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 SYMMETRIC STRUCTURES ON A CLOSED CURVE

 By Frederick P. Gardiner* and Dennis P. Sullivan*

 We show the quasisymmetric topology of Ahlfors ([1], 1965) (the
 topology coming from uniform ratio distortion) on local homeomor?
 phisms in one real dimension is defined when, and only when, the
 underlying one-manifold is provided with a "symmetric structure," one
 defined by using as structure pseudogroup the quasisymmetric closure
 of the C-diffeomorphisms of the real line. We show that the set of all
 symmetric structures on a closed curve compatible with a background
 quasisymmetric structure is naturally a complete, complex Banach man?
 ifold, modelled on the Banach space A*/X*, where A* and X* are the
 spaces of continuous functions F on the circle introduced by Zygmund
 ([17], 1945);

 A* : F(x + t) 4- F(x - t) - 2F(x) = 0(t)

 X* : F(x + 0 + F(x - t) - 2F(x) = o(t)

 and the complex structure is given by the Hilbert transform.
 The discussion covers analytical and geometrical properties of sym?

 metric homeomorphisms and symmetric quasicircles and suggests how
 the Bers' embedding technique (1965) may be used in a variety of con-
 texts.

 0. Description of results. The notion of a quasisymmetric ho?
 meomorphism of an interval into U is useful in the theory of Riemann
 surfaces and, more generally, in the theory of one real dimensional
 smooth dynamical systems. The set of quasisymmetric homeomorphisms
 is closed under composition and inVerse and can be recognized locally

 Manuscript received 8 March 1990; revised 28 January 1991.
 *Partially supported by the National Science Foundation.
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 684 FREDERICK P. GARDINER AND DENNIS P. SULLIVAN

 by the condition that symmetric triples of points are not made too
 asymmetric.

 The inclusion mapping of an interval / of U into (R has a quasisym?
 metric neighborhood system. This neighborhood system is defined by
 declaring that a mapping / from / ijito U is near to the inclusion if it is
 near in the uniform topology and if the M-condition,

 f(x) - f(x - t) M>

 is satisfied for every symmetric triple x ? t, x, andx 4- (in the interval
 and for M equal to 1 + e for a small value of e. In words, the neigh?
 borhood is defined by small movement of points and small distortion
 of symmetric triples.

 This neighborhood system is not natural (or functorial) for the full
 pseudogroup of quasisymmetric homeomorphisms. In general, suppose
 / is a quasisymmetric mapping from an interval / to an interval / and
 that g is in a small neighborhood of the inclusion mapping for /. Then
 f ? g ? f'1 wiH n?t necessarily be in a small neighborhood of inclusion
 mapping of /. It is true that the M-condition with a value of M near to
 1 will be preserved for symmetric triples x ? t, x, x 4- t when t is fairly
 large because the mapping g is assumed to be uniformly near to the
 identity. However, for small values of t, the mapping / can distort
 symmetric triples by a definite amount and a small movement of g away
 from the identity can mean that, for small values of t, the mapping / ?
 g ? f~l no longer satisfies an M-condition with M near to 1.

 There is, however, a large proper subpseudogroup of quasisym?
 metric mappings which preserves the neighborhood system. We call this
 proper subpseudogroup the pseudogroup of symmetric homeomor?
 phisms, because it turns out to be described by a symmetry property at
 fine scales.

 Since the adjoint action in QS is not continuous at the identity, the
 group QS is not a topological group. It is, however, a "partial topological
 group," in the sense of Section 1. In this section, we show that for any
 partial topological group the subgroup of elements / for which the ad?
 joint action by / is continuous is always a closed topological subgroup.
 This subgroup is called the characteristic topological subgroup. The
 characteristic topological subgroup 5 of the group QS of quasisymmetric
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 homeomorphisms of a circle turns out to be the group of symmetric
 homeomorphisms.

 Most of the remaining sections of the paper deal with properties
 of 5 which are analogous to known properties of QS. In Section 2 we
 show that the symmetric subgroup 5 consists precisely of those mappings
 which satisfy a modified M-condition. In local coordinates, any element
 of 5 must satisfy an M-condition with M = 1 4- e(t) where e(t) converges
 to zero with t uniformly in x. This characterization shows that, just as
 in the pseudogroup setting, the groups of quasisymmetric and symmetric
 mappings are recognized by how they distort symmetric triples of points.
 The difference is illustrated in Figure 1.

 h

 QS quasisymmetric

 S symmetric

 FIGURE 1

 At large scales both symmetric and quasisymmetric mappings can distort
 symmetrically placed triples of points by a bounded amount. However,
 at arbitrarily small scales, quasisymmetric mappings can distort by the
 same bounded amount, whereas symmetric mappings must distort by
 lesser and lesser amounts as the scale gets smaller.

 In Section 3, we look at the possible quasiconformal extensions of
 symmetric and quasisymmetric mappings. The Beurling-Ahlfors exten?
 sion theorem tells us that every quasisymmetric homeomorphism of U
 can be extended to a quasiconformal homeomorphism of the upper half
 plane. Analogously, we find that symmetric homeomorphisms are the
 boundary values of quasiconformal homeomorphisms of the upper half
 plane whose conformal distortion tends to zero at the boundary. Sym?
 metric homeomorphisms turn out.to be precisely those homeomor?
 phisms which have boundary dilatation equal to one, in the sense of
 Strebel, [16]. The symmetric homeomorphisms of a circle comprise the
 closure, in the quasisymmetric topology, of the real analytic homeo?
 morphisms and this closure contains the set of C-diffeomorphisms.

 Section 4 deals with the analogue for symmetric mappings of the
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 686 FREDERICK P. GARDINER AND DENNIS P. SULLIVAN

 Bers' embedding for quasisymmetric mappings. To describe the Bers
 embedding, consider a quasiconformal mapping / of the complex sphere
 C with Beltrami coefficient equal to |x in the upper half plane and
 Beltrami coefficient identically equal to zero in the lower half plane.
 Let ft be the image under / of the Jower half plane and let ft* be the
 image under / of the upper half plane. The common boundary, C,
 namely, the image under / of (R, is by definition a quasicircle. By the
 Riemann mapping theorem, there is a conformal mapping g of the upper
 half plane onto the domain ft*. Since g~x ? / is a quasiconformal self-
 mapping of the upper half plane, its boundary values on U are quasi?
 symmetric. We let h be the restriction of g~1 ? / to U. From the Beurling-
 Ahlfors extension theorem and the measurable Riemann mapping
 theorem, any quasisymmetric mapping can be factored in this way and,
 up to an ambiguity of Mobius equivalence, this factorization is unique.
 It follows that every h in QS mod PSL(2, U) uniquely determines / and
 the Bers' embedding is defined by

 if(h) = Schwarzian derivative of /,

 where the Schwarzian derivative is defined by ((f'/f')' - 1/2
 (f"lf')2)dz2. It turns out that if is one-to-one and onto a bounded open
 set in a Banach space B. The space B consists of holomorphic quadratic
 differentials in the lower half plane which are pointwise uniformly
 bounded in the Poincare metric, [Bers, 4]. Figure 2 gives a schematic
 outline of this embedding. We think of the upper and lower half planes
 as two complementary disks on the sphere whose common boundary is
 a great circle passing through the north and south poles. The mappings

 *-v

 Schwarzian

 derivative

 classical

 measurable Riemann map
 Riemann mapping

 theorem

 The Bers Embedding

 FIGURE 2
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 / and g are conformal mappings of standard disks onto the domains fl
 and ft* and the common boundary, C, is a pasting locus where the rule
 for gluing is governed by the quasisymmetric mapping h.
 We carry out an analogous procedure for S/PSL(2, U). We find that
 there is also a Bers embedding in this context. Instead of using the
 Banach space B, it uses the closed Banach subspace B0 of B consisting
 of those elements of B which vanish at the boundary of the disk.

 In Section 5 we consider the coset decomposition of QS by translates
 of 5. Viewed in QS mod PSL(2, U), these cosets are closed complex
 analytic submanifolds. We show that there is a natural quotient metric
 on QS mod 5 coming from the Teichmuller metric on QS mod PSL(2,
 U). The metric distance between two cosets 5/and Sg in QS mod 5 is
 given by log H(f ? g1) where H is the boundary dilatation of a mapping
 in the sense of Strebel, [16]. More precisely, for a quasiconformal self-
 mapping / of the upper half plane, we consider the equivalence class
 of all other quasiconformal selfmappings fx which agree with / on the
 boundary. If we can find such a mapping fx whose dilatation inside a
 neighborhood of U is less than K, then H(f) < K. By definition, H(f)
 is the largest number such that this inequality is true for every fx in the
 class of / and for sufficiently small neighborhoods of U.

 In [1], Ahlfors characterizes quasicircles geometrically. A quasicir-
 cle C in C is characterized by a "reverse triangle inequality":

 spherical dist(fl, b) 4- spherical dist (b, c) < K spherical dist(fl, c)

 for any triple of points a, b and c on C, where b lies on the part of C
 which joins a to c and which has smaller spherical diameter. There is a
 parallel condition, shown by Becker and Pommerenke in [3], for a
 quasicircle to correspond to the image^f the real axis under a mapping
 / which is asymptotically conformal on U. This turns out to be equivalent
 to saying that, under the factorization of h into g'1 ? f, the mapping h
 is symmetric. By definition, we call a quasicircle of this type a symmetric
 quasicircle. The result of Becker and Pommerenke states that C is a
 symmetric quasicircle if, and only if, the reverse triangle inequality is
 satisfied with K = 1 4- e for triples of points in a sufficiently small
 neighborhood. At a small enough scale, the condition forces the quasi?
 circle to move very near to a straight line. However, the condition still
 permits the quasicircle to be nonrectifiable and to have dense spirals.
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 688 FREDERICK P. GARDINER AND DENNIS P. SULLIVAN

 In Section 6, we prove Becker and Pommerenke's result together
 with two other geometric properties which characterize the symmetry
 of a quasicircle. The first is the disk template property. Roughly speak-
 ing, a disk template at points p and q of a quasicircle is a disk centered
 at p together with a narrow canal bounded by two parallel lines equi-
 distant from a diameter. The diameter passes through/? and q. The part
 of the disk which is not in the canal is called land. In order to be a disk

 template, the quasicircle must never enter the land, the thickness of the
 canal must be commensurate with the distance from p to q, and the
 radius of the disk divided by the thickness of the canal must be large.
 In the proof we use the reverse triangle inequality to construct disk
 templates with slightly different properties, depending on three nearby
 points on the quasicircle. The crucial point is that, by looking at a greatly
 magnified scale, we are able to construct disk templates for which the
 radius of the disk is arbitrarily large compared to the thickness of the
 canal. In effect, the disk template property says that, under magnifi-
 cation, straight lines are the only possible limit points of the quasicircle
 in the Hausdorff topology on closed sets.

 Our second geometric property, which is an equivalent condition
 for a quasicircle to be symmetric, is the extremal length property. It is
 a condition on the extremal lengths of conjugate curve families on the
 sphere punctured at four points along the quasicircle. Three of the four
 points are assumed to be variable and arbitrarily close together and the
 fourth far away.

 In Section 7, we focus on the factor space, QS mod 5. According
 to the discussion in the appendix, this factor space can be viewed as the
 space of symmetric structures on a circle subordinate to a given quasi?
 symmetric structure. We show that QS mod 5 is a Hausdorff complex
 manifold modelled on the complex Banach space B/B0. QS mod PSL(2,
 U) is sometimes called universal Teichmuller space because all of the
 unreduced Teichmuller spaces of hyperbolic Riemann surfaces embed
 here. QS mod S is also universal in the sense that it contains all of the
 Teichmuller spaces of Fuchsian groups of the first kind.

 In Section 8, we identify the tangent spaces at the identity to the
 manifolds 5, QS, and QSIS. We find that the tangent space at the identity
 of QS consists of all continuous vector fields F(x) on R for which

 (QS) \F(x + t) + F(x - t) - 2F(x)\ < O(0
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 while the tangent space at the identity of S consists of those vector fields
 for which

 (S) \F(x 4- t) 4- F(x - t) - 2F(x)\ < o(t)

 where 0(t)/t is bounded uniformly for x and t and o(t)/t approaches 0
 with t uniformly in x. This description for the vector fields for QS has
 already been given by Reimann in [13]. Both descriptions follow by
 using the known infinitesimal structure for the manifold of quasicon?
 formal homeomorphisms of the sphere, [2], and applying the Beurling-
 Ahlfors extension to vector fields. It is in the space (QS) mod (S) where
 we look for the infinitesimal metric structure which will give the global
 metric determined by boundary dilatation. We would like to determine
 in what sense the metric is natural for the complex structure on QS mod

 5 and hope to study this question later.
 Functions in the space (QS) satisfy an x log x modulus of continuity

 and the spaces (5) and (QS) are studied by Zygmund in [17]. Zygmund's
 notations for (QS) and (S), considered as spaces of functions, are A*
 and X*, respectively: he calls the space X* the space of "smooth" func?
 tions. It has been pointed out by Steve Kerckhoff and communicated
 to us by Subhashis Nag that the almost complex structure for universal
 Teichmuller space is just the Hilbert transform acting on vector fields.
 But universal Teichmuller space is QS mod PSL(2, U). Moreover, we
 know that 5 mod PSL(2, U) is a complex submanifold. Thus, one can
 conclude from Teichmuller theory that the spaces (QS) and (5) are
 mapped isomorphically onto themselves by the Hilbert transform. In?
 dependently of their relationship to Teichmuller theory, these facts were
 first proved by Zygmund in [17]. Actually, in [17] Zygmund gives three
 different proofs that the Hilbert transform preserves the classes (QS)
 and (S). For us, it is significant that the Zygmund norm is equivalent
 to the norm given by the infinitesimal form of Teichmuller's metric and
 that the Hilbert transform becomes an isometry if we use the infinites?
 imal Teichmuller norm on the Banach spaces (QS) and (5) and the
 quotient norm on (QS)/(S).

 In Section 9, we record some of the smopthness properties of sym?
 metric and quasisymmetric mappings. Most of the results of this section
 are already contained in Carleson's paper [6].

 We are grateful to Cliff Earle, Aimo Hinkkanen and Curt McMullen
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 for comments helpful in successive revisions to this paper and to the
 referee for several corrections and simplifications.

 1. Quasisymmetric mappings viewed as a partial topological
 group. In this section we focus ort the group of homeomorphisms of
 a one dimensional manifold which are quasisymmetric. We show that
 this group satisfies the axioms for what we call a partial topological
 group. Such a group always determines a characteristic closed topolog?
 ical subgroup. In the case of the group of quasisymmetric homeomor?
 phisms, this subgroup turns out to be the group of symmetric homeo?
 morphisms.

 First, we introduce the notion of a quasisymmetric mapping h de?
 fined on an open interval of the real axis. We say a mapping h satisfies
 an M-condition on an interval if there exists a constant M such that

 v ' h(x) - h(x - t)

 for all numbers x and t for which x ? t, x, and x 4- t are in the interval.

 We recall,

 Definition 1.1. Let Hea homeomorphism mapping an open in?
 terval / of the real axis into the real axis. Then h is quasisymmetric on
 / if there exists a constant M such that inequality (1) is satisfied for all
 x ? t, x and x 4- t in I.

 It is known that quasisymmetric homeomorphisms defined on in-
 tervals of the real line form a pseudogroup. This means that if hx and
 h2 are quasisymmetric then so is the composition h2 ? hx and the inverse
 h\x. Here, by the composition h2 ? hx we mean the mapping h2(hx(x))
 defined only when x is in the domain of hx and hx(x) is in the domain
 of h2.

 The fact that quasisymmetric mappings form a pseudogroup follows
 from their extendability by quasiconformal mappings. Since in later parts
 of this paper we will look in more detail at the problem of quasicon-
 formally extending quasisymmetric mappings, we postpone proving here
 the pseudogroup properties.

 Denote by QS the pseudogroup of quasisymmetric mappings on
 the real line. We can define a QS-structure on any topological one
 dimensional manifold. It is an atlas of coordinate charts ha for the

This content downloaded from 146.96.147.32 on Thu, 28 Jul 2016 17:03:24 UTC
All use subject to http://about.jstor.org/terms



 STRUCTURES ON A CURVE 691

 manifold which is maximal subject to the following condition; the tran-
 sition functions ha? hp1 must be elements of the pseudogroup QS.

 Let the gS-structure on the topological one-dimensional manifold
 be specified and let Abea homeomorphism of the manifold onto itself.
 We say that h is quasisymmetric (for this gS-structure) if, in terms of
 any charts hx and h2 mapping open subsets of the manifold to intervals
 Ix and I2 of the real axis, the composition h2 ? h ? hxx is a quasisymmetric
 mapping from lx to l2. It is obvious that the set QS of homeomorphisms
 of the manifold which are quasisymmetric forms a group.

 In order to define a system of neighborhoods of the identity, we
 need a finer structure subordinate to the given QS-structure. We suppose
 that we are given a subordinate PSL(2, U) structure. By this we mean
 there is a finite open covering Ua of the manifold and charts ha for the
 given gS-structure mapping Ua onto the coordinate patches ha(Ua),
 which are intervals on the real axis, such that ha? h^1 is in PSL(2, U)
 whenever this composition is defined. With respect to such a system of
 charts we define a subbasic neighborhood Ne of the identity in the
 following way. N? is the set of h for which

 a) h and h~x are uniformly e-near to the identity when viewed on
 each coordinate patch, and

 b) h and h~x satisfy an M-condition (1) with M = 1 4- e, viewed
 on each coordinate patch.

 One checks that the system of neighborhoods N defined in this way is
 independent of which finite system of charts for the given PSL(2, U)
 structure is selected. Obviously, this system of neighborhoods is Haus?
 dorff in the sense that the intersection of all neighborhoods of the iden?

 tity is the identity itself. The system has two further properties. Namely,
 given a neighborhood V of the identity, there is a neighborhood U such
 that

 i) U o U C V and
 ii) t/"1 C V.

 These two properties can be paraphrased as follows: given any two
 mappings hx and h2 near to the identity, then the product hx ? h2 and
 the inverse hxx is also near to the identity. These facts follow easily from
 the relationship between quasisymmetric and quasiconformal mappings
 described in the next section.
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 692 FREDERICK P. GARDINER AND DENNIS P. SULLIVAN

 Although the neighborhoods of the identity can be transported
 around to give neighborhoods of every other element of the group, the
 uniform topological space so obtained is not necessarily a topological
 group. Since one knows that the group QS is not a topological group,
 it is relevant to give here a brief theory of what we call partial topological

 groups.

 Definition 1.2. A partial topological group is a group with a neigh?
 borhood system at the identity which is respected by composition and
 inverse in the sense of i) and ii) above.

 At a general point h of the group, there are two neighborhood systems,
 one defined by left translation by h of the neighborhood system at the
 identity and one defined by right translation. If N runs through the
 neighborhood system at the identity, then h? N and N ? h are systems
 of left and right neighborhoods of h, respectively.

 Lemma 1.1. The following conditions on a partial topological group
 are equivalent:

 i) it is a topological group with the given neighborhood system of
 the identity,

 ii) the left and the right neighborhood systems agree at every point,
 iii) the adjoint map h *-> f ? h ? f~x is continuous at the identity for

 every f in the group.

 Proof. Property ii) implies that if an element / is given, then for
 every neighborhood U of identity, there exists a neighborhood V of the
 identity for which f ? V C U ? /. Thus / ? V ? /_1 C U. This implies
 property iii). Obviously this remark is reversible, so iii) implies the
 system of left neighborhoods of / is finer than the system of right neigh?
 borhoods. ButfoVCUof implies that V~l ? f~l C f~l o U~l and,
 since one of the axioms for a partial topological group tells us that taking
 inverses at the identity is a continuous operation, we see that iii) implies
 ii).

 Because multiplication and taking inverses is continuous in a to?
 pological group, obviously i) implies iii). To prove that iii) implies i),
 we must show, in particular, that the map (f,g)}-^f?g is continuous.
 Assume that / and g are near to f0 and g0 in the right topology. That
 is> / ? fo1 and g ? g'1 are near to the identity. Note that

 f?g?(fo? go)'1 = (f ? fo1) ? (fo ? (g ? go1) ? fo1).
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 From iii) we see that f0?(g? go1) ? fo1 is near the identity. Since / ?
 fo1 is also near the identity, the right hand side of this equation is near
 the identity since it is a product of two terms near the identity. It is also
 easy to show that, under the assumption that iii) is satisfied, the oper-
 ation of taking inverses is continuous.

 In a general partial topological group the properties of Lemma 1.1
 will not be satisfied. One of the two topologies in a partial topological
 group will be left translation invariant and the other right translation
 invariant. The inverse operation interchanges these two topologies.

 One can consider those elements h of a partial topological group
 for which the two neighborhood systems at h agree, that is, those ele?
 ments h for which conjugation by h maps the neighborhood system at
 the identity isomorphically onto itself. These elements form a subgroup,
 the two topologies agree on this subgroup, and this group with this
 topology is a topological group. Let us call this subgroup the charac?
 teristic topological subgroup of a partial topological group.

 If a subset of a partial topological group is invariant under the
 inverse operation, then it is closed for one topology if and only if it is
 closed for the other. In particular, one may speak without ambiguity of
 a closed subgroup of a partial topological group.

 Lemma 1.2. The characteristic topological subgroup of partial to?
 pological group is a closed topological subgroup.

 Proof. Assume that the mappings g ?-? hn? g? hn1 are continuous
 at the identity and that hn converges to h0. By the remark preceding the
 lemma, it does not matter whether we assume hn converges to h0 in the
 left or in the right topology. Therefore, we assume that for large n,
 hn?h~x is near to the identity. Our hypotheses tell us that three quantities
 are near the identity:

 h0?K\ hnogoh'1, and hn?Kl.

 Multiplying these three together, we see that h0 ? g ? h'1 is near the
 identity and, consequently, h0 is also an element of the characteristic
 topological subgroup. We conclude that the characteristic subgroup is
 closed. From the preceding lemma, the right and left topologies agree
 on this subgroup and it is a topological subgroup.

 The group QC of all quasiconformal homeomorphisms of the com?
 plex sphere becomes a partial topological group by decreeing that neigh-
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 borhoods of the identity consist of mappings / such that / and f~l are
 uniformly near to the identity in the spherical metric and such that /
 has arbitrarily small dilatation. In this case the characteristic topological
 subgroup is PSL(2, C).

 What about the case of quasisymmetric homeomorphisms of a cir?
 cle? Assume a circle on the complex sphere C is given, e.g., the unit
 circle, S1, or the extended real axis, IR. The group of Mobius transfor?
 mations which preserves this circle determines what we call the standard
 projective structure for the circle. In the case that the circle is IR, the
 group PSL(2, IR) preserves the standard projective structure. If ^4 is in
 PSL(2, C) mapping IR onto a circle C, then the group A ? PSL(2, IR) ?
 A'1 preserves the standard projective structure for the circle C. This
 standard projective structure is subordinate to a unique quasisymmetric
 structure on the circle C and we let QS be the group of homeomorphisms

 of the circle which are quasisymmetric for this structure. The given
 PSL(2, U) structure determines a system of neighborhoods of the iden?
 tity in QS which make QS into a partial topological group. We denote
 by S the characteristic topological subgroup of QS.

 Note that if we identify PSL(2, U) with a conjugate group, where
 the conjugation is induced by a Mobius transformation taking the real
 axis into the circle C, we have the inclusions PSL(2, IR) C 5 C QS.

 2. A characterization of the topological subgroup S of QS. In this
 section we show that a quasisymmetric homeomorphism of a circle is
 an element of 5 if and only if symmetrically placed triples of points
 which are sufficiently close together are moved by the homeomorphism
 to triples of points which are nearly symmetric. In order for this state?

 ment to have invariant meaning, it is necessary to assume there is a
 given smooth structure, say O, subordinate to the quasisymmetric struc?
 ture. A C-change of coordinates ha? h$x can then be approximated by
 an affine mapping x ?-? ax + b. If three points xu x2, x3 are symmetric
 in the sense that x2 is the midpoint of xx and x3, then their images under
 an affine mapping will also be symmetric. Thus, three symmetric points
 which are very close together have images under a C-diffeomorphism
 which are nearly symmetric.

 We use the standard PSL(2, U) structure on IR to define symmetric
 triples. Select a finite system of charts {ha} for this PSL(2, IR) structure
 whose domains of definition cover IR. We say that a triple of points px,
 p2, P3 on IR are symmetric if there is a chart ha in the finite system
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 mapping to an interval in R such that all three points are in the domain
 of ha and such that ha(p2) is the midpoint ofha(px) and ha(p3). Although
 this notion of symmetric triple is dependent on the choice of a finite
 system of charts, for two different finite systems the meaning of sym?
 metric is almost the same for triples of points which are very close
 together.

 Now let a quasisymmetric homeomorphism h and a finite system
 of charts ha be given. Assume a triple of points px, p2, p3 is symmetric
 for the finite system ha. We say that this symmetric triple is allowable
 for h if the image of the triple under h, namely, h(px), h(p2), h(p3), is
 contained in the domain of definition of at least one of the charts h$.
 Let H = ha ? h ? h$ * for some choice of a and 0 and consider the
 quotient

 H(x + t) - H(x) ? , x
 (2) H(x)-H(x-t) = l + ?*> '>

 for values hp(px) = x - t, h^(p2) = x, and h$(p3) = x 4- t where px,
 p2, p3 is a symmetric triple of points allowable for h.

 Definition 2.1. A mapping h has vanishing ratio distortion if there
 is a function eh(t) > \aH(x, t)\ for every possible choice of H = ha ? h ?
 h^1 where ha and h$ are in the finite system of charts such that eh(t)
 converges to zero as t converges to zero.

 It should be emphasized that the definition implies aH(x, t) con?
 verges to zero in t uniformly in x. The notion of a mapping with vanishing
 ratio distortion depends only on the quotient (2) for very small values
 of t. Since changes of coordinates in PSL(2, R) are almost affine on
 bounded intervals and at very small scales, the notion of such a mapping
 does not depend on which finite system of charts are selected for the
 given PSL(2, R) structure. For the same reasons, the notion of vanishing
 ratio distortion is invariant under C1 changes of coordinates. In the
 sequel, we find it useful to step between the circle R or S1 and its universal

 covering R, with covering mapping tt : R -> R/Z. The exponential
 mapping, exp(2in6) induces an isomorphism between R/Z and S1.
 Through this isomorphism and the projection tt, the standard projective
 structure on S1 lifts to a nonstandard projective structure on R. A homeo-
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 morphism h of S1 with vanishing ratio distortion lifts to a homeo?
 morphism h of the real axis such that

 ,. h(x + t) - h(x) ?
 n(jc) - h\x - t)

 h(0) = 0, h(x) + 1 = h(x + 1), and e(t) converges to zero with t.

 Theorem 2.1. Let QS be the partial topological group of quasi?
 symmetric homeomorphisms of a circle with the standard PSL(2, U)
 structure. Then the characteristic topological subgroup S of QS consists
 precisely of those mappings which have vanishing ratio distortion.

 Definition 2.1. The group 5 is called the group of symmetric ho?
 meomorphisms.

 Combining Lemma 1.2 with this theorem yields the following corollary.

 Corollary 2.1. The group of symmetric homeomorphisms is a
 closed topological subgroup of QS.

 There is also a second corollary to this theorem.

 Corollary 2.2. 5 is a proper subgroup of QS and, thus, QS is not
 a topological group. Moreover, S contains the group of O-diffeomorph-
 ism of the circle.

 Proof. It is easy to construct mappings in QS which are not sym?
 metric. In fact, let h(x) = x for negative x and h(x) = 2x for positive
 x. Then h is quasisymmetric but not symmetric because at the point x =
 0, the best possible value of M in the condition (1) is M = 2. This shows
 that QS is not equal to its characteristic topological subgroup and, hence,
 by Lemmas 1.1 and 1.2, QS is not a topological group. For the second
 statement of the corollary, assume that both h and h~x have continuous
 derivatives. By using coordinate charts, it suffices to look at cases where
 h maps a finite interval to a finite interval. Then, since the left and right
 derivatives of a C1 diffeomorphism defined on an interval are equal and
 not equal to zero, we have \ah(x, t)\ < eh(t) where eh(t) approaches zero.

 To prove Theorem 2.1 we must prove two statements. The first is
 that if a mapping / has vanishing ratio distortion, then conjugation by
 / is continuous at the identity in QS. The second is that if conjugation
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 by / is continuous at the identity, then / has vanishing ratio distortion.
 We prove these statements in Lemmas 2.1 and 2.2.

 Lemma 2.1. /// has vanishing ratio distortion and if h is quasi?
 symmetric and near the identity, then f ? h ? f~l is near the identity.

 Proof. By the remark preceding Theorem 2.1, we can view ho?
 meomorphisms of the circle as homeomorphisms of R which are periodic
 in the sense that h(x 4- 1) = h(x) 4- 1. We consider symmetric intervals
 [x - t, x] and [x, x 4- t]. Assume that h satisfies an M-condition with
 M = 1 4- ?. Since / and /_1 have vanishing ratio distortion, we can
 pick 8 > 0 so that 0 < t < 8 implies / and /_1 distort the symmetric
 intervals [x - t, x] and [x,x 4- t] by no more than 1 4- e. We then pick
 h in an Ne neighborhood of the identity. The product with three factors

 f ? h ? f'1 will distort the symmetric intervals for which 0 < t < 8 by
 an amount 1 4- e' where e' converges to 0 with e.

 Now assume that t > 8. Note that 8 depends on /, which is fixed,
 and we are still permitted to select h in a smaller neighborhood of the
 identity. It is known that / and /_1 satisfy a Holder condition since they
 have quasiconformal extensions. Let c be the constant and a be the
 exponent for this Holder condition, valid in some bounded interval. The
 assumption that h is near the identity implies that it is near to the identity

 in the uniform topology. Thus, for given 8' > 0, if h is near enough to
 the identity then \h(x) - x\ < 8' for all x in the same bounded interval.

 Let e > 0 be given and suppose we wish to show that f ? h ? f'1
 satisfies an M-condition with M = (1 4- e)/(l - e). Then choose 8' =
 (e8/2c)1/a. Let a < m < b be three points in the given bounded inter?
 val and m be the midpoint of a and b. Let f~x(x) be denoted by i and
 h(x) = x 4- Ajc where |Ajc| < 8\ We want to consider the effect of
 applying / ? h ? f~l to the three numbers, a, m, and b. Since / satisfies
 the Holder condition and f(x) = x, the three numbers are transformed
 into a 4- c(M)a, m + c(Am)a, and b + c(A6)a, where, in general, Ai
 is some number with absolute value less than or equal to Ai. Since b -
 m = m - a>h and since |Ai| < |Ai| < 8\ on forming the necessary
 quotient to test for the M-condition, we obtain a number less than or
 equal to

 1 + 2c8/a/8

 1 - 2c8,a/8*
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 By our choice of 8' this latter expression is equal to (1 + e)/(l - e).
 We now know that if h is near enough to the identity, then the

 M-condition with M = (1 + e)/(l - e) is satisfied for / ? h ? f~x for
 all symmetric triples, assuming the points of the triple lie in a given
 bounded interval and the three symmetric points are sufficiently close
 together. But by periodicity, the condition that they lie in a bounded
 interval is unnecessary.

 Lemma 2.2. If conjugation by f is continuous at the identity in QS,
 then f has vanishing ratio distortion.

 Proof. Let / be a quasisymmetric homeomorphism which does
 not have vanishing ratio distortion and M be the smallest value for which
 / satisfies an M-condition with respect to some choice of coordinate
 functions whose domains of definition cover IR. Our goal is to construct
 quasisymmetric homeomorphisms s arbitrarily near to the identity such
 that the composition f ? s does not satisfy an (M + l)-condition. Then,
 if f ? s = s ? f, s cannot be near to the identity.

 Since / does not have vanishing ratio distortion, there is a sequence
 of points pn in one of the coordinate patches and a decreasing sequence
 tn of positive numbers converging to zero such that the ratio of / applied
 to the right interval [pn, pn + tn] to / applied to the left interval [pn ?
 tn, pn] approaches a number M0 > 1. If / did not distort the right hand
 intervals more than the left hand intervals, then a similar statement
 about ratios of left intervals divided by right intervals would have to be
 true.

 For the mapping s we take the translation by tn:

 s(x) = sn(x) = x + tn.

 Notice that in the topology on QS, the number tn measures the distance
 from sn to the identity. Since we are assuming that conjugation by / is
 continuous at the identity, we know that, for n large enough, we have
 the equation f ? sn = s?f where s is uniformly near to the identity and
 s satisfies an M-condition with M as near to 1 as we like.

 The idea is that the M-distortion of / is nearly invariant under the
 translation mapping sn. Moreover, if we wish to apply the translation
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 mapping k times, where A: is a preassigned number, we can arrange for
 the term fk in the equation

 / o s2k = fk o f

 to be as near to the identity as we wish by choosing tn near enough to
 0. For the time being, let us assume that s is exactly equal to an affine
 mapping. Then we obtain a chain of 2k adjacent intervals, each of length
 tn such that, under the mapping /, the image of each interval is M0 times

 as long as the image of the interval immediately to its left. Now, step
 away to obtain a wider perspective on the mapping /. That is, consider
 the effect of / on the first k of these intervals compared to its effect on

 the second k intervals. We find that / distorts by a factor of

 MS+1 4- Mk0+2 4- Mk0+3 4- ??? 4- Mlk

 M0 4- Ml 4- Ml 4- ??? 4- MS ?*

 Clearly, by choosing M? to be larger than the minimum M-condition
 satisfied by the quasisymmetric mapping /, we obtain a contradiction.
 The fact that / is not exactly invariant under the shift sn does not affect

 this calculation in an essential way because adjacent intervals / and / in
 proportion 1 to M0 remain, after the application of fk, in the proportion
 1 to M0 ? ?.

 3. Quasiconformal extensions of quasisymmetric and symmetric
 mappings. The purpose of this section is to describe quasisymmetric
 and symmetric mappings defined on R or on intervals in R in terms of
 their possible quasiconformal extensions. If h maps an interval onto an
 interval, we use the notation h for a mapping which extends h to an
 open set in the complex plane containing the interval. We will usually
 assume the extension is invariant under complex conjugation, in the
 sense that h(z) = h(z). It is known that quasisymmetric mappings and
 quasiconformal mappings are related in a way expressed by the following
 two propositions.

 Proposition 3A, [12]. Let h be a homeomorphism from a closed
 interval I onto a closed interval J ofthe real axis. Then h is quasisymmetric
 on I if and only if there exists an extension h of h to open sets U and V
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 in the plane containing I and J such that h is quasiconformal in U. The
 extension h can be taken to be invariant under complex conjugation.

 This proposition follows easily from the methods contained in Lehto

 and Virtanen, [12, Sections 6 and 7].

 Proposition 3B, [1, 5]. Assume. his a homeomorphism ofU. Then
 h is quasisymmetric if, and only if, there exists a quasiconformal extension
 h of h to the complex plane. Now assume h is normalized to fix three
 points, say 0, 1, and oo. Then ifh is quasisymmetric with constant M, the
 quasiconformal extension h can be selected so that its dilatation K is less
 than or equal to CX(M) where CX(M) ?? 1 as M ?? 1. Conversely, if a
 normalized quasiconformal extension h of h has dilatation K, then h is
 quasisymmetric with constant M < C2(K), where C2(K) ?? 1 as K^> 1.

 This proposition is a statement of the Beurling-Ahlfors extension
 theorem, [5].

 We now prove two analogous propositions for symmetric mappings,
 which are consequences of results of Fehlmann in [7]. Before stating
 these propositions, we need to establish some terminology and to make
 some definitions.

 Definition 3.1. The local dilatation H^p) of a quasisymmetric
 mapping / at a point p on the real axis is the infimum of the dilatations
 of the possible extensions / to neighborhoods of p.

 Thus, if Hf(p) = 1 and if e > 0, then there exists an open set U
 containing p and a quasiconformal extension f of f defined on U such
 that /(jc) = /(jc) for jc in U fl IR and such that the dilatation of / on U
 is less than 1 + e. Note that if Hp(f) = 1, the definition does not imply
 directly that there is a single extension/whose dilatation approaches 1
 at p. If the number e > 0 is given, the extension / with dilatation less
 than 1 + e on U can depend on e.

 Definition 3.1 has an obvious extension to the case where p is
 replaced by a closed interval.

 Definition 3.2. The local dilatation Hf(I) of a quasisymmetric map?
 ping / on a closed interval / is the infimum of the dilatations of the
 possible extensions / of / to neighborhoods of the closed interval /.

 Another concept is the notion of boundary dilatation for a quasi?
 symmetric self-mapping / of IR.

 Definition 3.3. The boundary dilatation H(f) of a quasisymmetric
 self-mapping / of IR is the infimum of the dilatations of the possible
 extensions / of / to neighborhoods of IR in the complex sphere.
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 A fourth important concept is the notion of an asymptotically con?
 formal quasiconformal mapping.

 Definition 3.4. A quasiconformal selfmapping of the complex
 plane which preserves the real axis is called asymptotically conformal
 on an interval / if its dilatation approaches 1 on /. It is called asymp?
 totically conformal if its dilatation approaches 1 on the whole real axis.

 The next two propositions give statements for symmetric mappings
 which are parallel to the statements given by Propositions 3A and 3B
 for quasisymmetric mappings. These propositions are known results in
 the theory of quasiconformal mapping, (see Fehlmann [7, Satz 3.1]).

 Proposition 3.1, [7]. Assume h is a quasisymmetric homeomor?
 phism from a closed interval I to a closed interval J. The following
 conditions on h are equivalent:

 i) h is symmetric on I,
 ii) h has local dilatation equal to 1 at every point of I,
 iii) h has local dilatation equal to 1 on I,
 iv) there is an extension h of h which is asymptotically conformal

 on I.

 Remark. To clarify part iv), by saying K(z) approaches 1 at / we
 mean that, for every e > 0, there is an open set V with / C V C U such
 that \K(z) - l| < eforzin V.

 Proposition 3.2, [7]. The following conditions on a quasisymmetric
 homeomorphism h ofU are equivalent:

 i) h is symmetric on R,
 ii) h has local dilatation 1 at every point of R,
 iii) h has boundary dilatation equal to 1,
 iv) there is an extension h of h which is asymptotically conformal.

 Corollary 3.1. Any symmetric homeomorphism of S1 can be ap-
 proximated in the quasisymmetric topology by real analytic homeomor?
 phisms.

 Proof of Corollary. From property iv) of Proposition 3.2 we can
 assume that the symmetric homeomorphism is realized by a quasicon?
 formal homeomorphism of the sphere which preserves S1, which is in?
 variant under reflection about S1, and which has Beltrami coefficient (x
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 which is arbitrarily small in sufficiently small open neighborhoods of Sx.
 Define the Beltrami coefficient jjl? by

 [0 for (1 + n~xYx < \z\ < 1 + nx,
 Vn(z) =

 [(x(z) elsewhere.

 A solution to the Beltrami equation with Beltrami coefficient |x? is
 complex analytic near Sx and so it restricts to a real analytic homeo?
 morphism of Sx. Moreover, if the solution is normalized in the right
 way, it will approximate the given symmetric homeomorphism in the
 quasisymmetric topology. This is because the hypothesis on (x implies
 that || (x - (x?||oo approaches 0 as n approaches oo.

 We go on to the proof of the Propositions and begin with Propo?
 sition 3.2. Statement iv) obviously implies iii), because iv) assumes there
 is a single extension function h throughout a neighborhood of IR with
 local dilatation Kz converging to 1 as z converges IR, whereas statement
 iii) permits the extensions to be only local, in neighborhoods of IR and,
 moreover, it permits different extensions for different selections of the
 positive number e. Statement iii) obviously implies ii) because iii) as?
 sumes global mappings in a neighborhood of all of IR and not just at
 each point of IR.

 To prove that statement ii) implies i), we find it convenient to view
 IR as IR/Z and change the discussion to a discussion of quasisymmetric
 homeomorphisms h of IR satisfying h(0) = 0, h(l) = 1, and h(x + 1)
 = h(x) + 1. Statement ii) translates into the hypothesis that h has local
 dilatation equal to 1 at every point of IR. Given e > 0, the unit interval
 can be covered by a finite number of subintervals on each of which h
 has quasiconformal extensions with dilatation less than 1 + e. We can
 find a number 8 > 0 so that, if 0 < t < 8 and x is in the unit interval,
 then all three of the numbers, x - t, x, and x + t, lie in one of these
 subintervals. To proceed with the proof that ii) implies i) we need the
 following lemma.

 Lemma 3.1. Let h quasiconformal in an open set U containing a
 closed interval I of the real axis and assume that h(I) is a closed interval
 J of the real axis. Assume that the dilatation of h in U is less than 1 +
 ?. Then for x ? t, x, and jc + t in I, h satisfies an M-condition (1) with
 M = 1 + e', where e' converges to zero with e.
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 Proof. By shrinking U a small amount we can find a quasicon?
 formal mapping h of the whole complex plane which agrees with h on
 U and such that h preserves the real axis. We take three points, x - t,
 x, and x 4- t, in /. Consider the extremal length A of the family of curves
 in the upper half plane which join the interval [jc - t, x] to the inter?
 val [jc + t, oo]. Obviously, this extremal length is equal to the extremal
 length of the family of curves in the upper half plane which join
 [-0?, x - t] to [jc, x 4- t]. Since these are conjugate extremal lengths,
 we see that A = 1. Let A be the extremal length of the family of curves
 in the upper half plane which join [h(x ? t), h(x)] to [h(x 4- t), oo].
 Grotzsch's length-area argument shows that (see [9, Chapter 1])

 ? < I I Kz(h)\<p(z)\dxdy where

 *(*) =
 b(t)

 (z - x)(z - (jc - t))(z - (jc 4- t))

 and where b(t) is chosen so that /c /1 <p(z) \ dxdy = 1. This normalization
 implies that b(t) = ct where

 -AU  dxdy

 z(z - \){z + 1)1

 Since b(t) converges to zero as t converges to zero, for sufficiently small
 values of t, the complement in C of the open set U containing / has
 arbitrarily small mass with respect to the measure |<p(z)|d.x;dy. For z in
 this complement, the dilatation Kz(h) is bounded. For z in U, the di?
 latation Kz(h) is less than 1 4- e. Thus, we see that there is a number
 8 > 0 so that for 0 < t < 8, the ratio of extremal lengths, A/A, is less
 than (1 4- 2e). This is enough to assure that

 h(x + Q -h(x) < j + ?,
 h(x) ? h(x ? t)

 where e' converges to zero with e. To obtain the other side of the M-
 condition with M = 1 + e', we apply the same argument to the conjugate
 extremal length.
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 To complete the proof that ii) implies i), we apply Lemma 3.1 over
 and over again for smaller and smaller positive numbers e. For

 , . h(x + t) - h(x)
 v ' h(x)~- h(x - t)

 we obtain that a(jc, t) converges to 1 uniformly for jc between 0 and 1.
 Under the covering mapping from IR to IR/Z ~ IR the condition that a
 mapping is symmetric on the unit interval in IR translates into the con?
 dition that the induced mapping on the quotient is symmetric.

 To prove that i) implies iv), we need the Beurling-Ahlfors extension
 formula, [5]. Assume h is a homeomorphism of IR onto IR, that h fixes
 0, 1 and oo? and that h(x + 1) = h(x) + 1. Consider the function
 h(x, y) = u(x, y) + i v(x, y), where

 (2)

 1 fx+y
 u(x, y) = ? I h(t)dt and

 2V J x-y

 v(x,y) = - I h(t)dt - I h(t)dt\.

 In order to calculate the dilatation Kz of h, we use the formula

 V X V-\ _ Ul + U] + Vl + V2y
 Kz + Kz ? -.

 UXVy ? UyVX

 For z = x + iy the calculation of Kz(h) depends only on the values of
 h for t between jc - y and jc + y. Thus, if \y\ is small enough, the
 assumption that h satisfies an M-condition with M = 1 + e for symmetric
 triples which are sufficiently close together implies that K < 1 + e'. In
 fact, using the formula (2) and the estimates in [1], one can show that

 We obtain a quasiconformal extension of h to an open neighborhood
 of the unit interval with dilation less than 1 + e' in this neighborhood.
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 Since the extension satisfies h(z 4- 1) = h(z) 4- 1, this extension induces
 an extension of the original quasisymmetric homeomorphism of R whose
 dilatation approaches 1 at the boundary.

 This completes the proof of Proposition 3.2. In the course of the
 proof, it is easy to see that we have made all the steps necessary to
 prove Proposition 3.1.

 If K(f) is the maximal dilatation of a quasiconformal mapping de?
 fined on some open set and if g is defined on the image of /, then
 K(f o g) < K(f)K(g) and K(f~l) = K(f). These properties combined
 with Proposition 3.2 make it clear that QS satisfies the axioms for a
 partial topological group.

 Proposition 3.2 gives another characterization of the subgroup S.
 It is the subgroup of quasisymmetric homeomorphisms which have
 boundary dilation equal to 1. The fact that the group of homeomorphism
 with boundary dilatation equal to 1 is a closed subgroup of QS can be
 proved directly and the proof applies to a more general situation,
 namely, the Teichmuller space of an open Riemann surface. If a Rie?
 mann surface R is given, the Teichmuller space T(R) consists of all
 quasiconformal mappings / from R to a variable Riemann surface f(R)9
 factored by a certain equivalence relation. Two such mappings / and fx
 are equivalent if there is a conformal mapping A from fx(R) to f(R)
 such that A ? fi is isotopic to / through a curve of quasiconformal
 mappings each of which agrees with / on the ideal boundary of R.

 The boundary dilatation H(f) of an equivalence class [/] in T(R)
 is the infimum of the maximal dilatations K(f, R ? C) of mappings /'
 in the same equivalence class as / and off of compact subsets C of R.

 Proposition 3.3. Let S(R) be the subset of Teichmuller space of
 an open Riemann surface R consisting of those Teichmuller classes [f]
 for which H(f) = 1. Then S(R) is a closed subset of the Teichmuller
 space T(R).

 Proof. Suppose that [hn] is a^sequence in 5, that the distance from
 [hn] to [h] measured in Teichmuller's metric approaches zero. Let gn be
 a quasiconformal mapping homotopic to hn ? h~x such that Kn = K(gn)
 decreases to 1. Then g~l ? hn is homotopic to h. Since hn is in 5, we can
 pick a compact set Cn contained in R and a quasiconformal mapping
 hn in the same Teichmuller class as hn such that hn has dilatation less

 than Kn off of a compact subset Cn of R. Then g~l ? hn has dilatation
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 less than K2n off of Cn. Since Kn ?? 1, we see that the boundary dilatation

 of h is equal to 1.

 Remarks. 1. The inclusion of S in QS is analogous to the inclusion
 of the Banach sequence space c0 in the sequence space t?. The fact that
 Co is closed in F is nothing more than application of the fact that a
 uniform limit of continuous functions is continuous. Analogously, the
 fact that 5 is closed in QS reflects the definition of Teichmiiller's metric

 in terms of maximal dilatation, which means that it is a kind of sup-
 norm metric.

 2. In [8], Fehlmann proves an important result about local dila?
 tation and the existence of substantial boundary points. We will return
 to this topic in a later section.

 4. The Bers embedding for quasisymmetric and symmetric map?
 pings. Once again, we work in the standard projective structure on a
 circle and the background quasisymmetric structure which it determines.

 The standard projective structure determines a system of neighborhoods
 of the identity which makes QS into a partial topological group and,
 recall, by definition 5 is the characteristic topological subgroup of QS.

 If A is a Mobius transformation mapping IR into the circle then
 A o PSL(2, U) o A~x is a subgroup of QS. We wish to study the factor
 space QS mod A ? PSL(2, U) ? A~x. We follow the conventional form,
 which is to use right cosets. From the point of view of considering the
 possible PSL(2, U) structures on the circle subordinate to a given
 QS-structure, there is no essential difference between using right and
 using left cosets. (This point is explained further in the Appendix.) In
 the right coset space, a mapping / in QS is identified with B ? /, where
 B is any element of A ? PSL(2, U) ? A~x.

 We now review the definition of universal Teichmuller space T.
 T is the set of quasiconformal selfmappings of the upper half plane
 factored by a certain equivalence relation. Two such selfmappings / and
 /i are equivalent if there exists a Mobius transformation B in PSL(2,
 IR) such that B ? fx agrees with / on IR. There is an obvious mapping <&
 from Tto QS mod PSL(2, IR); <& assigns to a quasiconformal selfmapping
 / of the upper half plane its the boundary values on IR. One easily shows
 that <& is well-defined and injective. The Beurling-Ahlfors extension
 theorem (Proposition 3B) tells us that <& is surjective. Moreover, it tells
 us the equally important fact that <I> is a homeomorphism if we think
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 of T as having the topology coming from dilatation and QS mod PSL(2,
 R) as having the topology induced by M-conditions.

 The Bers' embedding of T ~ QS mod PSL(2, R) is an embedding
 into a complex Banach space, B. For universal Teichmuller space, this
 Banach space consists of all functions cp(z), holomorphic in the lower
 half plane, L, with bounded norm, where the norm is defined by

 (3) ||<p||= sup \y\(z) |.

 The embedding is a map if from QS mod PSL(2, R) onto a bounded
 open set in B. The definition of if involves several steps, which we list
 here:

 i) select a representative h of an element of QS mod PSL(2, R),
 which is homeomorphism of R,

 ii) take any quasiconformal selfmapping h of the upper half plane
 U such that h restricted to R is identical to h,

 iii) form the Beltrami coefficient |x of h, namely, |x(z) = hz/hz,
 iv) let |i(z) = (x(z) for z in the upper half plane and (i(z) = 0 for

 z in the lower half plane and solve for / in the Beltrami equation

 Mz) = jL(z)/,(z)

 to obtain a quasiconformal homeomorphism of C which is ho?
 lomorphic in the lower half plane,

 v) take the Schwarzian derivative 9 of / in the lower half plane:

 <p(z) = AT - i N2 where Af = f"(z)lf'(z).

 One shows that the end result, cp, depends neither on the choice
 of representative made in step i) nor on the quasiconformal extension
 h made in step ii). By definition, we let if(h) = <p. Since an element h
 of QS mod PSL(2, R) is determined by the Beltrami coefficient |x of
 any quasiconformal extension of h to the upper half plane, we will
 sometimes write if(v>) instead of if(h).

 The mapping if from QS mod PSL(2, R) to B is well-defined, one-
 to-one, complex analytic with respect to the complex structure coming
 from Beltrami differentials, maps onto an open set containing the ball
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 of radius \ and contained in the ball of radius ? and has local complex
 analytic cross-sections. All of these properties are shown in Ahlfors [1].

 We claim that all of these properties carry over if one views if as
 a mapping from the space S mod PSL(2, U) into a complex Banach
 subspace B0. By definition, B0 is the subspace of B consisting of those
 cp in B such that for every e > 0, there is a compact subset C of L such
 that |y\p(z)| < e for z in L - C. In words, B0 consists of the elements
 cp of B for which the function y2y(z) vanishes at the boundary. The norm

 for the Banach space B0 is the same as the norm for B, namely, the
 norm given in formula (3).

 Theorem 4.1. The mapping if described above applied to the sym?
 metric subset S mod PSL(2, U) of QS mod PSL(2, U) has image in B0.
 Moreover, it is well-defined, one-to-one, complex analytic with respect
 to the complex structure coming from Beltrami differentials, maps onto
 an open set containing the open ball of radius \ in B0 and contained in
 the ball of radius 2, and has local complex analytic cross sections.

 Proof. Most of the assertions in this proposition follow in exactly
 the same way they do for the mapping if applied to QS. The first step
 is to show that the Schwarzian derivative mapping if applied to 5 has
 image in B0. We are indebted to the referee for providing a proof for
 this step which is shorter and more simple than the one which we orig-
 inally gave. Let M be the open unit ball of Loo((7, C) and let M0 be the
 closed complex submanifold consisting of those |x in M which vanish at
 the boundary in the sense that for any e > 0 there is a compact set in
 U such that the supremum norm of |x outside of the compact set is less
 than ?.

 We may consider if as mapping with domain M instead of QS mod
 PSL(2, U) by defining if on M to be the Schwarzian derivative of a
 Riemann mapping of the lower half plane which is the restriction of a
 quasiconformal mapping of the whole plane which has Beltrami coef?
 ficient (x in the upper half plane and which is conformal elsewhere. From
 Proposition 3.2, it follows that the image under if of 5 mod PSL(2, U)
 is the same as the image of M0. If there is a compact set of U such that
 (x is identically equal to zero off this compact set, then obviously if
 applied to (x is in B0. By the corollary to Proposition 3.2, such (x are
 dense in M0. Since B0 is closed in B and since if is continuous as a

 mapping from M to B, we conclude that if applied to M0 is contained
 in B0.
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 The next step in proving the theorem is to show why the mapping
 if has local holomorphic cross sections, when viewed as a mapping from
 5 to B0. We follow the same argument given by Ahlfors in [1, pp. 120-
 133]. Let i|/ be an element of B0(D). Let ??-? ?* be an antiquasiconformal
 reflection which fixes the points of the quasicircle which is the common
 boundary of the domains XI and XI*. We take two linearly independent
 solutions T]i and r\2 of the equation T]"(?) = - l\\f(Qr\(Q defined through?
 out the domain XI and form the function

 (4) g(Q =
 ViiO^iO for t, in O and
 Mn + ? - rwa*)
 %(D + a - TK(D

 for ? in XI*

 Then, the formula given by Ahlfors [1, p. 132] for the Beltrami coef?
 ficient (x of g is

 *

 (5) uXl) = l{\ ~ m(m

 for ? in XI* and |x(?) = 0 for ? in XI. Ahlfors shows that the reflection
 ? ?-? ?* has bounded first partial derivatives and that the term |?*(?) -
 ? | is commensurable to the Poincare metric of the domain XI*. Therefore,
 if i|/ is in B0(Q,) and has sufficiently small norm, the (x given in this
 formula will be an Loo function which vanishes at the boundary of XI*.
 This is enough to show that if, viewed as a mapping from 5 into B(), has
 local holomorphic cross sections and that the image of if is open in B0.
 All of the other parts of Proposition 4.1 can be proved by the same
 arguments given in [1].

 5. The symmetric foliation of Teichmuller space. The Teich?
 muller metric on QS mod PSL(2, R) is defined by

 d(f,g) = hog#(/og-i),

 where K(h) is the minimal dilatation of a quasiconformal self-mapping
 of A with the same boundary values as h. Obviously, the value d(f, g)
 does not change if we replace f by A ? f and g by B ? g, where A and
 B are conformal mappings and hence the metric is well-defined on
 cosets. From the normal families arguments for quasiconformal map-
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 pings, for given boundary values, there will always exist a quasiconfor?
 mal mapping realizing the minimum of K(h). It is also true that if a
 quasiconformal mapping has maximal dilatation equal to one then it is
 conformal. Combining these two facts, one sees that d is a Hausdorff
 metric. With respect to the metric d^ any translation mapping h ?-? h ?
 g is an isometry. These translation mappings are well defined on cosets
 in QS mod PSL(2, IR) because the equivalence between h and A ? h is
 translated to an equivalence between h ? g and A ? h ? g.

 The continuity of the mapping h^> h ? g implies that the image of
 the coset Sg in QS mod PSL(2, U) is closed. It is also true that h^> h
 ? g induces a holomorphic self-mapping of universal Teichmuller space.
 This is because if (x and v are Beltrami coefficients of g and h, then the
 Beltrami coefficient of h ? g is

 p,(z) + v(g(z))6
 1 + *x(z)v(g(z))6'

 where 6 = plp and p = gz(z). If (x is held fixed, this formula varies
 holomorphically in v. Thus, the cosets Sg determine closed holomorphic
 submanifolds which partition the manifold QS mod PSL(2, IR).

 The topology coming from the metric d on QS mod PSL(2, U)
 induces a topology on QS mod 5. It is the finest topology which makes
 the projection tt : QS ?? QS mod 5 continuous. An e-neighborhood of
 a coset Sg is the set of cosets 5/ for which

 (6) d(Sf, Sg) = inf d(sj, s2g) < e.
 S\,s2 in S

 The projection tt is an open mapping and we claim that these open
 neighborhoods induce a Hausdorff topology. Suppose that inf5lvS2 In s d(sx
 ? /, s2 ? g) = 0. Then there are sequences sn and sn of elements of 5
 such that

 Sn0f?g~1?Sn1 = &,

 where ?? is a sequence Of quasisymmetric mappings approaching identity.
 Then f?g~x = SnXo^n?sn and the same method used to prove Proposition
 3.3 shows that / ? g~x is symmetric, which is the same as saying Sf =
 Sg-
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 Formula (6) determines a metric which can be expressed in terms
 of boundary dilatation.

 Lemma 5.1. The expression d(Sf, Sg) in formula (6) is equal to 2
 log H, where H is the boundary dilatation (see Definition 3.3) of the
 mapping f ? g~l and, therefore, d is a metric on the quotient space QS
 mod 5.

 Proof. Recall that the boundary dilatation H(f) of a mapping /
 is the infimum of maximal dilatations of quasiconformal mappings which

 extend / to some neighborhood of the boundary, where we permit the
 neighborhoods to be arbitrary. Thus, H(f) < K(f), where K(f) is the
 minimal dilatation of a quasiconformal extension of / to the interior of
 the disk. Moreover, it is obvious that if s is symmetric then H(f ? s) =
 H(s o f) = H(f). It follows that H(f) < K(sx ? / o s2) for arbitrary
 symmetric mappings sx and s2.

 To prove the opposite inequality, we will show that the infimum
 over s in 5 of the quantity K(s ? /) is less than or equal to H(f). Instead
 of working with the upper half plane and its boundary R, it is convenient
 to work with the unit disk and its boundary S1. Suppose e > 0 is given
 and / is an extension of / to a neighborhood V = {z : r < \z\ < 1} of
 the boundary of the unit disk A with dilatation less than H(f) 4- e. By
 taking r slightly closer to 1, we can assume the image under / of the
 circle \z\ = r is a quasicircle. Let R be the annular domain lying between
 this quasicircle and the unit circle. By uniformization, there is a schlicht
 analytic mapping s from R onto an annulus bounded by the two circles,
 \z\ = 1 and \z\ = r', where 0 < r' < 1, and mapping the unit circle
 onto itself. Since the inner boundary of R is a quasicircle, the mapping
 s can be extended quasiconformally to the whole unit disk. We denote
 the extension by the same letter, s. Clearly, s has boundary dilatation
 equal to 1 and H(s ? f) = H(f). This means that we can assume that
 the extension / of /, which has dilatation less than H(f) + e in the
 neighborhood V, maps the annulus V onto the annulus V = {z : r' <
 \z\ < 1}. Obviously, by reflection, this mapping can be extended to a
 quasiconformal mapping with exactly the same maximal dilatation be?
 tween the annuli whose outer boundaries are the unit circle and whose

 inner boundaries are the circles with radii r2 and r'2. By reflecting in?
 finitely many times, we get a quasiconformal mapping of the whole unit
 disk whose dilatation is less than H(f) 4- e and which is an extension
 of the boundary values of s ? f.
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 Note that the boundary dilatation value H(f) gives a different way
 of thinking of the metric (6) defined on the coset space QS mod 5:

 (7) d(Sf,Sg) = k log H(fog~%

 We have proved the following theorem.

 Theorem 5.1. The cosets Sg of the symmetric subgroup S in QS
 mod PSL(2, U) partition QS mod PSL(2, IR) by leaves which are closed
 with respect to the metric d. These cosets are complex submanifolds of
 QS. The coset space QS mod 5 is a metric space with the finest topology
 for which the projection mapping it : QS ?? QS mod S is continuous.

 Remark. Since \ log H(f) is the metric distance between the iden?
 tity and / in the quotient space QS mod S, the boundary dilatation H
 is a continuous function on this quotient space. We will later see that
 QS mod 5 has a natural complex structure. We believe that the boundary
 dilatation metric d is, in some sense, natural for this complex structure.
 A key tool in Teichmuller theory is the Reich-Strebel inequality for
 K(f), the minimal dilatation of a quasiconformal extension of the qua?
 sisymmetric mapping /. The inequality for K(f) is

 <8> m*U?
 1 - *z) 12&1 R' <p(z)

 ?\<p(z)\dxdy, K{f) JaJ 1-|>l(z)|3

 where cp(z) is any holomorphic function in the unit disk for which ||cp||
 = h f \<p(z)\dxdy = 1 and jx is the Beltrami coefficient of any quasi?
 conformal extension of the quasisymmetric mapping /. There is an anal?
 ogous inequality for the boundary dilatation H(f). We define a sequence
 cprt with ||<p?|| = 1 to be degenerating if cprt converges uniformly to zero
 on compact subsets of A. Then the same argument used to prove the
 above inequality shows that

 Wn(z)\2

 1 r r\ <Vn(z)
 Hm inf J a J 1 - \ulz\\* M*)!*^' H(f) n UJ 1"|*X(Z)P

 where cpn is any degenerating sequence with ||<pn|| = 1 and where fx is
 any Beltrami coefficient of any quasiconformal extension of any qua-
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 sisymmetric mapping of the form sx? f?s2 where sx and s2 are symmetric.
 This inequality has consequences for the infinitesimal theory of the
 metric determined by \ log H the quotient space QS mod S. Important
 elements in the study of the quotient metric d on QS mod S will be the
 "frame mapping condition" of Strebel [16] and Fehlmann's theorem on
 the existence of substantial points, [8]. The frame mapping condition
 tells us that when the quotient mapping from QS mod PSL(2, R) to QS
 mod S contracts the distance between the origin and a given point, then
 that point has a representative of Teichmuller form.

 6. Quasicircles and symmetric quasicircles. Let XI and XI* be two
 Jordan domains, complementary in C, whose common boundary is a
 Jordan curve C. Let / and g be the Riemann mappings which map the
 lower half plane L onto XI and the upper half plane U onto XI*, re?
 spectively. Since these mappings extend continuously to the common
 boundaries, the mapping g~l ? f restricted to R is a homeomorphism.
 We define the Jordan curve C to be a quasicircle or a symmetric quasi?
 circle if the composition g~l ? f is quasisymmetric or symmetric, re?
 spectively.

 Because of the Beurling-Ahlfors extension theorem, a Jordan curve
 is a quasicircle precisely if it is the image of the real axis under a qua?
 siconformal homeomorphism of the sphere which is conformal in the
 lower half plane. In a parallel manner, it follows that a Jordan curve is
 a symmetric quasicircle precisely if it is the image of the real axis under
 a quasiconformal homeomorphism of the sphere which is conformal in
 the lower half plane and which has dilatation Kz approaching 1 as z
 approaches R.

 In [1], Ahlfors characterizes geometrically which Jordan curves are
 quasicircles. Let a and c be points on the curve, which divide the curve
 into two arcs. Let b be a third point lying on whichever of these two
 arcs has smaller spherical diameter. Ahlfors' geometric condition is that
 there exists a constant K such that

 (9) spherical dist(a, b) 4- spheriGal dist (b, c)

 < K spherical dist(?, c),

 for any three points a, b, and c selected in this way. We call this inequality
 the reverse triangle inequality.
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 There is a parallel condition for symmetric quasicircles due to
 Becker and Pommerenke, [3]. We say that a Jordan curve C has the
 strong reverse triangle property if for every point p in C and every K >
 1, there exists a neighborhood N of p such that inequality (9) is satisfied
 for any three points a, b and c lying in N with b between a and c. The
 nearer A' is to 1 in inequality (9) the nearer the part of the curve between
 a and c is to a geodesic segment.

 For our purposes, it is more convenient to work with the Euclidean
 metric. The notions of quasicircle and symmetric quasicircle are in?
 variant under change of coordinate by a Mobius transformation. If the
 Jordan curve passes through oo? We can select a Mobius transformation
 which moves oo to a finite point. For bounded Jordan curves, it is just
 as well to work with the parallel inequality with the spherical metric
 replaced by the Euclidean metric:

 (10) \a - b\ 4- \b - c\ < \\a - c\.

 Definition 6.1. A bounded Jordan curve C has the strong reverse
 triangle property if, for every p in C and for every X > 1, there exists a

 neighborhood N of p, such that inequality (10) holds for all points a, b
 and c lying in N and on C with b between a and c.

 If the quasicircle passes through oo? then for the point p = oo We
 require the same condition to be satisfied after a change of coordinates
 by a Mobius transformation which moves oo to a finite point. Notice
 that inequality (10) defines an ellipse with foci at a and c. We will call
 the number X1 the eccentricity of this ellipse.

 We will prove the following theorem of Becker and Pommerenke.

 Theorem 6.1, [4]. A quasicircle is a symmetric quasicircle if, and
 only if, it has the strong reverse triangle property.

 In the course of proving this result, we give two other equivalent
 geometric conditions on quasicircles, the extremal length property and
 the disk template property. To describe the extremal length property
 consider Figure 3.

 Assume a, b, c and d are consecutive points on the quasicircle C. Let
 aab be the are of C joining a to b. Define the arcs abc, acd, and aad
 analogously. Let 71 be a Jordan curve separating aab from acd. Let y2
 be a Jordan curve separating abc from aad. Let Ai be the extremal length
 on C - aab U acd of the family of curves homotopic to 71 and let A2 be
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 72

 <*ad

 FIGURE 3

 the extremal length on C ? aad U abc of the family of curves homotopic
 t0 72.

 In the course of the proof of the theorem we will see that no matter
 what four points a, b, c, and d are selected, the product of the extremal
 lengths, Ai, A2, is always greater than or equal to 4.

 Definition 6.2. A bounded quasicircle C has the extremal length
 property if, for every point d on C, every p in C - {d} and every e >
 0, there is a 8 > 0, such that whenever a, b, c are consecutive points in
 C - {d} and a, b, and c are in a 8-neighborhood of p, then AiA2 < 4
 + e.

 We first prove that symmetry of a quasicircle is equivalent to the
 extremal length property.

 Theorem 6.2. Let fl and fl* be complementary Jordan domains
 with common boundary equal to the quasicircle C. Let f be a Riemann
 mapping from the lower half plane to fl and g a Riemann mapping from
 the upper half plane to fl*. Then a necessary and sufficient condition for

 the mapping g~x ? f restricted to U to be symmetric is that the quasicircle
 C has the extremal length property.

 Proof. We begin by proving extremal length property is sufficient.
 Assume that xx, x2 and jc3 are symmetrically placed points on the real
 axis with/(xi) = a,f(x2) = b,f(x3) = c, /(oo) = d where / is a Riemann
 mapping from the lower half plane to the Jordan domain fl. By pre-
 composing g with an element of PSL(2, U), we may take g(oo) = d. Let
 h(xx) = x[, h(x2) = x'2, h(x3) = x'2, h(oo) = oo where h = g~x ? / and
 g(oo) = d. Given 8 > 0, if xx, jc2, x3 are sufficiently close together and
 in the interval from -2 to 2 and near enough to a given point jc, then
 the three points a, b, and c will be close together and near to f(x). We
 will show that this forces
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 1-^4^4*1 + ^
 X2 xx

 where e' converges to zero with e in Definition 6.2. This will show that
 h is symmetric in the interval from ? 2 to 2. If A(x) = jc1, the same
 proof will show that A ? h ? A~x is symmetric on the interval from ?2
 to 2 and, hence, that h is symmetric.

 Let Ai be the extremal length of the family of arcs in the lower half

 plane which join the interval [jci, jc2] to the interval [x3, ??). Since / maps
 the lower half plane conformally onto fl, Ax is also equal to the extremal
 length of the family of arcs in fl which join aab to acd. Similarly, we let
 A2 be the extremal length of the family of arcs in the lower half plane
 which join the interval (-??, jcJ to the interval [jc2, jc3]. Thus, A2 is also
 equal to the extremal length of the family of arcs in fl which join the
 part of the quasicircle between aad to abc. AJ and A2 are defined in a
 similar way with respect to the upper half plane and the points jcJ, jc2
 and JC3. The comparison principle for extremal lengths gives the follow?
 ing two inequalities:

 Ai > Ai + AJ and A2 > A2 + A2.

 We start with three points xx, jc2, and jc3 on the real axis which are
 symmetric in the sense that jc2 is the midpoint of jcx and jc3. Then, it is

 obvious that Ai and A2 are both equal to 1 and, on multiplying these
 two inequalities, we get

 (11) AiA2 > (1 + AJ)(1 + A2) = 2 + a; + a;-1.

 The equality on the right of (11) follows because AJ A2 = 1. From the
 hypothesis that the quasicircle has the extremal length property we know
 that A^2 is near to 4. Thus, both AJ and A2 are near to 1. It follows
 that the points jcJ, jc2, and x3 are nearly symmetric and the mapping h
 is symmetric.

 We now prove that the condition is necessary. Let the point d in
 C, p in C ? {d} and e > 0 be given and assume the homeomorphism
 h equal to g~x ? f restricted to IR is symmetric. By precomposing / and
 g with elements of PSL(2, U), we may assume /(oo) = g(oo) = d and
 h(oo) = 00. Since f~x is continuous, we are allowed to assume that the
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 points jci, jc2, jc3, whose images under / are a, b, and c, are arbitrarily
 close together. Since g~l ? f is symmetric, we know / has a quasicon?
 formal extension to the whole plane with a Beltrami coefficient jx which
 is zero in the lower half plane and which vanishes as z approaches R.
 Let ax be a Jordan curve in C which separates [jci, jc2] from [jc3, oo]. The
 extremal length Lx of ai on C ? [jci, jc2] U [jc3, ??] is realized by an
 extremal metric p(z)|dz| of the form p(z)|dz| = |9(z)|1/2|dz| where
 <p(z)dz2 is

 <p(z)dz =
 (z - xx)(z - x2)(z - x3)'

 We select the constant C so that || cp || = 1. Grotzsch's inequality tells us
 that

 Ai

 Lx  jj Kz\<p(z)\dxdy.

 An obvious calculation shows that nearly all of the mass of the measure
 |9(z)|djcdy is contained in the 8'-neighborhood of jci? jc2, and jc3. On the
 other hand, we have a fixed bound on Kz outside of this 8'-neighborhood
 and inside this neighborhood Kz is bounded by 1 + e. Hence, the ratio
 in Ai/Li is bounded by 1 4- 2e. Obviously, we have the parallel result
 for the ratio A2/L2. Since the product LXL2 = 4, we conclude that
 AiA2 < 4 4- e, where e converges to zero with e. This completes the
 proof of Theorem 6.2.

 In order to prove Theorem 6.1, we need the notion of a disk tem-
 plate. We refer to the drawing in Figure 4.

 We think of a disk template D as a disk-shaped island out of which
 we have excavated a canal and a pond. It is a disk template for the
 quadruple a, b, c, d on the quasicircle C if

 i) a is at the center of the disk,
 ii) the are abc is contained in the pond, and if
 iii) the are aad is contained either in the canal or the exterior of

 the disk.

 Thus the straight line segment from a to b lies on a diameter of the disk

 and we assume that the top and bottom of the canal and the pond are
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 A disk template for a, b, c, d on the quasicircle C
 FIGURE 4

 line segments equidistant from and parallel to this diameter. The height,
 canal length, separation and pond length are defined from Figure 4.

 Assume a Riemann mapping / from XI onto L and a neighborhood
 U of d = /(oo) are given. We define the triple a, b, c to be allowable
 for / and U if a, b, and c are images of symmetrically placed points
 jc ? t, jc, and jc 4- t and if a, b and c are not in U. Since C is a quasicircle,
 given / and U, we know there exists a constant B which bounds all
 possible ratios of the three numbers |? ? fc|,|& ? c|, and \a - c\
 whenever a, b, c is an allowable triple for / and U.

 Definition 3. The quasicircle C has the disk template property if,
 for every Riemann mapping / from L onto XI and neighborhood U of
 /(oo) = d, every e > 0, and every positive integer N, there exists a 8 >
 0 such that if a, b, c is an allowable triple for / and U with \a - b\ =
 8' < 8, then there exists a disk template for a, b, c and d with

 canal length > 8'(log N)/2B,
 canal height = pond height < e8',
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 pond length between B~xb' and BS',
 separation > (1 - e)8'.

 In order to establish Theorem 6.1, we show that the strong reverse
 triangle property, the extremal length property, and the disk template
 property are all equivalent for quasicircles. We use the same notation
 as before: / is a Riemann map from the lower half plane to fl, g is a
 Riemann map from the upper half plane to fl*, and the quasicircle C
 is the common boundary of the two complementary Jordan domains,
 flandfl*.

 Theorem 6.3. The following conditions on a quasicircle C are
 equivalent:

 i) the mapping g~x ? f restricted to U is symmetric,
 ii) C has the strong reverse triangle property,
 iii) C has the disk template property,
 iv) C has the extremal length property.

 Proof. We have already shown that iv) is equivalent to i). Now
 we show that i) implies ii). In the definition of the strong reverse triangle
 property assume the point p on C is selected and the neighborhood Af
 is small enough so that C ? N is nonempty. Let d be in C ? N. By
 applying a Mobius transformation we can assume d = oo. We must show
 that \a ? b\ + \b ? c\ < k\a ? c\ for consecutive triples a, b, c on C
 - {d} and sufficiently near to p.

 Observe that a neighborhood system of the closed straight line
 segment from a to c is determined by inequality (10) with parameter X
 > 1. It is useful to have a second system of closed neighborhoods of
 this line segment. Let dac be the Poincare metric on the triply punctured
 sphere C - {a, c, oo}. Let Ne be the set of points b whose distance from
 this line segment measured in the metric dac is less than or equal to e.
 Then Ne U {a, c} is also a system of neighborhoods of the closed line
 segment joining a to c.

 We assume that h = g"1 ? / restricted to IR is symmetric and that
 / has a quasiconformal extension to the whole plane with a Beltrami
 coefficient jx which is zero in the lower half plane and which vanishes
 as z approaches IR. Let jci, jc2, and jc3 be three consecutive points on the
 real axis, whose images under / are the three points a, b, and c. The
 curve fiL(x2)9 as a function of t, takes the value jc2 when t = 0 and b
 when t = 1. By renormalizing, we can assume that f* fixes xx, x3 and
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 oo for 0 < t < 1. Then, measured in the Poincare metric on C - {xx,
 jc3, oo}? the distance from jc2 to b is no more than \ log K0, where K0 is
 the minimal dilatation of a quasiconformal mapping in the same ho?
 motopy class as f onC - {jci, jc2, jc3, oo}. To get an upper bound on
 KQ, we use the fact that

 where A(a) is the extremal length of the family of curves which are
 freely homotopic to a on C - {xx, x2,x3, oo} and the supremum is taken
 over all simple closed curves a which do not pass through xx,x2, or x3
 and which separate two of the points {xx, x2, x3, oo} from the other two.
 This supremum would be a difficult number to estimate were it not for
 the fact that we know exactly the form of the extremal metrics for these

 extremal length problems. The extremal metrics p(z) | dz | are of the form

 p(z)|dz| = |9(z)|1/2|dz| where 9(z)dz2 is a holomorphic quadratic dif?
 ferential on C - {jci, jc2, jc3, oo}. This means that

 CeiQdz2
 (13) ^(z)dz2  (z - xx)(z - x2)(z - x3)'

 We select the constant C so that ||98|| = 1. Grotzsch's inequality tells
 us that

 (14) yj^*fJKMz)\dxdy
 where 6 is chosen so that the horizontal closed trajectories of 98 are in
 the same homotopy class as a. Let p be a point on the real axis and e
 > 0 be given. Then, by hypothesis, there is a neighborhood N of p such
 that Kz < 1 + e for all z in N. Now, let xx, x2, and x3 be points on the
 real axis and very near to p. Nearly all of the mass of the measure
 |9(z)|djcdy is contained in the open set N as xx, x2, and x3 approach p.
 Also, we have a fixed bound on Kz outside of the neighborhood N.
 Hence, the ratio in (13) is bounded by 1 + 2e and this estimate is
 uniform in a. Thus, the number K0 in (12) is bounded by 1 4- 2e. We
 combine this result with our observation that the system of elliptical
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 neighborhoods ofthe segment from a to c, defined by (10), are generated
 by the Poincare neighborhoods, Ne. It follows that if a mapping of the
 real axis is symmetric, then the induced quasicircle C has the strong
 reverse triangle property.

 Our next objective is to show that ii) implies iii), that is, that if C
 has the strong reverse triangle property, then it has the disk template
 property. Let x0, xx, . . . , xn, xn+x, . . . , x2n be 2n + 1 equally spaced
 points on the real axis and let a, = f(x}), 0 < ; < n, and an-2 = a, an-X
 = b, an = c, where / is the Riemann mapping of the lower half plane
 onto fl. Assume f(xk) is not in U, where U is the given neighborhood
 of d = /(o?). Apply the reverse triangle inequality (10) with

 (15) X = 1 + *
 2 \nBx+log2n,

 The hypothesis implies the existence of a positive number 8 such that,
 for 0 < 8' < 8 and for \a}-x - a}\ < 8, then the are of C joining a}-x to
 aj is contained entirely in the ellipse with foci at aj-x and a} and eccen-
 tricity equal to X1. Since the Riemann mapping / extends continuously
 to the real axis, we can assume that the equally spaced points jc; are
 near enough together so that \a}- - a}-x\ < 8, for eachy.

 Let lj be the straight line segment joining a}-X to a}. Let 6y be the
 angle of turning from /y_i to /,. Obviously, the total turning 6 between

 the line segment lx and the line segment /? satisfies 161 < 16X | + ? ? ? +
 |6n| and the total length of the polygonal path made up of lx through /?
 is less than or equal to |/i | + ? ? ? + |/n|. We wish to estimate the vertical
 displacement of a0 from the straight line through an-x = b and an = c.
 This displacement is bounded by |sin 6| multiplied by |/i| + ? ? ? + |/n|.

 Let 8' = \a ? b\ = \ln-i\ = \an-X ? an-2\. The bound B on the
 ratios of distances of the form \ak - ak--\, \ak-j - ak-2]\ and \ak - ak-2]\
 leads to the bound ?log2n|/?_i| = ?1o^8' for |/i| + ??? + \l?\. For the
 method of proof of this estimate, see the proof of Lemma 6.1. The other

 factor in determining this displacement is sin 6. Since |sin 6| < |6|, it
 suffices to estimate each of the angles 6;. We apply the law of cosines
 to the triangle with vertices at fly_2, a;_i, and ar On letting |/y| + |/y_i|
 = (1 + e)|fly_2 - a}\, for sufficiently small 6y, we obtain

 a2 ^ o lflJ-2 ~ ai\2 z e;2_i<2
 K>lK/-i|
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 The bound B on the ratios \a}-2 - ?y|/|/y_i| and \aj-2 - ?y|/|//| yields

 62_! < 2e?2.

 Therefore, the total turning between lx and /? is less than or equal to
 21/2nBem. Applying this result and the assumption that e is less than or

 equal to \(dnBl+Xogin)2, we obtain the total vertical displacement is less
 than or equal to e8'. By taking a slightly smaller value of X, we obtain
 a disk template with canal height and pond height less than or equal to
 e8'. Moreover, the are abc is contained in the pond and the are of the
 quasicircle C between a0 and an-2 = a is contained in the canal. Since
 8' = \a ? b\, it is clear that the separation between the canal and the
 pond is of the order (1 ? e)8'.

 We must still arrange for the are of the quasicircle between oo and
 a0 not to reenter the disk template. In order to accomplish this, we must

 take a finer array of equally distributed points jc0, . . . , JC2m, where m
 is much larger than n. For sufficiently large m, if the are between oo and
 a0 reenters the disk template centered at am-2 and running back along
 n points, then the quasicircle C would not satisfy the bound B on the
 ratios of distances between images of symmetric points.

 Finally, we must show that the canal length divided by 8' approaches

 oo. Since the polygonal path with vertices at aj9 0 < / < n - 2, are
 trapped in a canal which is narrow compared to the length of any one
 of its sides, this fact is a consequence of the following lemma.

 Lemma 6.1. Let jc0, . . .,xnbe points on the real axis which partition
 the closed interval [jc0, jc?] into n adjacent subintervals, /, = [xt-x, jc,].
 Assume every pair of adjacent intervals satisfies

 fl-1!/,-! < |//_i| < B\jt\.

 Assume further that every pair of pairs of adjacent intervals satisfies

 B-WJ^I + 1/,-xl) <= (|/,| + |/l+1|) < B(\jt.2\ + 1/,-xl).

 Assume further that every pair of k-tuples of adjacent intervals satisfies

 an analogous inequality for k < n/2. Then \xn ? x0\ > S_1(log2Ai)|/i|.1

 ^rom quasiconformal mapping, the term log2? can be replaced by rf for some a > 0.
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 Proof Let m be the largest integer for which 2m < n. The hy?
 potheses imply that |/2| > B\jx\,

 |/3| + |/4| > B~X(\JX\ + |/2|), |/5| + ??? + |/s|

 ^B~X(\JX\ + ??? + |/4|), . . . ,etc.

 It follows that

 (16) |/i| + ??? + |/2?| ^ (1 + B~x)m\jx\.

 The lemma follows from the facts that |jc? ? jc0| is bigger than or equal
 to the left hand side of (16), that B > 1, and that m ^ \og2n - 1.

 Notice that we have used only a few of the assumed inequalities.
 Using the other inequalities, a stronger conclusion can be drawn. How?
 ever, the result given here suffices for our purposes. Since the straight
 line segments connecting at-x to at are trapped between the sides of a
 canal which is narrow compared to \at-X ? a\, we see that the canal
 length of the disk template is bigger than or equal to (log2n)8725. It is
 obvious that the pond length is between B~xh' and #8'.

 The final step is to show that iii) implies iv), that is, that the disk
 template property implies the extremal length property. To do this we
 compare three different extremal lengths of the family of curves ho?
 motopic to 71 on different Riemann surfaces. Ai is the extremal length
 of the family of curves homotopic to 71 in the disk template. Ai is the
 extremal length of the family of curves homotopic to 71 on the Riemann
 sphere minus two subarcs aad and abc of the quasicircle C. Lx is the
 extremal length of the family of curves homotopic to 71 on the Riemann
 sphere minus four points, a, b, c, and d. Obviously, Ai > Ai > Lx.
 Without loss of generality, we can assume that d = 00.

 Of course, the corresponding extremal lengths defined for the curve
 72 satisfy A2 > A2 > L2. To complete the proof of the theorem, we need
 two additional lemmas:

 Lemma 6.2. There is a function c(e) approaching 1 as e approaches
 0 such that c(e)Lx > Ai and c(e)L2 ^ A2.

 Lemma 6.3. The product of the extremal lengths Lx and L2 ap?
 proaches 4 as a, b, and c move through admissible triples into smaller
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 and smaller neighborhoods of a given point p on C if p is not equal to
 d.

 Both of these lemmas are proved by examination of the covering
 of C - {a, b, c, 00} by the plane C factored by the lattice subgroup, n
 4- wt. This covering is induced by the elliptic ^-function. Let 2P(s) =
 eu ^(1 + ^t) = e2 and 9P(st) = e3. We can assume that t is selected
 so that, after postcomposing SP by an affine transformation, ex = a, e2
 = b, and e3 = c. Of course, 2P(0) = 00. The homotopy class of 71 lifts
 to the homotopy class of a line passing through the left side and the
 right side of the period parallelogram. The homotopy class of 72 lifts to
 the homotopy class of the line passing through the bottom and top sides
 of the period parallelogram. The extremal lengths Lx and L2 are given
 by

 (17) U = ~ and U = ^^^,
 T2 T2

 where t = Ti 4- vr2.

 01 11

 .L

 FIGURE 5

 From inspection of Figure 5, it is clear that the disk template for a, b
 and c with b and c lying in the pond lifts to a strip in the plane minus
 the lattice of half periods whose extremal length on the quotient torus
 satisfies Ax/Lx < c(e). Moreover, the parallel statement is true for a
 disk template with a and b lying in a pond. This completes the proof of
 Lemma 6.2. Lemma 6.3 follows from (17) and the fact that as a, b and
 c move through admissible triples to smaller and smaller scales, the
 relative distance from b to a or c stays bounded in terms of the distance
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 from a to c and the reverse triangle inequality with X arbitrarily close
 to 1 forces b to be arbitrarily near to the straight line segment joining
 a to c. This completes the proof of Theorem 6.3.2

 Theorems 6.1, 6.2 and 6.3 give geometric ways to construct sym?
 metric quasicircles. There is also an analytic way to construct a wide
 class of symmetric quasicircles. Let cp(z) be a rational function, holo?
 morphic in the unit disk A, with following properties:

 i) cp(z) has at most simple poles and these occur only on 51,
 ii) supzinA|(l - |z|2)2cp(z)| <2.

 Let /(z) = tii(z)/ti2(z) where y\x and ri2 are two linearly independent
 solutions of the equation r['(z) = ?\y(z)r\(z) for z in the unit disk A.
 Let fl = /(A). We know that property ii) by itself is enough to force
 fl to be a quasidisk. The additional assumption that cp(z) is rational with
 at most simple poles on S1 implies that the cusp form (1 ? |z|2)2cp(z)
 defined on the unit disk A vanishes as z ?> S1. Let fl* be the domain

 complementary in C to fl and let g be the Riemann mapping from A
 onto fl*.

 Corollary to Proposition 4.1. Let / and g be constructed as above
 and assume cp satisfies i) and ii). Then the induced mapping g~x ? f
 restricted to Sx is a symmetric homeomorphism of Sx and f(Sx) is a sym?

 metric quasicircle.

 7. The complex manifold structure on the space of symmetric struc?
 tures. At the beginning of Section 4, we already defined the Banach
 spaces B and B0. As our model Banach space for the complex structure
 on the space of symmetric structures, we use the quotient space B/B0
 with the quotient norm. Recall that the complex structure for Teich?
 muller space is determined by declaring that the mapping tt : jx ?-? /^
 is holomorphic, where the holomorphic dependence on jx is determined
 by the complex structure on the open unit ball of the complex vector
 space of Loo-Beltrami differentials. Thus a mapping h defined from QS
 mod PSL(2, U) is holomorphic if, and only if, the composition h ? tt is
 holomorphic.

 2There is a unique line in the Teichmuller space of the sphere punctured at a, b, c, and ??
 along which the product L\L2 is minimum. The straight line segment from a to c is the image
 in Riemann space of that line. This is a special case of a the minimum geodesic principle for
 transversely realizable measured foliations proved by Gardiner and Masur in [10].
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 To show that QS mod 5 is a complex manifold, we construct a
 holomorphic chart for points Sg in a neighborhood of a fixed right coset

 Sg. We define a mapping ? from QS mod 5 into B/B0. ? is defined in
 exactly the same way as if in steps i) through v) at the beginning of
 Section 4, with the exception that if is viewed as defined on the right
 cosets of 5 in QS with image in B/B0. To show that if is well defined,
 we must show that if(s ? g) differs from if(g) by an element of the
 Banach space B0. The Cayley identity for the Schwarzian derivative
 implies

 (18) ^^)=?*(%^)) + %)-

 We claim that the first term on the right hand side of (18) is an element
 of B0 and that, therefore if is well-defined.

 To prove the claim, let u, and v be the Beltrami coefficients of
 quasiconformal extensions of g and s to the interior of S1. Let g^ and sv
 be these extensions. Let g* be a quasiconformal homeomorphism of
 C with Beltrami coefficient equal to u, in the unit disk A and identically

 equal to 0 in the exterior of the disk. Let s be the quasiconformal
 homeomorphism of C with the property that s?g* has the same Beltrami

 coefficient as sv ? g^ in A and s ? g* has Beltrami coefficient identically
 equal to zero in the exterior of A. Let ftbea conformal mapping of
 g^(A) onto A. Then, h ? g* = g^ up to postcomposition by a Mobius
 transformation. Moreover, if r is the Riemann mapping of s ? g^(A) onto
 A,then

 sv? g? = r ? s ? g* = r ? s ? h~l ? h ? g* = r ? s ? h~l ? g^.

 Cancelling g^ from the right and left side of this equation, we find that
 sv? h = r?s. Since postcomposition by a conformal mapping does not
 change a Beltrami coefficient, the Beltrami coefficient of r ? s equals
 the Beltrami coefficient of s. On the other hand, precomposition by a
 conformal mapping changes the Beltrami coefficient in an obvious way.
 The Beltrami coefficient v of s is equal to the pullback by the Riemann
 mapping h to the domain g^(A) of the Beltrami coefficient v in A. That
 is,

 v = v(/l(z)) wy

This content downloaded from 146.96.147.32 on Thu, 28 Jul 2016 17:03:24 UTC
All use subject to http://about.jstor.org/terms



 STRUCTURES ON A CURVE 727

 Therefore, v is a Beltrami coefficient with boundary dilatation 1 in the
 domain g^(A).

 The first term on the right hand side of (18) is

 (19) g*(if(g*s)) = ((Schwarzian deriv. of s) ? g?)g?'(z)2,

 where z is in the exterior of the unit disk. Now, Proposition 4.1 obviously

 extends to the case where QS and 5 are defined for a quasicircle instead
 of Sx. In particular, the Schwarzian derivative of the mapping s, which
 has boundary dilatation equal to 1 on the domain g^(A), is an element
 of the space of bounded cusp forms which vanish at the boundary of
 the complementary domain. Since composing with g^ and multiplying
 by g*'(z)2 is an isometry on spaces of bounded cusp forms and since this
 operation preserves cusp forms which vanish at the boundary, it follows
 that the right hand side of (19) is an element of B0 and the claim is
 proved. We have the commutative diagram:

 QS ?^ B

 QS mod 5 ?^ B/B0

 We do not know whether if is globally one-to-one. Nonetheless, it
 follows from the existence of the cross sections constructed in Section

 4 that if is locally one-to-one and a homeomorphism from a neighbor?
 hood of any point in QS mod 5 onto a neighborhood of its image in
 B/B0.

 To see that if is locally one-to-one, pick a small neighborhood of
 the identity in QS which by tt is mapped onto a neighborhood of the
 identity in QS mod 5. Suppose that if(hx) = if(h2) + cp0 for two functions

 hx and h2 in this neighborhood and that cp0 is in B0. Let hi = f? gi, i =
 1 or 2, be the Riemann factorizations of these two mappings. Then

 Schwarzian(giog2-1) = <p0(g2X(z))(g2X(z))'2.

 The right hand side of this equation is a cusp form in g2 (lower half
 plane) which vanishes at infinity and which has small norm. Therefore,
 there is a mapping /, asymptotically conformal on g2 (upper half plane)
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 and conformal on g2 (lower half plane), whose Schwarzian derivative is
 equal to the right hand side. We conclude that gx = / ? g2. Thus, fx ?
 gi = fi? f? fel ? h ? gi and so hx = fx ? / o /-1 o h2. But /i ? / ? f2l
 is asymptotically conformal in the upper half plane, which means that
 hx is in the class Sh2.

 The mapping if provides a manifold structure on QS mod 5; the
 transition functions between overlapping neighborhoods are holomor?
 phic because one can be moved into the other by composition on the
 right and right composition is a holomorphic mapping. We have the
 following theorem.

 Theorem 7.1. The coset space QS mod S is a complex analytic
 manifold modelled on the Banach space BIB{). Moreover, the projection
 mapping tt : QS ?> QS mod S is holomorphic.

 8. Vector fields for symmetric and quasisymmetric map?
 pings. From Teichmuller theory and from Sections 6 and 7, QS mod
 PSL(2, R), 5 mod PSL(2, R) and QS mod S form complex manifolds.
 It is also true that QS and 5 are differentiable manifolds. In this section
 we identify function spaces which are the tangent spaces at the identity
 to QS and 5. The tangent at the coset 5 of the complex manifold QS
 mod 5 is then the quotient of these two function spaces. The tangent
 space for QS has already been described by M. Reimann in [13].

 It is convenient to work with R as a specific realization of a circle.
 Then these tangent spaces can then be viewed as spaces of real-valued
 functions F(x) defined on the real axis. According to [13], the tangent
 space for QS consists of functions F(x) satisfying a local condition

 (QS) F(x + t) + F(x - t) - 2F(x) = 0(t) and

 |F(jc)| < 0(jc2) as jc-+oo?

 where the constant in 0(t) is uniform in x and t. The growth rate for F
 has the effect of making the function F? LIU, where L(x) = 1/jc, satisfy
 the same 0(f)-condition on bounded intervals that F satisfies on bounded
 intervals. We let (QS) be the space of functions satisfying both of these
 properties.

 For 5, the tangent space consists of functions F(x) which are in
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 (QS) and such that F and F ? LIL' both satisfy the local condition

 (5) F(x + t) + F(x - t) - 2F(x) = o(t),

 where o(t)lt approaches zero uniformly for x in any bounded interval.
 Functions satisfying (5) are the "smooth" functions in the sense of
 Zygmund, [17]. The facts that the tangent spaces to QS and S are
 described in this way can be concluded from general principles for vector

 fields of quasiconformal motions developed by Sullivan and Thurston
 in [14]. Our purpose now is to show that these descriptions also follow
 from the infinitesimal theory of the Beltrami equation developed by
 Ahlfors and Bers and the Beurling-Ahlfors extension theorem.

 From Ahlfors and Bers [2], we know that for any L*, complex valued

 function |x(z) defined for z in C there is a curve of quasiconformal
 homeomorphisms ftix of C defined for \t\ < |||x|| ~x such that

 i) f*(z) is the identity mapping when t = 0,
 ii) f* is quasiconformal with Beltrami coefficient equal to t\L,
 iii) f* is uniquely determined by t\i if it is normalized to fix 0, 1,

 and oo ?

 iv) f* is holomorphic as a function of t and its derivative in t is
 given by the following formula:

 r(z) = z + tF(z) + 0(t2),

 where the constant in 0(t2) is uniform for z in compact sets. If the
 solution f* is normalized to fix three points, say ax, a2, and a3, then the

 function F(z) is given by

 (20) F(z) =

 (z - ax)(z - a2)(z - a3) ff_\L(Qdijdt\_
 it JJ tt - ?i)? " a2)(i - a3)(i - z)'

 The function F(z) is uniquely determined by the conditions:

 a) F(ax) = F(a2) = F(a3) = 0 and F(z) has a growth rate of the
 form |z2| as z ?> oo? and

 b) the partial derivative Fz(z) exists in the generalized sense and
 is equal to |x(z).

This content downloaded from 146.96.147.32 on Thu, 28 Jul 2016 17:03:24 UTC
All use subject to http://about.jstor.org/terms



 730 FREDERICK p. gardiner and dennis p. sullivan

 We see that any complex valued function F(z) satisfying properties a)
 and b) and having a bounded d-derivative is a tangent vector to a curve
 of quasiconformal homeomorphisms /*\ holomorphic in t and normal?
 ized to fix ax, a2 and a3. Conversely, any holomorphic curve of homeo?
 morphisms fixing ax, a2 and a3 has a tangent vector F(z) of this form.

 In the special case that the normalization is at 0, 1, and oo formula
 (20) reduces to

 (20') m=-*z-z?\\  "?tt**8*1 and
 w, - m - *)

 and the growth of F(z) near oo is bounded by a constant times 11 z | log | z \ \.

 It is a consequence of formula (20) that F(z) has a | |z|log|z| | modulus
 of continuity at every point in the plane.

 Now suppose we are given a curve of quasisymmetric mappings
 /z'(jc), normalized to fix 0, 1 and o?, which is the identity for t = 0 and
 which is differentiable with respect to t for the manifold structure on
 QS. Since the manifold QS has sections in the space of Beltrami coef?
 ficients, this implies there is a differentiable curve of Beltrami coeffi?
 cients v, which are symmetric about the real axis such that H is the
 restriction to the real axis of a normalized quasiconformal mapping f
 whose Beltrami coefficient is vt. The differentiable curve of Beltrami

 coefficients v, satisfies v, = t\L 4- o(t) for some L*, complex valued
 function u, and the function F given by formula (20) is a tangent vector
 to the curve of quasisymmetric mappings ht. A simple calculation using
 formula (20') shows that

 \L{Qd?fh\

 (21) F(z + Q + F(z - t) - 2F(z)

 tt)) a-(z + o)?-(z-t))d-z)

 tt)) a- i)a + lxo*

 Since u, is bounded and the other part of the integrand is integrable,
 the whole expression is bounded independently of t and z and, therefore,
 F(x) is in the function space (QS). Moreover, if |x(z) vanishes as z
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 approaches the real axis, then for sufficiently small values of t, the
 function ^X(Q = |x(^ + z) will have sup norm less than e in any given
 compact set and will be bounded by the bound for jx outside of the
 compact set. Since the mass of the measure |d?dVtt ~ l)tt + l)tt)l
 vanishes at oo? We see that the assumption that jx vanishes at the real
 axis implies that F(x) is in the function space (5).

 Now, suppose we are given a real-valued function F(x) in the func?
 tion space (QS) or (5). We wish to create a differentiable curve of
 quasisymmetric or symmetric mappings which has F(x) as its tangent
 vector. From the Ahlfors-Bers theorem on the existence of solutions to

 the Beltrami equation, it will be sufficient to extend F(x) to a complex
 valued function with bounded a-derivative. To this end, we apply the
 Beurling-Ahlfors extension formula to the function F(x). Denoting the
 extension of F by the same letter, we let F(x, y) = U(x, y) + / V(x,
 y), where

 U(x, y) = ?- [+y F(t)dt and V(x, y) ZV J x-y

 Cx+y rx

 F(i)dt - F(t)dt
 J x Jx-y

 To show that the d-derivative of U + iV is bounded, we must show that

 Ux - Vy and Uy + Vx are bounded. But

 Uy = ~5f \7-y F{t)dt + Yy [F{X + y) + F{X ~ y)]'

 Vx = - [F(x + y) - 2F(x) + F(x - y)], and

 V = -I y y 2

 rx+y rx

 F(t)dt - F(t)dt
 J x J x-y

 + i [F(x + y) - F(x - y)].
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 To estimate Ux ? Vy and Uy + Vx, we must estimate expressions of the
 form

 (22)
 1

 b - a  ?-a\baF{t)dt -l-F{a) -\F{b)

 in terms of the bound B in

 (23)
 F(x + t) + F(x - t) - 2F(x)

 < B.

 Lemma 8.1. // (23) is satisfied for all x and all t, then the quantity
 (22) is bounded by BI2.

 Proof. Note that inequality (23) can be rewritten as

 F(x + t) - F(x) F(x) - F(x - t)
 B

 and it therefore says that for any symmetric triple x - t, x, and x + t,
 the difference between the right chordal slope and the left chordal slope
 is less than or equal to B. To estimate (22), let us first assume that a
 = 0, b = 1 and F(0) = F(l) = 0. In this case we claim that the maximum
 value of |F(jc)| for x in [0, 1] cannot be more than B/2. Assume that the
 maximum value is taken on at x = ? and that F(?) > B/2. By symmetry
 around the vertical line x = 1/2, we can assume 0 < ? < 1/2. Consider
 the symmetric triple 0, ?, 2?. The slope of the chord through (0, F(0))
 and (?, F(?)) is bigger than B. Since F(?) is a maximum, the slope of
 the chord through ? and 2? is negative. The difference between these
 two slopes is more than B and we have a contradiction of (23). We
 conclude that \F(?)\ < B/2.

 For the second step in our proof, we again assume that F(0) = 0
 = F(l) and that F satisfies (23) for all x and t. Then it is obvious that

 u:  F(t)dt\  \F(0\ ^ B/2.
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 The third step is to observe that if A(x) = cx 4- d is an affine
 mapping, then F satisfies (23) if, and only if, F 4- A does. Similarly,
 the quantity in (22) is bounded by a given number for F if, and only if,
 it is bounded by the same number with F replaced by F 4- A. In par?
 ticular, in order to prove (22) is bounded by B/2, we may assume that
 F(a) = F(b) = 0. Obviously, we may apply a translation so that a is
 translated to 0 and the statement that (22) is less than or equal to B/2
 becomes

 1 fb

 b\^t)dt  !??

 On making the substitution t = bs, we see that this last inequality is
 equivalent to

 \\ Qb~xF(bs)ds  < B/2.

 But it is easy to check that if F(x) satisfies (23) then G(x) = b~lF(bx)
 also satisfies (23). Hence the inequality of the lemma is a consequence
 of our observations about the special case when a = 0, b = 1, F(0) =
 F(l) = 0.

 Remark. One can easily show the converse to this lemma, namely,
 if the quantity in (22) is bounded independently of a and b, then F is
 in (QS).

 To obtain a bound on the d-derivative of U 4- iV, using the lemma
 we see that Uy is bounded and Vx is bounded from the fact that F satisfies
 (23). The same kind of argument shows that Ux - Vy is bounded. One
 also can see that if the number B is replaced by a quantity B(t) which
 approaches 0 as t approaches zero, then

 M,(z) = =(U+ iV)
 OZ

 approaches zero as y approaches 0. Putting all of these results together,
 we obtain the following result.
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 Theorem 8.1. The tangent space at the identity to the manifold QS
 is the space of functions satisfying the boundedness condition (QS). The
 tangent space at the identity to S is the space of functions satisfying the
 boundedness condition (S). Finally, the tangent space at the identity to
 the complex manifold QS mod 5 is the quotient space (QS)/(S). Here
 (QS) is the space of functions F which satisfy F(x + t) + F(x ? t) ?
 2F(x) = 0(t), locally and uniformly in x, and (S) is the space of functions
 F which satisfy F(x + t) + F(x ? t) ? 2F(x) = o(t), locally and uniformly
 in x.

 9. Smoothness properties of symmetric mappings. By the
 Grotzsch argument one knows that i^-quasiconformal homeomorphisms
 and, thus, their quasisymmetric boundary values, satisfy a Holder con?
 dition \h(x) - h(y)\ < C|jc - y\a where a = 1/K and C depends on
 the region. It follows that symmetric homeomorphisms satisfy every a-
 Holder condition for a < 1. More is true, however.

 If h satisfies an M-condition with M equal to 1 + e(t), then h has
 a modulus of continuity

 (24) C x exp Kf4
 In order to prove (24), we may assume we are proving continuity at jc0
 = 0 and that h(0) = 0 and h(l) = 1. This is because if h satisfies an
 M-condition then Lx?h? L2 satisfies the same M-condition for any affine
 transformations Lx and L2. Assume x is near jc0, x0 = h(x0) = 0 and
 h(l) = 1. Now use the inequality h(x) < [M/(M + l)]h(2x), which
 follows from the M-condition. Putting x = 2~n and M = 1 + t(t), we
 obtain

 i^)4Mi-#..-
 By induction, this yields

 h(2~n) < 2-"(l + e(2~x)) ???(! + e(2~")).

 Taking logarithms and assuming, without loss of generality, that e(t) is
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 a monotone function of t, we obtain (24) by comparing the integral fl
 e-? dt to a Riemann sum.

 In [6], Carleson shows that fl ^ dt < oo implies h is C1 and h'(x)
 has a modulus of continuity

 Jo f
 dt.

 Thus /* is C1+a if and only if e(t) = f. He also shows that under the
 weaker condition that /J ^ dt < o?, h is nonsingular with respect to
 Lebesgue measure and h' belongs locally to L2. Conversely, he shows
 that each of these conditions is sharp. In other words, if /J e_? dt = ???

 he constructs a quasisymmetric mapping h satisfying an M-condition
 with M = 1 4- e(t) which is not C And, if /J **? * = ??, he constructs
 a quasisymmetric mapping h with Af = 1 4- e(f) which is not absolutely
 continuous.

 Appendix on structures and coset spaces. If ^ is a pseudogroup
 of homeomorphisms of the real line, namely, a collection of partially
 defined homeomorphisms closed under composition, we can define <S-
 structures on topological one-manifolds. These are maximal atlases of
 coordinate charts with overlap transformations in <S.

 If W C <? is a subpseudogroup, we can define W structures p sub?
 ordinate to a given <? structure a and we write p C a.

 Given a <? structure a on the circle, say, we can define Ga(Sl), the
 group of global homeomorphisms of S1 which are locally in <? for the
 structure a. The group Ga(5x) acts on the *$? structures p C a by "trans?
 port of structure": the p-chart cp is sent to the P'-chart i|/ where i|/ = cp

 ? /, where / is in Ga(Sl). The isotropy group of this action at the structure
 P is just H$(Sl), that is, the group of global homeomorphisms of S1 which
 are locally in *$? for the structure p.

 If all p-structures subordinate to a are related by the transport of
 structure, then the set of p-structures subordinate to a is isomorphic to
 either of the left or right coset spaces Ga(Sl) factored by H^(Sl).

 In [11], Kuiper calculates the possible projective structures on the
 circle, up to action by Diff (S1) by transport of structure. This calculation
 has been reproduced since [11] at various times.
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