QUANTIZED CALCULUS ON S* AND QUASI FUSCHIAN GROUPS.

A. Connes and D. Sullivan

The theory of distributions works well for a number of problems involving non smooth functions such
as these generated by the variational calculus. It is however notoriously incompatible with products, i.e.
products of distributions only make sense in rare cases. The reason for that is simple since the notion of
distribution on a manifold V' is invariant under any continuous linear transformation of C* (V') while such
linear transformations affect arbitrarily the algebra structure of C*°(V). In the quantized calculus which we
propose, the differential of a function f is an operator in Hilbert space, namely:

df = [F, f].

in particular this operator can undergo all the operations of the functional calculus such for instance as:

T— T
where |T'| is the absolute value of the operator T and p a positive non integer real number.

This gives meaning to an expression such as |df|P while f is a non differentiable function. We shall show
the power of this method by giving a formula for the hausdorff measure on the quasi Fuschian circles which
appear in the theory of uniformization of pairs of Riemann surfaces with the same genus.

Our formula will invoke the operator

f(2)ldzy

where Z is a highly non differentiable function on the manifold S* and the Fredholm module (#, F) is
given by H = L?(S'), on which functions on S! act by multiplication, and F' the Hilbert transform Fe, =
Sign(n)en VYn € Z, (en)nez being the canonical orthonormal basis of L2(S1), en(t) = exp(2mint) Vt € R/Z,
n € Z. We first need to explain how non smooth functions appear in the theory of Riemann surfaces. It is
indeed, at first, somewhat surprising that a pair of compact Riemann surfaces 5 L 3" _ of the same genus,
or equivalently a pair of points in the moduli space M, does generate a non smooth function on S. Let
'=m (E_I_) = m(3__) be the fundamental group of 3", . The point is the following result of L. Bers which
provides a common uniformization for both 37, and ) _.

Theorem 1. [B] With the above notations there exists an isomorphism h : T — PSL(2,C) of T with a
discrete subgroup of PSL(2,C) whose action on Pi(C) = 52 has a Jordan curve C as limit set and is proper
with quotient 3, on the connected componenis Uy of the complement of C.

The discrete subgroup A(T') is called a quasi- Fuschian group and its limit set C is called a quasi circle. It is
a Jordan curve whose Hausdorff dimension is strictly bigger than one ([Bowen]). Let us choose a coordinate
in P;(C) = CU {00} in such a way that co € __ and use the Riemann mapping theorem to get a conformal
equivalence:

ZD—>E+CC

where D = {z € C,|z| < 1} is the unit disk. By the Caratheodory theorem ([C]) the holomorphic function
Z extends continuously to D = DU 5! and yields a homeomorphism

Z:8'=C.
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the non differentiability of Z on S? is of course a consequence of the non smoothness of the Jordan curve C.
Since the range of the function Z on S is equal to C, we see that the spectrum of the operator of multipli-
cation by Z in L?(S?) is also equal to C so that, for p > 0, the following operator:

f(Z)ldzP

where f is a function on C, and dZ = [F, Z] as above, only involves the restriction of f to the subset C of
C, and depends of course linearly on f.

We shall prove the following formula for the Hausdorff measure g on the compact set C:

Theorem 2. There ezists a smallest p € |1,2[ such that dZ € LP*°, p is the Hausdorff dimension of C.
The Hausdor{f measure p of C is given by the formula:

/ fdp = Trace, (f(2)|dZ]P).
c
Here the two sided ideal £7:°° of compact operators are defined by the condition:

N { N l\
LPOH) = {T compact, Z,‘zn(T) =0 \Z n_?}}
0
where 1, (T) is the n*? eigenvalue of |T| for a compact operator T'. For p > 1 the condition is equivalent to

(1) =0 (n75)  (n—o0).
We refer to the detailed discussion of these ideals and of real interpolation theory in Appendices B and C.

Also Trace,, is the Dixmier trace (cf. Chapter 6 section 2) which for a positive operator T' € £1* is a suitable

N
limit of the averages ﬁ 3 pn(T) (cf. D).
: 0

We have used extensively the Dixmier trace as a replacement for the integration against the volume form
in a Riemannian manifold, but Theorem 2 above shows that the domain of applicability of our integration,
using the Dixmier trace, is wider.

o) Regularity of f and the size of df = [F, f].

Here we shall just state the known results of function theory on S' which relate the regularity of f to the
size of df, measured in terms of the Schatten ideals £? (or more generally the real interpolation ideals £77).

Let L*°(S') be the von Neumann algebra in H generated by the multiplication operators. We know, with
F' the Hilbert transform in H = L%(S'), that (H, F) is a Fredholm module over the C* algebra C(S') and
thus the first natural question is to characterize these f € L*°(S!) which satisfy:

[F,flek (ie.[F,f]isa compact operator).

The answer is known (cf; [|) and involves the mean oscillation of the function f. Let us recall that given
any interval I of S! one lets I(f) be the mean: ﬁr fIf dz of f on I and one defines for @ > 0 the mean

oscillation of f by:

1

Mo(f) =sup = [19 = 100}
n<a Ul Jr

A function is said to have bounded mean oscillation (BMO) if the M,(f) are bounded independently of a.

This is of course true if f € L°(S?). A function f is said to have vanishing mean oscillation (VMO) if

M.(f) — 0 when a — 0. Let us then recall (cf. [])



Theorem 3. ([S]) Let f € L™, then

[F,fl€ k< f € VMO.

Moreover L® NVMO = (H® + C(SY))N(H" + C(S')) where H* = L*(S')N H? is the (non selfadjoint)
subalgebra of L>®(S') of boundary values of holomorphic functions inside D (cf. [S]). The algebra L™ N
VMO is strictly larger than C(S!), its elements are called quasicontinuous functions. It is a C* algebra by
construction.

The next question is to characterize the functions f € L™ for which

[F,f]e L
for a given real number p € [1, 00[.

This question has a remarkably nice answer due to V.V. Peller [P] in terms of the Besov spaces B;/ P of
measurable functions.

Definition 4. Let p € [1,00[. Then the Besov space B;’P is the space of measurable functions f on S* such
that

// [f(z+1) —2f(x) + f(z — )P t2 dz dt < co.

For p > 1 this condition is equivalent to:

//]f(x +1) = f(2)P 172 dz dt < o0

and the corresponding norms are equivalent. For p = 2 one recovers the Sobolev space of Fourier series,

fi) = Z an exp(2r int) Z ] |an)? < oo.

nel
The result of V.V. Peller is then the following:

Theorem 5. ([P]) Let f € L°(S'), pe J1,00[, then [F,fl€e LP & f € B;/p.

Forp=1and f= ft + f~ where ft ¢ H2, f € H? one has [F, f] € £! & f* € B} (cf. [P)]).

As an immediate corollary of Theorem 5 one has:
Corollary 6. Let a € ]0,1[ and f € C* be Holder continuous of exponent «, then [F, fl € LP Vp > 1.

It follows in particular that the Fredholm module (H, F) is p+ 1 summable over the algebra C* of Holder

continuous functions of exponent o > # and thus the (2k + 1) dimensional character of (M, F') makes

sense on C° for a > z1—. The formula for this character is the same as the one already given in Chapter
2%+2 g 1Y

3, section 2 Proposition 3, except for the small change due to the replacement of RU {oo} by S! = R/27Z.

Theorem 7. a) Let p = 2k + 2. The following equality defines a cyclic cocycle of dimension 2k + 1 on the
algebra L N B;/p

2k+1 2k+1 : :
F(0;) = £ (8541) 1
(foafla"'?f2k+1): daz ! ?
r / IT o II

j=0 tg (u—g' 1) tg (_.,._92;, 21_90) |
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b) Let u € L N B be such that u= € L, then u=! € L® NBY? and r(u,u=1,.. ., u,u™1) is an integer
equal to the Fredholm indez of the Toeplitz operator PulP.

It follows immediately from Proposition 8 of section 1 and the above Theorem 5. In particular if v € C¢,
a > (2k + 2)~! then the winding number of u is given by the above formula. The latter formula would

involve the difference quotients: W if we had worked with R instead of S?.
J

By Proposition 6 of section 1 the restriction of the above cyclic cocycle 7, to C*(S?) is cohomologous
to ApS*r, with 7 (f° f!) = [; fdf'. More generally the restriction of 7, to L® N B;/p, p < 2k is
cohomologous to Si_;.

We shall end this section by giving known reformulations of the Besov spaces A;l./ P={fe B;/ L f(n) =0
for n < 0}. Given f € A},/ ? we denote also by f the holomorphic function inside the unit disk D with f as
boundary values.

Proposition 8. ([S]) a) For 1 < p < oo one has f € AY? iff
[ 18P (1= 122 dz i < oo
D
b) For 1 < p < co one hasfeAzl,/p iff

/ IF]P (1 = |2])P=2 dz dF < oo.
D

One can also reformulate the condition f € A,l,/ P using the L? norm of the truncations of the Fourier series
of f, 3~ f(k) e'*?, between k£ = 2" and k = 2"*!. More precisely ([P]) one lets for each n € N, w, be the
trigonometric polynomial

2n+1

wy, = E cx e'*?

an—1

where ¢y = (k— 2771)/27~ for 2"~! < k < 2" and ¢ = (2"T1 — k)/2" for 2" < k < 2"F1,
Then the operator f — f*w, of convolution by w, is the same as the multiplication of the Fourier coefficients
f(k) by ci, these operators add up to the identity, and one has:

Proposition 9. ([P]) The space A,l,/p 1s the space of boundary values of holomorphic functors inside D such
that:

22" I wn * fll5< o0

Using w_, = W, for n < 0 one can then check that the following conditions on f € L>°(S1) are equivalent,
for any p € [1, c0l:

[F,Aecr , Y 2™ ||waxf|P< co.

nezZ

B) The class of df in £P>° /P,

Let 7" be a compact operator in a Hilbert space H, we let po(T) > p1(T) > --- be the list of eigenvalues
of |T| = (T*T)'/? and recall (appendix B) that for each N the following defines a norm on the ideal k of

compact operators:



N-1
O'N(T) = Z Nn(T)

We let (appendix B) £ be the interpolation ideal given by the condition:

N
T eLP® & on(T) = o_(z n_ll") .
1

For p = 1 this means that onx(7) = O(log N) while for p > 1 the conditions on(T) = O (Nl‘%) and
pn(T) = O(N~YP) are equivalent to T' € L£P*°,

We let £5°° C £7* be the closure in the Banach space £?'* of the ideal R of finite rank operators. One
has

N
Tely” oon(T)=o0 (Zn'll") .
1

For p > 1 this is equivalent to y1,(T) = o(n~'/?) but for p = 1 the condition y,(T) = o (L) is stronger than
T e [’.é’w, Let then p > 1 and f € (7(5'1) be such that its quantum differential df = [F, f] belongs to £
The main result of this section is that if we work modulo £§™° then the following rules of calculus are valid:

a) (df)g=gdf VgeC(SH)
b) d((f)) = ¢'(f)df Ve € C* (Spectrum (f))
¢) [d(e(INIF = &' (F)IF |dfIP.

In a) and b) the equalities mean that the following operators belong to the ideal £5'*°:

(F,flg—glF, 1], [F, () - & (NIF, f].
In ¢) the equality holds modulo ,C(ll’°°:

I, e(N)F = ' (NP IIF P € Ly,
In fact we shall prove that the characteristic values of the latter operator are o (%) which is a stronger result.

The above rules a) b) ¢) are classical rules of calculus but they are applied to a non differentiable function
f, for which the distributional derivative f’ cannot undergo the operation £ — |z|? as does the quantum
differential.

We shall thus prove: (with p € [1,00[ for a) b)).

Theorem 10. a) Let f € L*(S?) be such that [F, f] € LP> and let g € C(SY). Then [F, flg—g[F, f] € L5,

b) Let X1,...,X, € C(SY), X; = X}, be such that [F, X;] € L2 and p € C®(K) be a smooth function on
the joint spectrum K C R™ of the X;’s (i.e. K = X(S')). Then:

[F,o(X1,..., Xa)] = D 85 p(X1,..., Xn)[F, X;) € L.

c) Let p > 1, Z € C(S') be such that [F,Z] € LP*° and ¢ be a holomorphic function on K = Spectrum
Z = Z(8Y). Then:

1F, ()P = 1" (D) |[F, Z])" € LG

In fact as we already mentioned we shall prove the stronger result that u,(7) = o (%) for the operator T
appearing in c).



Proof of a) and b)
a) The map from C(S*) to £LP™ given by:

g [F, flg — g[F, f] = T(g)

is norm continuous. Thus it is enough to show that for g € C*(S!) the image T(g) belongs to £5'*°. In fact
one has T'(g) € L! since g commutes with f while [F,g] € £*.

b) The map from C°(K) to L' given by:

e [F,e(X1,...,Xa)]
is continuous. Thus it is enough to check that the statement is true for polynomials, which easily follows

from a).

The proof of ¢) involves general estimates on the map A — |A|P with respect to the norms op. We first
recall that by [D] [K] the map A — |A| is a Lipschitz map from £P*° to itself provided that p > 1.

We shall need the following lemma:

Lemma 11. Let o € |0, 1[. There ezists Cy < 00 such that for any compact operators A, B in ‘H one has:

% o (M- 181 < Cu (5 onla-D))

Proof. Let r = § so that 0 < r < -;— One has
a __ * - tr—-l dt
JA]* = (A" AY =, / -
where A, # 0.
One has

A*A BB
t+A*A t+B*B
=t(t+B*B)~! (A* - BY)A(t+ A*A)~' +(t+ B*B)! B*(A-B)(t+ A*4)1 t.

=t{t+B*B)"! (A*A-B*B)(t+ A*A)~!

Let py be the norm + o, then we get from the inequality pv (XY Z) <|| X || pn(Y) || Z || that:

A*A B*B
— < A* - B* - B A-B
o (s~ iy ) <l = B) 5 pa(A )N e (A= B)
We used the inequalities: || A(t + A*A)~! ||< #, || ¢+ B*B)~! B* ||< . Moreover since the operator
norm of 424 — B B_ ig less than 1 we get:

i+A*4A ~ 1+B*B

( A*A B*B
PN

_ ~1/2 _
T A A t+B*B) < Inf(1,¢ pn(A — B)).

We then use as in [K] the inequality:

o0 o0 2
—-1/2 r—1 r—1 -
/0 Inf(1,¢ a)t' ™ dt < /(; VSV t dt =4X5} a

so that py (|A]* —

As an immediate corollary of this lemma we get:



Proposition 12. Let p > 1.

1) Let A, B be bounded operators such that A— B € L5 then |A|* — |B|* € ﬁ{;’“’“ for any a < 1.
2) IfA,B€ LP™ and A— B € L5 then for any a < p one has [A|* — |B|* € L’.’O’/a’oo.

8) For A, B as in 2) and o = p one has pn(JAF — |BP) = o ().

Proof. 1) One has py(A — B) = o(N~-/?) by hypothesis, it then follows from the lemma that
pw ([A]* = |B|®) = o(N—2/P).

2) Let & < 1 be such that p/c is an integer k (k > 1). Then by 1) one has |A|* — |B|* € £5°°, while
|4, 1B|* € £5.

Let S = |A|*, T = |B|*. One has pn(S) = O(N~Y¥), un(T) = O(N~Y*), un(S — T) = O(N-Y*), Thus
using the inequality pin, tn,4+ny (XY Z) < pin, (X) pn,(Y) 2n,(Z) (cf. appendix B) as well as the equality

Sk —TF =" §i(§ —T)T*-it
we get that un(S* — T%) = o ().
The proof of 2) is the same.

Let us apply this proposition for the proof of theorem 10 ¢). First, as in b) we have:
[F,e(2)] - ¢'(2)[F, 2] € L™
so that by proposition 12 b) we get
I, o(DIF - I (2)IF, Z]1P € L5
Thus we just need to show that:
o' (Z2)IF, 21 - ¢/ (Z2)IP I[F, Z)FF € £5™.

One can replace ¢’(Z) by f = |¢/(Z)| and replace [F, Z} by T' = |[F, Z]| since f[F,Z]—[F,Z]f € £5*. Thus
it is enough to use the following lemma:

Lemma 13. Letp> 1, T € L7, T >0, let f bounded, f > 0 such that fT —Tf € L5*°. Then

P
fp/2 TP fp/2 _ (f1/2 T f1/2) c E(l),oo

v) The Dixmier trace of f(Z)|dZ.

Let us take the notations of theorem 1, so that I' is a quasi-Fuschian subgroup of PSL(2,C) and C C P;(C)
its limit set in P1(C). Also we let Z be a holomorphic function in the unit disk D = {z € C ; |z| < 1},
continuous on D = DUS! and which is a conformal equivalence of D with the bounded connected component
S-F of the complement of C in P,(C). By construction there is an isomorphism g — g+ of I with a Fuschian
subgroup I'y of PSL(2,R) such that:

(%) goZ=2Zogy VgeTl

where we consider PSL(2,R) = SU(1,1) as the group of automorphisms of D.

Let us first use the equality (%) to reexpress the condition
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[F,Z] e £*

in simpler terms.

Lemma 14. Let ¢ > 1, then [F,Z] € L7 iff the following Poincaré series is convergent for some (and
equivalently all) point z € 3 :

a(g) = lg'(2)|7 < oo

ger

Moreover there are constants ¢g, C; bounded away from 0 and oo for ¢ > gp > 1 such that
¢q (q) < Trace|[F, Z]|* < Cy o(q).
Proof. By construction the function Z € C(S') extends to a holomorphic function in D so that we can

apply the criterion given by proposition 8 b), which also gives an estimate on the £? norm of [F, Z] by the
following expression:

/ 122 (1= |2])1-2 dz dz.
D

For z in D, 1 — |z| and 1 — |z|? are comparable, so that we may as well consider the following expression:

/ 12/ (1= |=%) (1 - |2[2)2 dz dz.
D

If we endow D with its canonical hyperbolic Riemannian metric of curvature —1, the last expression is
equivalent to

/ A
D

where VZ is the gradient of the function Z whose norm is evaluated with respect to the Riemannian metric,
and where dv is the volume form on the Riemannian manifold D. Let then g € PSL(2,R) = SU(1,1), since
it acts as an isometry on ) one has:

| V(Zog)ll () =l V(2) || (9p) VP € D.

For g, € I'y one has Zogy = go Z so that

| V(go 2) |l (#) =l V(Z) | (9+p) VP € D.
The left hand side is equal to |¢’(Z(p))| || VZ || (p), so that:

IV(2) | (g+p) =1g'ZE)I [IVZ || (p) VPED, g€T,.

Let then D; C D be a compact fundamental domain for the Fuschian group T'y, we have the equality:

/D IVZ | dv= /D SEEr vz o)

The compactness of D; then gives the required uniformity in p € 1)y so that the conclusion follows.

Let now p be the Hausdorff dimension of the limit set C. One has p > 1 ([B]) and by [S] it follows that the
Poincaré series o(g) is convergent for any ¢ > p, and diverges for ¢ = p. Thus we get so far:
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Proposition 15. One has [F, Z] € L9 iff ¢ > p = Hausdorff dimension of C.
But in fact we need to know that [F, Z] € £7*° and that Trace,(|[F, Z]|P) > 0.
Lemma 16. One has [F, Z] € L7,

Proof. From each interpolation theory (appendix B) and the above criterion: || VZ ||€ L1(D,dv) < [F, Z] €
L7 we just need to show that:

| VZ ||e LP*(D, dv)
where the Lorentz space LP:* = L? . is the space of functions h on D such that for some constant ¢ < oco:
v({z €D |h(z)| > a}) <ca?.
Thus the proof of lemma 14 shows that all we need to prove is that (uniformly for ¢ € D;) the sequences
l9’Z(a)|; g € T belong to £:°°(T), i.e.:
Card{g € T'; |¢'(Z(a))| > a} = O(a™").
this follows from [S] corollary 10.

Next, the pole like behaviour of [}, || VZ || dv for s — py, which follows from [S], and the fact that the
residue at s = p is not zero ([S]) imply a similar behaviour for Trace(|[F, Z]|*), so that the characteristic

values

pn = pa(|F, Z]))
satisfy the following conditions:
@) pin = O(n=1/?) (by lemma 16)
B) (s=p) L ph > c>0for s € lp,p+e].

One can then use the following Tauberian lemma:

Lemma 17. ([HL][W]) Let pt,, be a decreasing sequence of positive real numbers satisfying o) B) then

N
.. 1
lim inf Tog NV Zﬂ: wh > e

Let us sketch a proof for the convenience of the reader. We may assume that p = 1, replacing p, by pf.
Then an easy calculation shows that if we define for z > 0,

afz) = Z Hn

pn2e"

then a(z) = O(z) for £ — 400, and the hypothesis ) means that there exists yy € R such that for y > yq,

| Kw=2) pe) o2 ¢

— 00

where f(z) = ﬂ:,—zz for £ € R and where

K(uy=e®™e* |, ucR.

By construction 3 is positive and bounded, thus since K € L!(R) with Fourier transform K non vanishing,
it follows from [W] that for any g € L}(R) with [ g(u) du = 1 one has
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liminf (g* 8)(y) > c.
y—oo
As a is an increasing function one easily concludes that

liminf B(y) > c.

Thus lim %ﬂ > ¢. Now since p, < ¢’ n~! one has

Z Pn 2 Z o = a(u)

n<clew Bn2e™ "

1
o) Engc'eu Un > ﬁ%, and the result follows.

We are now ready to prove the following theorem. In the statement we fix a Dixmier trace T'r,, once and for
all.

Theorem 18. Let T C PSL(2,C) be a quasi-Fuschian group, C C P1(C) its limit set and Z € C(S') the
boundary values of a conformal equivalence of the disk D with the bounded component of the complement of
C. Then let p be the lower bound of the set {¢;[F, Z] € L1}, one has p = Hausdorff dim C and [F, Z] € LP ™.

Moreover there exists ¢ non zero finite real number X such that, with p the p-dim Hausdorff measure on C,

/C f dp =2 Tro(f(Z)IIF, Z)F) Vf € Co(C).

Proof. The first part follows from proposition 15, lemma 16 and lemma 17. It also follows from this lemma
that Tr,(|[F, Z]|?) > 0 so that we can consider the measure v on C determined by the equality:

v(f) =Tro(f(2) [[F, 2]P)  YfeC(C).

We claim that this measure has conformal weight p, i.e. that for any ¢ € T one has the equality:

[rogav=[lap s aw

To prove this let g4 € PSL(2,R) = SU(1,1) be the corresponding element of ', its action on L?(S!) (viewed
as the space of % densities on S') is a unitary operator W which commutes with the Hilbert transform F.
Moreover

WZW*=Zog, =goZ.
Thus we get the following equality:

WI[F,ZIW* = [F,g0 Z].
It implies that W|[F, Z][P W* = |[F,g o Z]|P, thus:

W(fog (2)) |[F, Z)P)W™ = J(Z) |[F,g0 Z]I".
Since the Dixmier trace Tr, is a trace we thus have:
Tro(f o g™(2) |IF, ZIP) = Tru(f(2) |[F,g 0 Z]PP)

and by theorem 10 ¢) we have:

Tr,(f(Z) |[F,g 0 Z]F) = Tru(f(2)lg'(Z)IF I[F, Z]F)
so that:
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[rostav= [ 11g'F av.

It then follows by [S] that v is proportional to the p-dimensional Hausdorff measure on C.
The constant A in theorem 18 should be independent of the choice of w and given by:
—Pr(P p/2
r=7 F(2)(47r) .

We conjecture that this is true. It implies the following estimate on the best rational approximation of the
function Z. Indeed, let upn be given by the distance (in the norm of C(S!)) of Z with the restrictions to S!
of rational fractions with at most n poles outside the unit disk. Then:

pn ~ A"YP Q[P p=tp

where A = & T'(2) (47)?/2 and |C| is the Hausdorff p dimensional Hausdorff mass of the limit set C.
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