v¢ vanishes for every holomorphic
integrable quadratic differential on the disk [19]. We can push the test
quadratic differentials on the disk forward to get test quadratic differentials
on L [18]. Then by our hypothesis we know the integrals are zero, and we
can form V on the disk cover of each leaf using ().

The approximate value of V at a point z of L only depends on v on a
large Poincaré disk about z. Since the Poincaré metric on L is transversally
continuous and v is transversally continuous in the C* topology we see that
the unique V by formula (x) is also.

The other direction is a Stokes theorem calculation.

Remark. If v is a bounded measurable TLC Beltrami vector whose test
integrals vanish the proof yields a continuous vector field V so that 9V = v,
and conversely. This V is not TLC, which is why we develop the more general
theory.

COROLLARY. Thekernel of the tangent map of the Ahlfors-Bers construc-
tion B: €(L) — B(c) at the complex structure ¢ consists precisely of those

Beltrami vectors v which annihilate all cotangent holomorphic quadratic
differentials.

PROOF. The tangent map of 8 applied to v is the Schwarzian (i.e., third
derivative) of a holomorphic vector field on the lower half plane whose
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restriction to the boundary agrees with the restriction of V to the boundary
where 9V = v. But the latter restriction is zero because V is bounded in the
Poincaré metric on leaves. This argument also works in reverse.

COROLLARY. The Banach space B(c) of transversally continuous holo-
morphic quadratic differentials at ¢ is isomorphic to smooth Beltrami vec-
tors v modulo Teichmiiller trivial ones, those of the form 3V, V a smooth
vector field on L.

Remark.  We refer to elements in B(c) as tangent holomorphic quadratic
differentials.

COROLLARY. For each complex structure on L the two infinitesimal
norms inf over V of ess. sup|v + 3V| where V ranges over smooth vec-
tor fields and sup over ¢ of f L V¢, where ¢ ranges over mass 1 cotangent
holomorphic quadratic differentials, are equal.

PROOF. This is an abstract duality result. Under the natural dual pairing,
f ¢v, between smooth forms, the total mass norms and ess. sup norms are
in duality. The image of 3 is the annihilator of the holomorphic subspace
by the previous theorem. It follows the induced norm in the quotient by
the image of 3 is the restricted norm on the holomorphic subspace.

If we work with C” conformal structures 4" (L) for 0 < r < o0 and not
an integer, then by Ahlfors-Bers integration we have precisely the complex
structures with a given underlying C'*” structure. This uses the fact that the
infinitesimal step in setting up the Ahlfors-Bers integration uses a Hilbert
type transform which preserves C” when and only when r is not an integer.
The Teichmiiller set and its metric T'(L) defined this way is the same for all
such r or 00. Now €"(L) is a complex Banach manifold and g": €’ (L) —
B(c) is again holomorphic, covers the ball of radius 2 and has the Ahlfors-
Weill section. Thus locally g” is a holomorphic submersion and the fibres,
the Teichmiiller equivalence classes, by Banach differential topology, are
the holomorphic leaves of a holomorphic foliation.

COROLLARY. The quotient map €"(L) — 9" (L)/~ defines a complex
Banach manifold structure in T(L). The tangent space is identified with
the tangent holomorphic quadratic differentials or the Beltrami vectors
modulo Teichmiiller trivial ones.

556



LINKING UNIVERSALITIES

PROOF. For the first part we use the foliation charts to define charts
in T(L). The point is the leaves do not reenter small enough foliation
charts because of the metric information of section 6. The rest of the
corollary puts together statements achieved above.

8. T (L) has many almost geodesic Poincaré disks*

Here are some definitions beyond section 7. A tangent vector or Beltrami
vector at a point ¢ in €(L) generates a complex geodesic disk D(v) in 6(L)
called a Beltrami disk. D(v) consists of the conformal structures related to ¢
by the Beltrami coefficients A - v where sup norm(A - v) < 1.

A Beltrami vector v at ¢ is (1 — &)-coherent with a cotangent holomorphic
quadratic differential ¢ of total mass 1 at ¢ if and only if outside a set of ||
mass £ the pointwise norm of v varies in ratio by at most 1 4-¢ and the angle
between the major axis of v and the horizontal trajectory of ¢ (defined by
¢ > 0) is at most ¢.

It turns out that a Beltrami disk D(v) in €(L) projected into T (L) is almost
geodesic if and only if v is very coherent with some cotangent holomorphic quadratic
differential ¢. More precisely,

THEOREM (Almost Geodesic Characterization). Let R,¢,8 > 0. Then there
are universal positive functions &’ = ¢/(§, R) and §’' = §'(¢, R) so that for R
fixede’ > 0asd > 0and 8 - 0ase — Oand

(i) If for some ¢’ in the Beltrami disk D(v) at ¢, Teichmiiller distance
(¢, ¢’) = (1 — 8)r where r is the Poincaré distance between ¢ and ¢’
in D(v),0 <r < R,and é§ < §(s, R) then v is (1 — g)-coherent with
some cotangent holomorphic quadratic differential ¢.

(i1) Iffor some ¢, a cotangent quadratic differential, v is (1 — &)-coherent
with ¢ and ¢ < €'(§, R) then for all ¢’ in the R-disk about ¢ in the
Poincaré metric on the Beltrami disk D(v), Teichmiller distance
(c, ) = (1 — &) Poincaré distance (c, ¢’).

PROOF. First we sketch the proof of (i).

(a) If v is not (1 — ¢)coherent then sup( f Lv<p) over ¢ of mass 1 is strictly
less than (1 —&;)(sup norm v) for a universal ¢; dependingon R and ¢. Thisis
areinterpretation of the elementary statement that if an average of complex

* This section is the main point for the dynamical application in section 10.
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numbers has modulus close to the sup then most of them are close to this
average.

(b) By the second corollary of section 7 we can find v; so that p = v — v,
is of the form 3V for a vector field on L, where sup norm v, is less than
sup norm v by a definite amount &;.

(c) Now we apply the Bers mapping to the Beltrami disk D(u) in 6(L)
generated by p to get a holomorphic map 7 into the 6-ball of B(c) sending
the center of D(u) to the origin of B(c). The derivative at the origin
is the Schwarzian of a holomorphic vector field on the lower half plane
which on the boundary agrees with V pulled back to the upper half plane
and restricted to the boundary. Since this restriction is zero, because V
is bounded in the Poincaré metric, w has derivative zero at zero. Thus
|l (A)| = O(JA|*) and Teichmiiller distance (c, ¢ + Ax) = O(]A|%) using the
theorem of section 6 with universal constants on the ball of radius R which
is fixed. (See Chapter 6, [19].)

(d) If ¢’ of the hypothesis of (i) is written ¢ + Av, then move on the
Teichmiiller fibre of B: €(L) — B(c) containing c to a structure co which
is O(lt)»ulz) from ¢ 4 tAp using paragraph (c) above. Up to second order
terms in ¢ the ratio of the Poincaré distance between (co(t) and ¢’) and
(c and ¢’) is at most 1 — O(¢) with a universal constant. This is a computa-
tion in the Poincaré disk of conformal structures at each point where the
sup norm is almost achieved. But cy(f) and ¢ are Teichmiiller equivalent so
we can choose ¢ to contradict (i) if § is small enough relative to . The
radius R affects the nonlinear terms as well so R influences the universal
function §(¢g).

Part (i) was first proved for Riemann surfaces ¢ = § = 0 by Hamilton [14].
Part (ii) was proved for Riemann surfaces ¢ = § = 0 by Reich-Strebel [15].

Now we sketch the proof of part (ii). A cotangent holomorphic quadratic
differential defines a foliation of horizontal trajectories with discrete singu-
larities and a finite measure on L. When we condition the measure on
trajectories we get well-defined measures up to local constants, i.e., affine
structures on each trajectory. An abstract Poincaré recurrence argument
shows almost all trajectories are R or R/Z in this affine structure. (Finite
intervals have midpoints. The other kind of affine circles occur discretely
on leaves. Right half lines allow a construction of a measure preserving map
moving to the left. See [18].)

We also get from the cotangent holomorphic quadratic differential a
Teichmiuller metric (up to scale) on the universal covering of each leaf
which has non-positive curvature, and the trajectories are geodesics in this
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structure. Now a homotopy can only make long geodesic segments longer,
up to an error related to how the endpoints move. This idea combined with
recurrence and the Grétzsch-Teichmiiller argument yields the result. See
[11] and [18] for more details. This argument for Riemann surfaces with
& = § = 0 was begun by Teichmiiller and vigorously developed by Reich and
Strebel [5], [15].

Remark. (1) Steps (a), (b), (c) and (d) work for bounded measurable v
and D(v) in the TLC context. Thus (i) is true also. (2) Part (ii) is true for
all bounded |¢| measurable v on the general lamination.

9. The Teichmiiller metric is the mtegral of the Teichmiiller norm on tangent
vectors®*

Gromov calls a metric space a length space if the distance between points
is the infimum of lengths of rectifiable paths between them. €(L) with its
Poincaré metric is a length space by definition. Now T'(L) is a quotient
of ¢(L) with the induced metric. Thus by definition T'(L) is also a length
space. What are these path lengths in T'(L)?

THEOREM. The Teichmiiller length of a rectifiable path in T'(L) is the
integral of the infinitesimal norm (section 7) of its a.e. defined tangent
vector field for any Lipschitz parameterization.

PROOF. As a corollary to the proof of the theorem in section 8 we get
the Teichmiiller length of the path ¢ + v is |v] -t + O(t?) where |v] is the
infinitesimal norm of section 7.

Now given a Lipschitz parameterized rectifiable path y in T(L) we can
locally lift it to a 6(L). It will have a tangent field v(¢) a.e. Now v(r)
determines a tangent vector field to y in T (L) which satisfies Teichmuller
norm = |v| by definition (Corollary, section 7). So by elementary calculus
we have computed the length as promised [28].

10. The dynamical applications of 7'(L)

We apply the above theory to the 2 dimensional solenoid L of Example 2,
section 1. The germ quasiconformal conjugacy class plus a TLC complex

* This section is not needed for the dynamical application in section 10.

559



DENNIS SULLIVAN

structure on L up to Teichmiiller equivalence is precisely the holomorphic
conjugacy class of a germ of quadratic-like mapping on a neighborhood
of the Julia set (assumed to be connected, non-separating, and to support
no invariant measurable line field.) This statement is a reinterpretation of
[20] using the Appendix, that such an object is determined by the quasi-
conformal information plus the real analytic conjugacy class of a degree 2
expanding mapping of the circle. One knows the latter is determined by
the eigenvalues of the periodic points which are moduli of the annuli of L
(Appendix). Thus the point in the TLC theory is determined by its image
in T(L). Thus T (L) injects in T(L) for this L.

Renormalization is an operator defined on T (L)’ for each renormalizable
pair of quasiconformal mapping germs [11]. For the real quadratic exam-
ples we know from the real bounds, the sector theorem, and the factoring
theorem of [11] that iterated bounded type renormalization creates a def-
inite annulus for some representative in T'(L)’. By the pull back argument
we deduce as in [11] the following:

THEOREM. Consider iterated bounded type renormalization of symmetric
(about the real axis) germ conjugacy classes of quadratic like holomorphic
mappings. When viewed as an iteration on the real part of T(L)’ this iter-
ation preserves bounded measurable transversally locally constant Beltrami
lines and brings any two points to within a definite distance, say d, of each
other. Moreover, the number of renormalizations depends on the bound
on the return time of each renormalization and the initial annuli of the
representatives.

COROLLARY. Each real tangent vector to T(L)" is contracted a definite
amount by iterated bounded type renormalization. Each pair of points in
the real part of T(L)’ converges together in the Teichmiiller metric under
bounded type renormalization.

PROOF. (1) We consider a TLC Beltrami vector symmetric about the real
axis whose sup norm is not much bigger than its infinitesimal Teichmuller
norm. A long piece of Beltrami path renormalizes to distance < d by the
theorem, so the renormalized Beltrami vector must have bigger sup norm
than its infinitesimal norm by part (ii) of the Theorem of section 8. This
proves the first part.

(2) Given two points in the real part of T (L)’ choose an efficient TLC
Beltrami path between them. The Beltrami vector is efficient by part (i) of
the Theorem of section 8. After renormalization the points come definitely

560



LINKING UNIVERSALITIES

closer because otherwise using (i) again the Beltrami vector would not have
been contracted a definite amount which was just proven above.

Remark.  This convergence in the Teichmiiller metric implies directly
the universal geometric structure of the critical orbit Cantor sets [11].

Appendix. Dynamical solenoids and laminations

Letd: S' — S! be the standard degree 2 self-mapping of the circle and
letd: § — § be the inverse limit self mapping of the inverse limit solenoid.
Let L denote the lamination fibring over the circle with fibre § and going
around mapping d. This L is Example 2 of section 1.

A collection {¢} of local homeomorphisms of the real line is uniformly
asymptotically affine (uaa) if for &¢ > 0 there is § > 0 so that, whenever
defined,

px) —p(x —8)
p(x +8) — p(x)

A (uaa) structure on the circle is defined by a maximal covering whose
overlap homeomorphisms belong to the pseudogroup generated by home-
omorphisms individually (naa). Compare [21].

A (uaa) structure for d is a (uaa) structure on S! so that the collection
of local branchesof d™" n =1, 2, ... is (uaa) when measured in terms of a
finite coordinate cover from this structure. Compare [25].

A maximal covering of a solenoid by charts so that the overlap homeo-
morphisms are affine in the leaf direction is called a transversally continuous
affine structure on the solenoid.

THEOREM. There are canonical one-to-one correspondences between

(a) complex structures on L (up to Teichmiller equivalence)

(b) transversally continuous affine structures on the solenoid $ so that d
is affine from leaf to leaf (up to equality)

(c) the set of (uaa) structures for d (up to equality).

PROOF. (b) — (a). Add (by the natural construction) a half space to each
affine line of §. The d extends to a complex affine map D between these
half spaces. Drop off the boundary and form the quotient lamination. The
Ahlfors-Beurling extension [22] defines a (smooth) equivalence with L.
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(a) — (b). Start with a complex structure, put on the transversally con-
tinuous hyperbolic structure [12], and form the cyclic cover of L. Observe
each leaf has a preferred point at infinity so the leaves are naturally upper
half spaces and the deck transformation complex affine from leaf to leaf.

Pass to the ideal boundary, which is § with the deck transformation
becoming d, to obtain the transversally continuous affine structures on
leaves affinely permuted by d.

(b) — (c). Consider the charts on S! defined by the affine structures on
leaves of § and the natural projection § — S'. Since d is affine from leaf
to leaf and d~! contracts the leaves uniformly we obtain a (uaa) structure
for d. Namely, apply d~! enough times so that the continuity of the affine
structure takes over [27].

(c) = (b). The definition of a (uaa) structure for d has been devised
for this step. If we apply an iterated branch of d~! to a segment on S! it
becomes small and picks up an approximate affine structure from a finite
covering by charts. Further iteration introduces small affine distortion by
definition.

COROLLARY. There is a canonical bijection between the real analytic
expanding mappings of ! up toreal analytic conjugacy and the dense subset
T (L) C T(L) defined by transversally locally constant complex structures,

PROOF. (i) The usual distortion lemma for C'** expanding maps e shows
the smooth structure (after transport by the conjugacy [24] between e and
the standard degree 2 mapping d) determines a (uaa) structure for d.

(ii) Also for two such C” systems, r not an integer, a conjugacy which
is (uaa) or which is Lipschitz is automatically C". This follows from the
well known blow down and blow up argument applied to a point where
the conjugacy is asymptotically affine (aa). If eigenvalues at periodic points
are equal, the Markov intervals have comparable sizes and the conjugacy is
Lipschitz.

(iii) Consider the complex analytic extension of a real analytic mapping
to a neighborhood of the circle. Drop off the circle and form the inverse
limit. One obtains an open neighborhood of one end of the cyclic cover
of L.

Putting (i), (ii) and (iii) together proves the result.

COROLLARY. Inside T (L) we see the real analytic expanding systemson S'
as the transversally locally constant theory and the C'** expanding systems
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on S! as the transversally Holder continuous theory. For these dense subsets
of T(L) the moduli of the annuli, being in general the eigenvalues at the
periodic points, form a complete set of invariants.

PROOF. The transverse Holder structure comes from the depth structure
of the transversal Cantor set. One checks the steps of the theorem are
compatible with this depth qua Holder structure [27].

Problem.  Are the eigenvalues qua moduli of annuli a complete set of

invariants for all the elements of T(L)?
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