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Bounds, Quadratic Differentials,
and Renormalization Conjectures
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Introduction. Consider mixing a deck of »n cards by shuffling as usual after
turning over one of the stacks. The resulting permutations are building blocks
of the rich dynamics of mappings which fold the line. More specifically, given
such a shuffle permutation ¢ which is irreducible there is a folding mapping
f of an interval I (Figure 1(b)) and a smaller interval I, C I about the
turning point of f whose inverse orbit under f contains a disjoint finite
collection of intervals permuted according to ¢ under the iteration of f.
In fact it is known that each such shuffle permutation of intervals happens
for some member of any complete family of mappings as indicated in Figure
1(b) (Milnor and Thurston [MT], Sharkovski [Sh]).

We make use of the operator f — f|, where f| is the first return map-
pingof f to I,. This f, =(f "/1,) is again a folding mapping of an interval
and f Y fy is called renormalization. The operator R is partially defined
on folding mappings and is specified precisely by taking » minimal and I,
minimal. If R is defined and continues to be defined we define f, = Rf,
L=Rf,.... [, =Rf,_,,.... Wesay f is infinitely renormalizable of
type (a,, 0,, 0,, ...), where the o, are the shuffle permutations that arise in-
ductively. Infinitely renormalizable mappings of every type (g,, 0,, 0,,...)
occur in every complete family (Figure 1(b)).

The description renormalization comes from statistical physics. An anal-
ogy was discovered between phenomena there like critical opalescence and
one of the examples here, type (7,7, 7,...), where 7 is the permutation
of order 2 (see Figure 4 from [CT2] on page 419). This type appears at
the end of a cascade of period doubling bifurcations in any complete fam-
ily. The physicists Feigenbaum [F1] and Coullet and Tresser [CT1] working
numerically, and independently, in the U. S. and France found universal nu-
merical characteristics about this cascade and about the limit geometry of
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the type (7, t,...) orbital Cantor set. For example, in terms of any smooth
control parameter the bifurcations occurred faster and faster at a relative rate
(4.6692...)", n large. The boxes within boxes for the renormalization of
type (1,71, T, ...) had the limiting successive ratio 0.3995.... Finally, the
graph inside the tiny box became canonical. These characteristics were uni-
versal in the sense that they were computed numerically to be independent of
the choice of complete family of mappings with quadratic turnings.

Some of us have been wondering for a long time what the domain of
validity of these discoveries is and what techniques from dynamics need to be
employed or invented to make a proof. We describe results obtained over
the last few years in the following theorems.

Let us consider continuous mappings f: I — I, where I = [a, b], f(a) =
f(b) =a, and f is a local homeomorphism except at one turning point c.
To express the smoothness we require, write f = Qh, where Q: I — I is
a quadratic polynomial and A: I — I is a homeomorphism. This decom-
position is unique. We say f is a smooth quadratic-like mapping bounded
by B if h is a diffeomorphism and ¢ = log|/'| satisfies the Zygmund and
1-Holder inequalities,

(p(x+y)_¢x+¢y

2
'sle—yl and |px —@y|" < Blx —y|.

Thus, all f = Qh, where h is a Cc? diffeomorphism, are included but
our technique does not prove anything for smoothness lower than (x) which
implies logh’' has a tlogt modulus of continuity (see §1). We note that
the A satisfying (x) are precompact in C ! diffeomorphisms and any limit
satisfies (). :

The first theorem uses combinatorics, real analysis (§1), and the de Melo-
Van Strien [MV1], Swiatek [Sw] Koebe distortion technique in real dynamics
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[CT2, Figure 4] f'%(X) for R = R, is plotted on the
left part. One sees the Cantor-like structure of the asymp-
totic orbit. On the right we sketch the first steps of the usual
geometrical construction of this Cantor set.

extended to () in §2. Theorem 1 is also valid for |x|" singularities, r > 1.

THEOREM 1 (“beau” property of renormalization). If f is a smooth qua-
dratic-like mapping bounded by B, then all the renormalizations f,, f,, ...
are smooth quadratic-like mappings with a bound depending only on B . After
a number of renormalizations only depending on B further renormalizations
are bounded universally.

Using Theorem 1, the note, and the fact the critical value stays away from
a (84), we can form renormalization limits.

If fy=lim___R"f,set f; =lim/___ R%f fo=lm___ R"72f etc.,
where lim' means we take limits over subsequences. Whenever f,, f,, ...
are in the domain of renormalization (which is assured if we assume the
individual renormalization return times are uniformly bounded), then we

obtain an inverse chain of limits related by renormalization,
R R R
(**) s — n+1—»f;l—>u-—>f2—)fl—>f6,
where each f, is a smooth quadratic-like mapping bounded by some universal
B.
Denote the type of f, by 6, = (0, , 0], ...) so that &, = (,,, shifted
by one). Let 6 = m 6, be the inverse limit 2-sided infinite sequence
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6=(..,0_,,0_,,0,0,,0,,...).

The second theorem, whose explicit formulation was motivated by a lec-
ture of Curt McMullen at THES (May 1990), uses holomorphic dynamics
and quasiconformal mappings. It is valid also for analytic singularities x ,
k = 1,2,..., but remains mysterious for |x|  singularities, r real and
greater than one. W. Paluba [Pa] has recently made some progress for r real
(see also [E2] and [CEL]).

THEOREM 2 (Generalized Feigenbaum functions). For each bi-infinite se-
quence G = (...,0_,, 0y, 0y, 0,, ...) of uniformly bounded shuffles there
is one and only one analytic function F(&) which is a smooth quadratic-
like mapping, infinitely renormalizable of type (o,, 0,, 0,,...), and which
lies at the beginning of an infinite inverse chain of uniformly bounded smooth
quadratic-like mappings related by renormalization of combinatorics
(crs0_5,0_),

o f B f o fy o fy - F(6).

COROLLARY 1. For each shuffle permutation o and any smooth quadratic-
like f (ie., f=Qh,logh’ Zygmund) of type (0,0, ...) we have

lim RZf=F(...,a,a,a,...).
n—o00

Here R, means the renormalization associated to the shuffle o . For exam-
ple, the stable manifold of the Feigenbaum renormalization operator R, at
the fixed point F(...,7,7,7,...) consists of all the smooth quadratic-like
mappings of type (t,7,7,...).

If f:1I — I is infinitely renormalizable of type (g,, g,,...), then [
contains n, disjoint intervals on each of which a conjugate of f, = R(g,)f
is defined. Each of these n, intervals contains »n, intervals on which a
conjugate of f, = R(g,)R(0,)f is defined, etc. These interval collections
nest down to a closed set which is the closure of the critical point orbit of f.
We see in §3 that the total length of these intervals tends to zero exponentially
quickly in the depth of renormalization, in the case of smooth quadratic-like
mappings. Also, in the bounded type case (degree g; bounded), these Cantor
sets have bounded geometry in the sense that the ratio 7, 5 between the length
of an interval I at one level n and the length of an interval or gap B in
I, at the next level n + 1 has a bounded logarithm. Actually more is true,
for bounded combinatorics.

MAIN THEOREM (Coullet-Tresser geometric rigidity of Cantor sets). All
smooth quadratic-like mappings of type (a,, o, ...) have critical orbit Can-
tor sets with the same universal ratio asymptotics. Namely, if f and g have
type (o,, 0., ...), then uniformly in the depth n

nli—.ngo(ra,,ﬂ,,(f) - ra"ﬂn(g)) =0.
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For example, the computed self-similarity ratio 0.3995... of successive
intervals nesting down to the critical point in the period doubling examples ap-
pears in the Cantor set of any smooth quadratic-like mapping of type
(t,1,...). Also, the Hausdorff dimension of the Cantor set of any such f is
0.538045... .

This theorem, stating that quasiperiodic orbital Cantor sets of bounded
type (ny, n,,...) have a rigid geometric structure at asymptotically fine
scales, was our main objective (cf. [DGP]). In Rand [R2] and Sullivan [S3]
independent proofs were given that the rigidity of the (7, 7, 7, ...) Cantor
set follows from and implies convergence of Rf f to a universal limit. The
study here of renormalization naturally leads to a stronger theorem about the
structure of renormalization.

Let --- — f, X, fooy = -+ = f, = fi = f, be any inverse chain
of bounded smooth quadratic-like mappings related by renormalizations,
R(o,)[f,]1 = f,_,, where degree g, is bounded.

THEOREM 2'. (a) The mappings f,, are canonical analytic functions de-
termined by the combinatorics o; and a real number c € (-2, 1/4]. The
real number c is determined by the complex analytic extension of f, which
is complex quadratic-like in the sense of Douady-Hubbard. The real number
c is the unique element of [-2, 1/4] so that f, is qc conjugate to z — 2 te
on a neighborhood of the invariant set by a conjugacy which is a.e. conformal
there [DH1].

(b) For any bounded combinatorics and any c € [-2, 1/4] there is an
inverse chain (unique by (a)) with these invariants.

Theorems 1, 2, and 2’ describe the dynamics of bounded time renormal-
ization on smooth quadratic-like mappings.

(1) 4 folding mapping is either finitely renormalizable or it is infinitely renor-
malizable and under repeated renormalization it becomes universally bounded.

(ii) Any smooth quadratic-like mapping is in the image of each renormaliza-
tion R(o), but only the canonical mappings of Theorem 2’ are in the infinite
image of renormalization restricted to a bounded part of the space of folding
mappings.

(iii) We see topologically a hyperbolic set for renormalization with points la-
beled by the bi-infinite combinatorics (... ,0_,, 0_,, 6., 0, 0y, ...), unsta-

ble manifolds labeled by backwards combinatorics (..., 0_,,0_,,...) and
canonically parametrized by the Douady-Hubbard internal class c, and finally
stable manifolds labelled by the foward combinatorics (o, 0,, ...) and con-

sisting of all the infinitely renormalizable mappings of type
(0y, 0y, ...) (see Figure 2 on next page).

Along the way to Theorem 2’ we derive information about the complex
analytic structure of renormalization limits. Say a folding mapping f has
the Epstein form if f = hQ and k™! has a complex analytic injective (in
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short “schlicht”) extension to C — {x real outside an open neighborhood of
I} . We write f € E(A) if the open neighborhood of I is {x so that distance
(x,I) <A length I}.

THEOREM 3. Thereis a universal A > 1 so that if f is a smooth quadratic-
like mapping bounded by B, then any limit of renormalization, lim R% f=
F, k, — oo, has the Epstein form and belongs to E(A). Unbounded combi-
natorics are allowed in this statement.

Theorem 3 is based on the analytic estimates of the disjoint interval collec-
tions at the nth renormalization level. As we mentioned, the sum of lengths
goes to zero exponentially in n. Also, the sum of the squares of the integrals
of |dx/x| over all the intervals except the one containing the critical point
stays uniformly bounded in » (§3). This means that in the exponentially
long composition defining the renormalization,

hQ---hQ---hQhQ,
the h factors become linear on these tiny intervals and the Q factors have
a bounded effect there. The inverse is basically a long composition of square
roots—which yields Theorem 3. Now the real analysis is over and we must
begin to work in the complex plane. We analyze compositions of square roots
and schlicht mappings in §§5-7.

Theorem 3 provides preliminary information about holomorphic dynam-
ics. (See Figure 3.) Notice the inverse branches of f = hQ are of the
form §, - n! , where S, are branches of z — \/z composed with appro-
priate linear maps. These two branches have interior disjoint images. They
fit along the boundary so we can form a forward mapping with domain of
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definition the union of these two images. We obtain a holomorphic mapping
F extending f defined on a four-fold symmetric simply connected domain
containing a definite neighborhood of the dynamic interval and mapping onto
(the domain of h'l) =C—{x real notin I(1)}.

In §8, using §§3-7, we show how to cut down such a mapping after enough
bounded time renormalization so it has the form of Figure 4.

THEOREM 4. Assume bounded combinatorics (< T) and F belongs to the
Epstein class E(X). After n > n(T) renormalizations the inverse branches
of G =R"F map the geodesic neighborhoods of Figure 3 well inside and the
annulus G(D) — D has a conformal modulus > m(T).

NoTtEe. The formulation of Theorem 4 and one of the key steps in its proof
was motivated by papers of Epstein [E1, E2] and Epstein and Lascoux [EL].
A new point in the proof is a systematic use of information of Theorem 3
moving carefully up through the renormalization hierarchy.

The map depicted in Figure 4 is one of the complex quadratic-like
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mappings of Douady and Hubbard [DH1]. In the conjugacy pullback ar-
gument we make use of their insight that the annulus G(D) — D with the 0-
relation given by G is a fundamental domain for the holomorphic dynamics
of G. We go one step further (§9) and construct a Riemann surface lamina-
tion of orbits which in effect removes the branching locus singularity in the
Douady-Hubbard fundamental domain modulo side identifications. In §11
one constructs a quasiconformal conjugacy whose distortion only depends on
the universal bound on the conformal modulus of Theorem 4. The argument
is reminiscent of the one in Michael Shub’s thesis about expanding mappings.
There are new twists—complex analyticity and quasiconformality replace the
expanding property, branched coverings replace coverings so Thurston’s in-
sight about the role of the forward critical orbit is needed, and there is Mc-
Mullen’s remedy of the shrinking domain D D G 'D>G?*D> - using
the Douady-Hubbard insight mentioned above.

Given quasiconformal conjugacies we can describe all the dynamical sys-
tems of one topological form by a Teichmiiller space of conformal struc-
tures. The relevant Riemann surface lamination is studied in the appendix.
Let Q(R, T) be the complex quadratic-like mappings which are symmetric
about a real axis and are infinitely renormalizable of bounded type < T.
Let d be the Teichmiiller distance (appendix) on the manifolds of quasi-
conformally conjugate systems. Then we can use the almost geodesic lemma
(appendix) to prove Theorem 5 (§13).

THEOREM 5. There is A(T) < 1 so that for any two points x,y in
Q(R, T) there is a power of R that reduces d by a factor of A,

d(R"(x), R'(y)) < Ad(x, y).
The power depends only on the moduli of representatives of x and y (§10).

The renormalization R is defined canonically (§12) on Q(R, T) respect-
ing the operation R considered previously. It is clearly distance nonincreas-
ing, d(Rx, Ry) < d(x,y). More importantly the new R is defined on
the level of germs of invariant conformal structures near the Julia set so
Teichmiiller theory applies.

With Theorems 3, 4, and 5 in place, the proof of Theorem 2 is a limit
argument using the idea that f, is deeply embedded inside f, for n large. In
the type (1, 7, 7, ...) case Curt McMullen, motivated by the rigidity theory
of Kleinian groups, has a different proof of Theorem 4 implies Theorem 2
using a geometric limit of this embedding idea (see [Mc]). Theorem 2’ is
really what the proof of Theorem 2 yields.

Very recently Edson de Faria [deF] found the replacement of complex
quadratic-like mappings and the pullback construction in the context of crit-
ical circle mappings. Thus, one can expect versions of Theorems 2, 3, 4, and
5 in that context as well. Theorem 1 is known in that context by combining
Swiatek’s original argument [Sw] with the techniques of §3. Unbounded type
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can also be treated better for circle mappings because of work of Yoccoz [Y1]
and Lanford [L2].

Returning to folding mappings let us compare the results here with previ-
ous ones. First there is Lanford’s computer assisted proof of the Feigenbaum
calculations [L1]. It shows there is an analytic fixed point g of R and the
linearized version of R_, acting on a space of analytic functions at g, is hy-
perbolic with one eigenvalue 4.6692... outside the unit circle and the rest
inside. The small spectrum increases out to the unit circle as the regularity is
decreased. According to Lanford on a sufficiently small real analytic neigh-
borhood of g one has the expected hyperbolic picture for R_ with stable
manifold all the folding mappings in the neighborhood of type (7, 7,...).

By the above we have a global version of Lanford’s results. This fixed
point g, or that of Epstein [E1] or of Campanino-Epstein-Ruelle [CER],
etc. must agree with F(..., 7,7, 7,...) by the corollary to Theorem 2. At
F(...,7,1,7,...) we have the “stable manifold” W*(ttt,...) consisting
of all smooth quadratic-like mappings of type (t77,...). Its intersection
with Lanford’s real analytic neighborhood of g is Lanford’s stable manifold.
At F(...,t,1,1,...) we have the “unstable manifold” W"(..., 1, 1, 7; ¢).
By the topological picture (Figure 2) this curve of canonical mappings con-
structed synthetically must extend Lanford’s unstable manifold defined near
g by the computer assisted hyperbolicity results.

The critical smoothness in Lanford’s linear problem is certainly 1 +
Hausdorff dimension of the critical orbit Cantor set—although only
something weaker may be rigorously proven [L3]. By the main theorem this
dimension is a universal value. In the case of (7, 7, 7,...) it is computed
[CCR] to be 0.538045143580549911671415567..., but for the other types
(6,0,0,...)these dimensions vary in (0, 1). So this fits with our smooth-
ness class 1 + Zygmund which is contained in every C e for a < 1 butis
bigger than first derivatives Lipschitz.

Theorem 1 has a precursor in Guckenheimer [G1] in the important special
case of negative schwarzian f of period doubling combinatorics (see also
[VSK]). In the circle mapping case the first part was obtained by Swiatek
[Sw] and Herman [H]. There have been important generalizations of [G1] in
Guckenheimer and Johnson [GJ] and of our method in Martens [M]. Other
important papers involving such real bounds are Lyubich [Ly2], de Melo and
van Strien [MV2], Blohk and Lyubich [BL1, BL2], and Jakobson and Swiatek
[JS1]. Many of these results and an outline of our proof can be found in
[MV].

I am grateful for the steadfast interest and guidance provided by my col-
leagues in Europe—Collet, Cvitanovic, Douady, Eckmann, Epstein, Her-
man, Lanford, Rand, van Strien, and Yoccoz—and in America—de Melo,
Feigenbaum, Guckenheimer, Hubbard, McMullen, Swiatek, Tangerman, and
Tresser. I would also like to express appreciation to the younger mathemati-
cians Jiang, de Faria, and Paluba who listened to and critiqued arguments
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for untold hours over the last few years. Finally, I thank Wellington de Melo
who has studied the proof relentlessly and provided crucial assists at various
difficult points.
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1. Poincaré length distortion and smoothness class one plus Zygmund. In
this section (in two stages) we show that the distortion of the cross ratio
for standard 4-triples being O (scale of 4-triple) is equivalent to smoothness
one plus Zygmund. Also, the smoothness implies control on cross ratio dis-
tortions for sufficiently many nonstandard 4-triples to yield the dynamical
Koebe distortion argument of §2.

We want to study the smoothness required for a diffeomorphism % to only
distort cross ratios of small standard 4-tuples by an amount commensurable
to the size of the 4-tuple.

One cross ratio [a, b, ¢, d] can be computed by

—logla, b,c,d] = // dxdy , a<b<c<d,
s (x—y)

where S is {(x,y)la<x<b, c<y<d}.
Thus the distortion by 4, given by

[ha, kb, hc, hd]
[a,b,c,d]

log

equals [ou — (h x h)*u, where u is the measure, dxdy/(x — y)2.
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Calculating the integrand we get

1 W xh'y 1 k' xh'y
2~ 2| Of 3 |l——= >
(x=»)"  (hx=hy) (x =) (7T,
where [4'],, = average,, 4’ is the average of h’ over the interval [x, y].
Because we are assuming b —a =c—b =d —c, for every point (x, y) in
the square S the factor 1/(x — y)2 is commensurable to 1/areaS. Thus, a
small bound ¢ on log(h'xh’y/[h']iy) yields the bound & on the distortion
of the cross ratio, loglha, hb, hc, hd}/la, b, c, d].
Let us say & satisfies the local Koebe condition if for |x — y| sufficiently
small one of the following equivalent conditions holds:
2
(1) [1 = (' xk'y /I, )] = O(1x = Y.
(2) log(h'xh'y/IK'1;,) = O(x - y]).
ProrosITION. If h satisfies the local Koebe condition, then the h distor-

tion of cross ratios of small standard 4-tuples is commensurable to the size of
the 4-tuple.

Proor. The proposition follows from the above calculations. Q.E.D.
Calculating the log in (2) we get

logh'x +logh'y — ZIOg[h’]xy .

Let us replace the last term with the average taken after the log to obtain (a)
(logh'x+log h'y—2[logh'],,) with an error of twice (b) (logaverage,, ,(k')—
average;, ,(logh')).
NoTte. If both (a) and (b) are O(|x — y|), then (1) and (2) hold.
Expression (a) suggests the Zygmund condition on continuous functions:

Z:9(x)+0()—2¢ (1?) =O0(lx —y|).

PRrROPOSITION. If ¢ satisfies Z on an interval J, then the average of ¢
over J is the value of ¢ at the midpoint with an error O(length J).

Proor. Think of the uniform measure on J as two dirac masses moving
out uniformly from the center. Use the Z condition to replace the average
of ¢ at the moving points by the value at the center. Q.E.D.

CoROLLARY. If logh' is Zygmund, then expression (a) is O(|x — y|).
ProoF. Use the proposition, then the definition of Z again.

There is a converse to the corollary. Say ¢ satisfies the average property
if average;, ;0 = 3(p(x) +¢(»)) + O(lx - y|).
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ProrosITION. If ¢ satisfies the average property for all intervals J C I,
then ¢ satisfies the Zygmund property for all pairs x,y in I.

PrOOF. Apply the average property to [x, (x+y)/2], [(x+¥)/2, y], and
[x, ], and combine averages of averages to get the Zygmund property for
X,¥y.

COROLLARY. The Zygmund property is equivalent to the average property.
Proor. The corollary follows from the propositions above.
CoNcLUSION A. Expression (a) is O(|x — y|) iff logh’ is Zygmund.

Now we consider when expression (b) is O(|x — y|). We are concerned
with small intervals J and we assume /4’ is continuous. Then 4’ varies only
a little from one of its values h'(xo) = a. Expression (b) is unchanged if we
multiply 4'x by 1/a. Write (1/a)h’ on J as 1+e¢, where & is a small
function. Expand the two terms of (b) as:

logl—%/J(1+s)—ﬁ/110g(l+a)
2
(3G ) Grle5)
2
() <

Here the first term could be zero so there would be no cancellation. Thus, we

estimate each brutally with absolute values. Assume ¢ is Holder of order %

on J, |e(x)— e(y)l2 < C,|x—y|. Since ¢ is zero at x,, we get the estimate
C, -length J for the sum of the absolute values. Also, if C, -lengthJ is
sufficiently small, then the higher order terms can be ignored.

CoNcLUsION B. Expression (b) is O(|x — y|) if 4’ is Holder of order
1. The coefficient for |x — y| < ¢ is estimated by the normalized }-Holder
norm: take the sup over all intervals J of length <& of C, above, where
1+&=Hh'(x)/h (x,) for convenient x, in J and we assume C,|lengthJ| is
sufficiently small.

Let us note that Zygmund functions are a-Holder for all o < 1. However,
the «a-Holder constants are not determined by the Zygmund norm. Let us
also note the normalized %-Ht‘)lder norm of 4’ can be estimated by the square
of the usual %-Hﬁlder norm of logh'— the best C such that

|logh'x — logh'yl2 <Clx-y|.
Now we can summarize the above by the following theorem:

THeOREM. (a) If logh' is Zygmund, then h satisfies the local Koebe dis-
tortion condition. The coefficient is controlled by the Zygmund norm of logh’
and the %-Hdlder norm of logh’. Conversely,
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(b) if logh' is %-Hélder, then the local Koebe condition for h implies logh'
is Zygmund. (See Remark below for a stronger statement.)

Proor. The above discussion has been a proof of (a). For part (b) recall
from above that the local Koebe inequality implies that expression (a) plus
expression (b) is O(]x — y|). The %-Ht’)lder norm implies expression (b) is
O(|x — y|). Thus, expression (a) is O(|x — y|). But this implies logh’ is
Zygmund by the third proposition above. Q.E.D.

Other results about cross ratio distortion can be found in [MV].

ProBLEM. Derive necessary and sufficient conditions for the integral dis-
tortion to be commensurable to the linear scale. (In the above discussion we
have estimated the integral by the integrand.)

REMARK (added December 1990). Actually we can solve this problem. By a
standard 4-triple (a, b, ¢, d) we mean one where (b—a) = (c—b) = (d—c¢).
The solution of the problem is to show a homeomorphism h which distorts a
standard tiny 4-triples’ cross ratio by O(scale) is a diffeomorphism with logh’
Zygmund, and conversely. We sketch this.

The same method shows O(scale)® cross ratio distortion is equivalent to
logh' is C*, 0<a<1,and C"*', 1 <a <2, while distortion o(h®) is
equivalent to h being Moebius.

The proof consists of studying for a fine grid of intervals I 5 the approx-
imate derivatives dﬂ = |h1ﬂ}/|lﬂ| , the ratio distortions rg = ]hlﬂ,|/|h1ﬂ|
for consecutive intervals, and the cross ratio distortions ¢y = change in
In(1+ (g |( gl + gl + 1 gu]))/ gl gn]), where Ig, Iy, Ign are consecu-
tive intervals. If /; = 3 log dy and ¢, = 1logr,, then

(1) eg =1y — 5 exactly,

(2) Cp =2ty — & modulo higher order terms in &, .

One may also compare maximum ratio distortions &(¢) at two adjacent
scales and find

(3) &(2t) > 2¢(t) + c(t) + higher order terms in &(¢), where c(¢) is the
maximum cross ratio distortion at scale ¢.

To use these relationships there are two important preparation lemmas:

LEMMA 1. If c(t) is bounded on some open interval, then ¢(t) is bounded
on every closed subinterval.

LEMMA 2. If c(t) tends to zero on some open interval, then &(t) tends to
zero in every closed subinterval.

Lemma 1 follows from the four intervals remark: if for four consecutive
equal intervals the middle two are mapped to very disparate intervals, then
the Poincaré length In(1 + %) of one interval M in three others T =
L+ M + R is greatly increased by the map (see §2).

Lemma 2 uses the exact relationship between Cg and €5 to say that if

€5 > 0, then ¢ g > &p mod terms the size of cg - Then at twice the scale one
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gets at least twice the ratio distortion. Using this amalgamation many times
contradicts the boundedness of ratio distortion unless & 5~ 0 with the scale.

Now if ¢(t) = O(t*), 0 < a < 1, one uses (3) to get &(t) = O(t*), which
is equivalent to 4 being a c't diffeomorphism.

If c(¢) = O(t) we use (1) and (2) to get

(4) lﬂu + lﬂ - 21ﬂ/ = O(t) plus terms O(tz"), a < 1. Since ¢ = logh’
is a-lHélder forall a <1, we have |} [logh' —log; [ h'| = O(£**) for all
a<l.

Thus for logh’ (4) implies that the average over an interval I is the
average over the middle % with error O(|I|). Iterating this yields that the
average of ¢ over I equals the value of ¢ at the midpoint with error O(|1|).
Thus, ¢ =logh’ satisfies the Zygmund condition,

(5) p(x+8)+ p(x — 1) — 29(x) = O(1) .

Continuing, if c(f) = O(t*) for 1 < a < 2, one gets versions of (4)
and then (5) with O(¢) replaced by O(t*). Dividing by ¢ and looking at a
geometric series over the scales yields ¢'x is Cc* ', Nowif =2, we can
have (4) with error 0(t2) and then (5) with error O(tz) , which by the same
argument gives ¢’ is Lipschitz.

If c(2) is O(tz) , one can try to define the Schwarzian as lim c(t)/ £* . Thus,
c(t) = 0(t2) means £ is Moebius.

REMARK. These calculus results can be used to prove familiar results about

circle diffeomorphisms f for optimal levels of smoothness in the above scale.
The following is a scorecard:

C1+a , O<a<l C1+Zygmund Cl+zygmund
cross ratio distortion o(*) o(¢) o(t)
Denjoy’s theorem no yes yes
ergodicity of f no yes yes
renormalization is no yes yes
bounded
renormalization limits no no yes
are rotations
M. Hermann ratio no no yes
rigidity for bounded type

See forthcoming notes from CUNY.

2. The Koebe distortion argument of Denjoy, de Melo-Van Strien, Swiatek,
Yoccoz, et al. and Zygmund smoothness. Consider a composition g of many
diffeomorphisms f; between tiny intervals J; all lying disjointly in some big

interval I, f;:J;,— J,,,.
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The classical Denjoy argument estimates log|g'x/g'y|, x, y € domain g,
in terms of the ), total variation |log f: |. This will be finite, say, if f, =
f/1; and log f’ has bounded variation on 7. The proof is by the chain rule.

The new argument, called the Koebe principle for one-dimensional real
dynamics, treats the case when the factors can be divided into two groups so
that relative to some coordinate system on J

(i) for one group a Denjoy type argument can be used at least to study
cross ratios.

(ii) the factors in the other group decrease Poincaré length (a type of cross
ratio) (because of a positive Schwarzian condition) even though log f,' can
have unbounded variation.

Here if L, M, R is a partition of an interval T into three consecutive
subintervals (the left, the middle, and the right) the Poincaré length of M
in T is log(1l + -"Z%T). It is the length of M in the Riemannian metric on
T =[a, b] corresponding to the form |dx|/(x — a)+ |dx|/(b - X).

The additive change of Poincaré length (P-length) along a composition
is additive over the factors. In a decomposition such as (i), (ii) above, the
increase in P-length is controlled by the factors of type (i) because there is a
decrease for the factors of type (ii). This is the first idea (cf. Swiatek [Sw]).

The second idea is the four intervals argument. Let J, L, M, R be con-
tiguous equal length intervals and let 2 be a homeomorphism of the union
into the real line so that one of AL and hM is much smaller than the other.
Discard from the original four intervals the outer interval next to the one of
L or M made smaller, called s. Let T denote the union of the remaining
three L, M, X and let / ¢ T be the one of L or M made larger. The
P-length of [/ c T is log 4. The P-length of A(l) C AT is very large because
h(l) is much larger than A(s) and A(T) is of course greater than 4.X . Thus,
one has the analogue of complex Koebe distortion:

REAL KOEBE DISTORTION. If a homeomorphism h: I — reals does not in-
crease unit P-lengths too much the quasisymmetric distortion of interior sym-
metric triples is controlled.

More precisely, if x, y € I satisfy that |x — y| is as small as the distance
to I and z = (x+y)/2,then 1/M < (h(x)—h(z))/(hy —hz) < M, where
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M can be calculated from the bound B on the additive increase of Poincaré
length of unit Poincaré length subintervals J ¢ T where T C I, i.e., the B
defined by

(P-length of AJ C hT —P-length J C T), < B

forall J C T sothat P-length JCT=1.

REMARK. The point here as in Koebe distortion for schlicht mappings is
we go from one analytic condition (in that case holomorphic; in this case
positive Schwarzian or controlled P-length increase) to interior control on
the nonlinearity.

We describe the dynamic Koebe distortion principle for a rather general
class of dynamic systems. Let M be a compact one-manifold provided with
a differentiable structure, where overlap homeomorphisms 4, are continu-
ously differentiable and the log h; 5 have bounded Zygmund norm (see §1).

Suppose f: M — M is a smooth mapping with finitely many critical
points where f' = 0. At a nonsingular point assume log f’ is Zygmund. At
a singular point ¢; suppose there are coordinate systems in the (1+Zygmund)
structure so that f takes the form x — |x|"+wv, or x — (signx)(|x|") +v,,
where r; > 1.

Assume we have a long composition g of diffeomorphisms f;: J, — J; ,
where the J; are disjoint in M and fi_1 = f restricted to J ;. Quasisym-
metric distortion is defined informally above and formally in §3.

THEOREM. For the composition g the increase in Poincaré length and
therefore the interior quasisymmetric distortion of g in domain g is con-
trolled by constants of the coordinate systems and local models of f , indepen-
dent of the length of the composition g .

Proor. We first need a lemma.

LEMMA. If h is a diffeomorphism of the unit interval I, logh' is Zyg-
mund, T C I is a tiny interval, and J C T has unit Poincaré length, then the
Poincaré length of hJ C hT is 1+ O(length T'). The coefficient is controlled
by the Zygmund norm of logh' and the L-Hélder norm of log h' squared.

PROOF OF THE LEMMA. We have proved this in §1 when J sits in the
middle of 7. In general J may be tiny and near one end of 7. We have
to calculate the integral of §1 over the rectangle R of Figure 2. Control
on the integral yields that the control on P-length changes for 4-triples of
P-length ~ 1.

Using the local Koebe condition, and the fact that for a point in R the dis-
tance to the diagonal and the vertical distance to the diagonal are equivalent,
the integral takes the form

b
a-/ Lowat,
a l
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where a ~ lengthJ ~ distance(J,d7T) and b ~ lengthT. This yields
alogb/a which has order b when a and b are commensurable. This is
the case already discussed. Otherwise, if a < b, alogb/a is much smaller
than b. This proves the lemma.

PrROOF OF THEOREM. (i) As we go along the composition a Poincaré length
is decreased if we are entirely within one of the coordinate systems for the
singular point models because f ~! has positive schwarzian there and maps
of positive schwarzian decrease Poincaré length (de Melo and Van Strien
[MV1], [MV2]).

(i) There are finitely many possible transitional cases for long intervals
which do not fit inside one model or the other. We will not discuss these
further. They are finite.

(iii) Finally we have the factors where the lemma applies. We view the
lemma as saying intervals J C T of any P-length > 1 cannot increase by
more than the multiplicative factor 1+ O(length 7") . By disjointness of the
orbit of T this effect is controlled by the total length of M. Q.E.D.

For an alternative exposition of the theorem see [MV].

3. The a priori real bounds (proof of Theorem 1).. Let f: I —1, f(a)=
f(b) =a, I =]a, b], be a smooth quadratic-like mapping, i.e., f = Qh,
where Q: I — I isa quadratic polynomial and 4: I — I is a difftfomorphism
with logh’ Zygmund. Recall we bound % in terms of ¢ =logh’ by the best
B so that forall x,y in I,

PEIZO0)_p (£52)| <Blx-sl.  Iptx) - P < Bl -y,

We say that f is bounded by B.

THEOREM 1 (“beau” property of renormalization). Any sequence of renor-
malizations of f is bounded in terms of B and after a number of renormal-
izations depending on B the bound is universal and independent of B .

Proor. We will continually meet bounds with the properties of the the-
orem. We say such a quantity is “beau” (bounded and eventually univer-
sal). We will number some useful statements developed along the way. Let
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{1,2,3,...} denote the forward orbit of the critical point ¢ and let I i
or I(j) for j=1,2,...,q, denote the intervals bounded by {j, j+q,},
where the nth renormalization of f is defined by R"f = f%/I' and I' >
I(g,). In Figure 1 M is I(q,), the interval containing the critical point, L
is its neighbor among the I f mapping to the neighbor W of V =1, the
interval containing the critical value, and R is the other neighbor among the
I of M. L is the mirror image of L and it lies in the gap g between M
and R (see Figure 2).

To derive the “beau” property of the bounds we first go through all the
steps to get some bound, then we go back through the steps again to achieve
the eventually universal property. Let (I, J) denote the smallest interval
containing I and J.

(1) Thereis A > 1 independent of n so that diameter(L, M) > Alength M .

Proor oF (1). Suppose I, among the [/ f is smallest, and s > 2. By

the next item (2) Vel I, — I  has an inverse branch defined on I
and its immediate neighbors, which are longer than I . Using Koebe (§2),
diameter(W , V) > A’ length V.

Now we use the fact that 4~ controlled by B and Q'1 has bounded
quasisymmetric distortion to do the one more preimage required and to treat
the cases s=1 and s =2.

DErFINITION. The quasisymmetric distortion M(q) of a homeomorphism
g of an interval I is the sup of log|(q(x) — q¢(3))/(q(¥) — q(2))| over all
symmetric triples x, y, z in 1.

(2) 1 I -1, has a continuous inverse branch defined on the span of

I, and its immediate neighbors among the I_.



BOUNDS AND RENORMALIZATION CONJECTURES 435

FIGURE 3
I
(SD
>
<l

_

FIGURE 4

ProoF OF (2). Each endpoint of an I; is the image of the fold and these
are oriented as in Figure 3. This is true for 7, because g = f q"/In is a
unimodal map and its endpoints are the critical value of g and its image. It
is then seen for the other intervals by applying the dynamics.

Now any inverse branch defined near x for the kth power of a folding map
has a maximal interval of definition which is bounded by either endpoints of
the original interval I or by the forward images of the critical point whose
folds point away from x . See Figure 4.

For f] these limiting points cannot be the endpoints of I i1 which are
{j+1,j+1+¢q,} because j is smaller than each. Thus, these can only be
the outer endpoints of the neighbors or further away. Q.E.D.

(3) REMARK. It seems we cannot proceed without the combinatorial fact
(2) which was the breakthrough point for Theorem 1.

(4) Any composition of inverse branches of length | starting at I f for | <
j has quasisymmetric distortion bounded on I ; plus a definite proportional
neighborhood. '

PROOF OF (4). Any f~/ for j < g, is defined on span (LMR) by (2)
so by (1) and Koebe all these have bounded quasisymmetric distortion on a
definite neighborhood of Af . Call this extra room the “Koebe space.” Now
we can move the Koebe space around M around to each of the intervals and
apply Koebe again to obtain the proof of (4).

(5) Now we would like to repeat the above argumentation using the bigger
(official) renormalization intervals I; , namely the appropriate subcollection
of the inverse orbit of I' c I, where g = f%/I' is a smooth quadratic-
like mapping, in the above sense, g(8I') c 8I' . These intervals are interior
disjoint and bounded by the points of a periodic orbit and some of their
preimages. A modification of the above is required. Point (2) fails literally.

However it only fails finitely. Namely, in the inverse of f Y ; — Ij'. +1 there
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Thus, we may factor f = on the span of Ij'. 41 and its immediate neighbors
into at most three compositions where Koebe (§2) applies, interposing at most
two quasisymmetric maps given by the Q_1 factors. There is one dangerous
possibility that must be excluded. If the first Q_l factor cuts away most
of the Koebe space it follows that diam(L’, M') is very large compared
to diam M’ , where we use the prime analogue of the notation of Figure 1
(see Figure 5). If so we pick up the previous argumentation at point (4).
Then if at some point Koebe space is cut away as we pull back the triple of
intervals (L', M’, L), then for the composition up to this point we must
have L' »---—> V' and M — ... > W' — L'. The second composition is
gs by Koebe. Thus, the relevant critical point is quasicentered in L' because
the critical point of M’ is centered in M’ . It follows by Koebe the first
composition is gs on part of L' between the critical point and M’ . Then
the critical point of ¥’ is not too close to W' relative to diam(#'). Thus,
the loss of Koebe space is controlled at this one dangerous moment, which
is the only point different from the previous argumentation.

This proves we have statement (4) with I; replacing 1.

(6) Note we have shown the analogue of statement (1) with the correspond-
ing prime notation: There is a A' > 1 independent of n so that diameter
(L', M) > 1" length M.

(7) The total length of the intervals I; decreases by a definite factor each
time we renormalize.

ProoF oF (7). Consider a sequence of renormalizations of combinatorics
0,,0,,...,0, of degrees of n ,n,,...,n, . Apply point (6) to the com-
posed renormalization to find a gap next to the critical point interval of size
comparable to it. By point (5) we can move this gap around to be adjacent

may be one or two Q_1 factors with poles in images of the neighbors of I]'.

to each of n , n,, ..., n, intervals.
Now think of this ¢, 0,, ..., 0, renormalization as a ¢, renormaliza-
tion of the o,, ..., g,_, renormalization. We see these moved around gaps

among the new gaps of the o, -renormalization. This shows the length de-
creases by a definite factor because of our constructed gaps in each g, packet.

(8) Each of the bounds is “beau.”

ProoF oF (8). The total length of the intervals goes to zero at an exponen-
tial rate whose constants depend on B. But then the accumulated effect of
h on the above bounds tends to zero exponentially fast at a rate depending
on B. All the other considerations were independent of f and B. Thus,
any bound derived as above is “beau.”

(9) In a linear coordinate system where x = 0 is the critical value define
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the nonlinearity of an interval J to be [,|dx/x|=n(J). Then ¥'n(I.)* =
O(1), where we sum over all the intervals except the critical value interval—
which has infinite nonlinearity.

Proor oF (9). If we move around through the entire circuit we can study
how the Poincaré lengths of I; , in a neighborhood where the inverse
branches are injective, are altered. We can choose this neighborhood to be
definite since each I. C I’ contains a point roughly centered (because this is
true for j = g, , then use (5)) and we have (2). The effect on Poincaré length
is bounded by (5) on the one hand and can be calculated in terms of the sum
and a bounded effect due to ~. By the same reasoning as in (8) the bound
is “beau.”

(10) Now look at the entire renormalization down to some level. We see
a long composition of 4’s and Q’s making up the diffeomorphism 4, in
the decomposition R"f = Qh,, . All the partial compositions are uniformly
quasisymmetric by (5). Thus, they are uniformly Holder of some exponent.
A Q7' factor on I, has B-norm ~ (nID[)2 and the total B-norm is bounded
by (9).

Consider each factor of the composition as acting on a definition neigh-
borhood of its dynamical interval among the I, . Rescale each of these larger
intervals to be a standard interval and consider an exponentially small subin-
terval J . For each partial composition the image of J is also exponentially
small by the the uniform Holder property coming from the uniform qua-
sisymmetric bound.

Applying the Zygmund control on 4 and (9) we see the distortion of
standard cross ratio on the scale of J is exponentially small. This implies
(last remark §1) that on the rescaled dynamic interval inside the standard
interval the quasisymmetric distortion is exponentially small. This calculus
exercise shows such homeomorphisms are uniformly C I , for appropriate
a (and conversely). We take from this that the first derivatives of all par-
tial compositions of the rescaled dynamic intervals I; to itself are on the
order of one. Repeating the cross ratio argument using this Lipschitz control
yields O(scale) distortion of cross ratio of standard 4-tuples. Lipschitz plus
O(scale) control implies B-bounded on a closed subinterval (§1). Q.E.D.

4. Renormalization limits and schlicht mappings—the Epstein class. Let us
go one step beyond the “beau” property of the sequence of renormalizations
of f, discussed in the previous section. We assume f: I — I is a smooth
quadratic-like mapping bounded by B which is infinitely renormalizable with
combinatorics ¢ = (d,, g,,...). Let f, f,,... be the sequence of renor-
malizations of f and write f, = Q,h,, where Q, is the quadratic polyno-
mial Q,:1 — I satistying Q,(a) = Q,(b) = a and Qn(c') = f,(c), where
¢’ is the critical point of Q, and c is the critical point of f, h,: I — I is
a diffeomorphism, and 91 = {a, b}.
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THEOREM. The family of renormalizations {f, = Q,h,} is precompact in
the sense that the critical value of Q, is bounded away from a and {h,} is

precompact in the C I+a topology on diffeomorphisms for any a < 1. Any C 0
limit of the f, is a folding mapping in the symmetric form hQ and h~' has
a complex analytic injective extension to C — {x real but not in a universal
neighborhood of I}. Also, Q, — Q and h, — h in the C'™*™ topology for
any a<1.

DEFINITION. If J D I is the neighborhood of I where k™! of the theorem
is defined we say f = hQ belongs to the Epstein class and we write f € E(J).

REMARK. We will see later the limit only depends in the bounded combi-
natorics case on the type g = (g,, 0,,...) of f.

ProoF. In the long composition
R'f=Qh---QhQhQh/I,

(29, factors) all the & factors are becoming linear exponentially fast in 7 in
the sense that the sum of all their B-bounds is tending to zero exponentially
fast (see (9), §3). Also all the partial compositions up to the last Q on
the right are B-bounded by the work of the last section. In fact all this
was seen to be true in a definitely larger neighborhood. Using the Lipschitz
property of composition as a map from C'*® x C'** - C* we can remove
the & factors one at a time. Thus, R”f can be written in the Epstein form
with an exponentially small error in every C*, a < 1. Note the resultant
composition of Q’s being schlicht is controlled by its action on two interior
points of the interval.

Then we use the corollary below and the boundedness of %, to see that
Q'(a) is bounded from below. Thus, Q, is bounded away from the zero
quadratic polynomial. We can form limits and the above estimates prove
what we want. Q.E.D.

Now we turn to the corollary which needs a lemma:

Let f: 1 — I be any folding mapping with f(a) = f(b) = a, 0l =
{a, b}.

LEMMA. Either (a) there is no fixed point between the boundary fixed point
and the critical value; (b) there is a smaller box (as in Figure 1(c) of the
introduction understood for n = 1); or (c) no renormalization is possible, for
n>1.

Proor. If there is a fixed point p between a and c, consider the box
on p. If it contains the graph we have a smaller box. Otherwise, the critical
value in two iterates lands in the invariant interval [(a, p)]. In this second
case there is no interval about the critical point whose images are interior
disjoint and which returns to itself under some iterate.
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CoRrOLLARY. For a minimal renormalization f which is further renor-
malizable, f(x) > x for a<x <c (if f(c) is a maximum).

ProOOF. By the lemma f(x) = x for some o < x < ¢ implies that either
there is a smaller box or no further renormalization is possible. The other
possibility f(x) < x for a < x < ¢ implies the critical value is forward
asymptotic to a, so no further renormalization is possible.

(CoNVERSE) REMARK. A box for f™ satisfying f"(x) > x for a, <x <c¢
has interior disjoint images under the preimages of f following the critical
orbit backwards.

Proor. These preimage boxes define conjugate boxes. These can only
overlap at the orientation preserving fixed point.

5. Composition of roots and the sector theorem. Let [a, b] = I be an in-
terval on the real axis. Let S = S(a, b) be the set of injective holomorphic
mappings (schlicht mappings) of C—{x realnotin [a, ]} which are homeo-
morphisms of [a, b] to itself and preserve the two half planes. Then S(a, b)
contains left and right square roots, branches of /z followed by linear trans-
formations defined on C —slit, where the slit is a real ray complementary to
[a, b].

We consider a composition of elements from S(a, b) of the form

AnCn Tt AZCZAICI

satisfying:

(i) 4,,A4,, ..., A, are left square roots and C,, C,, ... are general el-
ements of S(a, b).

(ii) A, has a singularity at a (i.e., the slit for 4, is (—o0, a)), and q; =
singularity of 4; moves away to the left exponentially fast, i.e., if |a—b| =1,
then k < |a,,, —al(la,—al)”' <K for i=2,3,..., 1<k <K <oo.

(iii) If I, denotes the maximal open interval on which C; extends to
a diffeomorphism into the reals, then C;I; contains (a;, a). Moreover, if
J,.' = J; plus A-proporational space on either side, where J; = C,.'l(ai ,a),
then J/ C I,.

SECTOR THEOREM. Thereisa 6 depending only on (k, K, A) so that the
image of the upper half plane by the composition A,C, ---A,C, is contained
in the sector 0 < arg(z —a) < — 0 (see Figure 1 on next page).

PrOOF. (i) The regions of the upper half plane cut out by circles passing
through a and b are Poincaré metric distance R neighborhoods of the
geodesic (a, b) in C — {x real but not in (a, b)}. By Schwarz’s lemma
these are mapped into themselves by any element or any composition from
S (Figure 2 on next page).
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(ii) The composition C; is injective on C—{real x notin I;} (assumption
(i1)) and Jl.' C I;. So by Koebe distortion C; yields a bounded from linear
distortion mapping of a bounded shape neighborhood in the upper half plane
U, of J; to a bounded shape neighborhood in the upper half plane V; of
(a;, b) (Figure 3). Since C; fixes the two points {a, b} it only distorts the
Euclidean metric on the neighborhood by a bounded factor.

Now we prove the sector theorem. The statement is obvious for n =1,
so assume n > 2.

Start with any point p, in the upper half plane and define p, such that
p, = A,Cp,,...,p;,, = A,Cip; for i > 2. First note that p, lies to the
right or on a vertical line at a. There are two cases as i increases:

Case 1. p; is far from (a, b) relative to the singularity a, of 4. Pre-
cisely p; does not belong to U,. Then p, , isnotin 4,C;U; = 4,V;. Now
A;V; contains all the points of the strip {y > 0, x in (4,4;, a)} in a rect-
angle resting on (4,a;, a) with height a definite fraction of the base. Thus,
the angle of p; as viewed from a is large and stays large after application
of A4,C;. This is so because A,C,p; = p,,, lies to the right of the vertical
line at 4;a, and above the rectangle at the bottom of the strip (Figure 4).
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Case 2. Thereis a first i so that p; € U, . At this point we may assume the
angle as viewed from a is large using Case 1 and the fact that p, is to the
right or on the vertical line at a. Then one applies a fixed number / of the
factors A4,C,, A;,Ciiys ... until a, ; is much farther away from a than
p;,; - This happens because of assumption (ii) and statement (i) of the proof
in case p; lies in the Poincaré ball (Figure 2) of scale p,. (The contrary case
can be reduced by Koebe and induction to this case, and we leave this for
the reader.) During these / iterations the angle as viewed from g is only
boundedly distorted elementary geometry and the Remark below show. After
that, the subsequent factors A4 jC . for j > i+ only cause a sequence of
distortions decaying geometrically by assumption (ii) (see Remark below).
Thus, the angles of p,, p,... remain large in all cases.

REMARK. If a holomorphic mapping is schlicht on C — {x real but not in
an interval I}, then it has bounded distortion on any region as R, in Figure
5 on next page. The constants depend on the geometry of R, . Also, it has ex-
ponentially small nonlinearity on a region such as R, which is exponentially
small.

Applying the first remark / times (/ fixed) yields a bounded distortion
in the above paragraph. Applying the second yields the geometric series of
distortions used above. Q.E.D.
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6. The factoring of the sector theorem. Consider an infinitely renormaliz-
able mapping f: I — I of combinatorial type < T with critical point ¢ and
critical value v. Let %], %,,...,%,, ... be the interval collection at each
level. Let I;(c) € &, and I;(v) € &, denote the intervals containing the crit-
ical point ¢ and critical value v respectively (Figure 1). Assume f = hQ,
where £~! hasa complex analytic injective extension to C — {x real not in
J DI} and Q is a quadratic polynomial, i.e., f belongs to the Epstein class
(§4).

Consider the basic backwards composition f(n) from I, (c) to I,(v) pass-
ing through each nth level interval in &, . Define the scale of a factor f -
of f(n) to be the largest s so that its domain interval at level » belongs to
I (v).

Divide the composition f(n) into epochs by: epoch n — 1 is from the
beginning of the composition up to and including the last factor of scale
n—1, epoch n—2 is from there up to and including the last factor of scale
n—2, etc.

In epoch j mark all the left intervals of scale j, where a left (right)
interval of &, is one dynamically related to 1, (v) by an orientation reversing
(preserving) map. A left (right) root is by definition the part of the factor
f ~! starting at a left (right) interval corresponding to Q'1 in the factoring
f=hQ. Let C, denote the part of basic composition between two marked
left roots.

The backwards composition from I (c) — I (v) at level s restricted to an
nth level interval in I (c) is called a basic map at level s.

PROPOSITION. Suppose the marked left root just after some composition
C, has scale r. Then C_ is a finite composition of basic maps at level r,
right roots at scale r, and restrictions of h™'. The number of each is bounded
in terms of the bound T on the combinatorics.

ProoF. Claim: The last visit during epoch j to an nth level interval
in [ j(v) lands on a left interval. (This useful observation was made by
Wellington de Melo.)
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FIGURE 1

ProoFr oF CLAIM. Consider the jth renormalization fj of f preserving
I;(v). Now fj is unimodal so it maps [,(v) to the interval J, furthest
to the left in I j('v) by an orientation reversing mapping. Thus, J, is a
left interval and we see that under the backwards composition starting at
I;(c) the inverse branches of f; run through all the intervals of %, in I;(v)
arriving last at J, and then going on to 7,(v). This proves the claim.

Now by construction each epoch j is decomposed cleanly into basic maps
of level j and single factors f -1 starting at intervals of scale j. By the
claim the C_ either run between two left factors at scale j or start just after
the last visit to 1;(v) and run to the first left factor at scale j — 1. In either
case we have the structure required by the proposition. Q.E.D.

CoroOLLARY. C, satisfies property (iii) of the sector theorem relative to
the immediately following left root.

Proor. We use the above proposition. Let a; be the center of the left
root following C, at scale r. In §5 we have linearly renormalized all factors
to fix {a, b} and |a—b|= 1. In these terms the right roots of C, at scale r
are to the right of (a, b) at distance commensurable to |a; — a| because of
bounded geometry of the Cantor set. Also, by the bounded structure of basic
maps at level r these have bounded distortion between intervals containing
the dynamic intervals at level r with space on either side. Thus, the region
of control for each basic map covers the interval (a;, a) plus space on either
side because a; is in the dynamic interval at scale 7.

The fixed number of right roots, the fixed number of 4 factors, and the
fixed number of basic maps only disturb this control a fixed amount. Q.E.D.

Finally we make explicit the connection between the marked left roots
here, the C, between, and the factoring

AnCn o 'A2C2A1C1

of the sector theorem (§5). We let 4, be the marked left root at scale n — 1
closest to I,(v). We let 4,, 4,, etc. be the subsequent marked left roots.
Finally, the C, are the in between compositions, as expected.

PROPOSITION. Assume f = hQ is of the Epstein class. Then the above
composition satisfies hypotheses (i), (ii), and (iii) of the sector theorem, at
level n.
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ReEMARK. The dependence of the constants (k, K, 1) on f=hQ and n
is “beau” as in §3.

PROOF. (i) is true by definition. (iii) is the above proposition. (ii) follows
directly from bounded combinatorics and bounded geometry of the Cantor
set.

We note only for (ii) that there are always left roots of scale j in epoch
j (see the proof of the claim above).

Also, bounded combinatorics controls the number of marked left roots in
epoch j because they lie in disjoint intervals at level j. Q.E.D.

7. The sector inequality. Suppose ¢ < ¢’ < b’ < b < a in the reals and F
is a schlicht mapping of a hemidisk D of radius R and center b’ to a sector
with angles (6, 7/2) resting on (a’, b') in the upper half plane H .

Let N be the geodesic neighborhood of (a, ¢) in H corresponding to the
Euclidean disk of radius R whose boundary passes through {a, ¢} (Figure
1). Assume 6 is fixed, all nonzero distances between {a, b,c,a’, b, ¢’}
are of order 1, and F carries {a, b, c} to {a’, b, ¢'} in order.

THEOREM. For R sufficiently large and R/R sufficiently large compared
to R, N contains F(N) plus all the points of the upper half plane within a
definite Euclidean distance to F(N).

Proor. (1) Let y be the Riemann mapping of the upper half plane to
the sector carrying (0o, a, ¢) to (00, a’,c’). Let U(R) denote w(D(R)),
where D(R) is the hemidisk of radius R centered at b'.

(2) If U is a simply connected domain with arc y on its boundary and
F is a complex analytic mapping of U — U which is continuous at y and
preserves y, let U and F denote the double of U and F along y. Then
? is a geodesic in the Poincaré metric of U preserved by F. By Schwarz’s
lemma F preserves the neighborhoods of y of Poincaré distance < ¢ for
all ¢c>0.

Thus, F preserves these regions intersect U . Abusing language we call
them Poincaré geodesic neighborhoods of y in U (see Figure 2).

(3) The Riemann map ¥, outside a fixed neighborhood of the corners
(a,b,c) and d', b', ), is the composition of a fractional power of z, z%,
and a mapping of uniformly bounded distortion of the Euclidean metric.

We will comment on the geometry ignoring this map of bounded distortion.
For example, U(R) is the intersection of the sector with the hemidisk of
center b’ and radius R* (here o= 1/2—6/n).

(4) Our schlicht mapping F is then the composition of this power law
and some schlicht mapping G of U(R) into the sector which fixes {a’, c'}.

(5) Let y be the arc of the boundary of the sector from a’ to ¢’. Then
by the argument of (2) G takes the Poincaré geodesic neighborhoods of y
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FIGURE 2

in U(R) into the Poincaré geodesic neighborhoods of y in the sector S
preserving or decreasing “distance to y.”

(6) The boundary of S and boundary of U(R) only start to differ at
Euclidean distance R® from y. Thus, the geodesics much closer to y than
R* are about the same for U(R) or for S. So G does not move these
neighborhoods too much. (To see this one can use the fact that the Poincaré
metric of a simply connected plane domain is comparable to the Euclidean
metric times the reciprocal of the Euclidean distance to the boundary.)

(7) Now a fairly large geodesic neighborhood N of (c, a) in the upper
half plane is carried by w well within the sector (using (3) and our lower
bound in the angle 6) to a geodesic neighborhood of y = (¢, a’) in the
sector. By (6) G does not move it very much. Thus, the composition F
does what we want in the geodesic neighborhood N corresponding to the
circle of radius R so large that the power law beats the bounded distortion
part of (3). Q.E.D.
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Modified sector inequality. Replace the hemidisk D of radius R in the
previous section by the largest “Poincaré neighborhood” M of (c, a) in the
upper half plane contained in D (see the above proof). Suppose F is a
schlicht mapping of M into the sector which is continuous on (c, a) and
carries {c, b, a} inorderto {c', b’,a’}. Let N as above be the Poincaré
neighborhood of (c, a) of Euclidean diameter R.

MopIFiED THEOREM. For R large and R/R sufficiently large compared
to R, N contains F(N) plus all the points of the upper half plane within a
definite Euclidean distance to F(N).

ProOOF. Let oo € O M be the highest point of M . Let ¥ be the Riemann
mapping of M to the sector carrying {cc, ¢, a} in order to {co, ¢ , a'}.
As R approaches oo, ¥ approaches the Riemann mapping y of the pre-
vious proof uniformly on N since R is fixed. Then the proof above can be
modified by continuity considerations to work here.

8. The complex quadratic-like mapping produced by renormalization. Let
us work with renormalizable mappings f = AQ: I — I of combinatorics
< T of the Epstein class E(J), I C J. After some renormalization we can
assume J contains a definite neighborhood of I and that the real bounds
on the critical orbit hold §§3, 4.

THEOREM. For any n > N(T) the nth renormalization g = R"f has a
complex analytic extension G to some disk D C C so that D — G(D) is
proper of degree two and G(D)— D has conformal modulus > m(T) > 0 (see
Figure 1).

ProOF. Let f(n) denote the backwards branch going from the critical
point interval I, € €, to the critical value interval I, v € €, .

Let (a, ¢) denote the maximal interval where f(n) is a diffeomorphism
into the reals and let (@, ¢) = f(n)(a, c¢). Let {£a, £(c')} be f_l{a, c}.

By the sector theorem and §6 the image by f(n) of the upper half plane
is in the sector 0 < arg(z — @) < @ — O(T) since we have arranged that J
contains a definite neighborhood of I and the real bounds on the critical
orbit hold.

Now apply two branches of f ~! to the sector (obtaining Figure 3(a), and
(b)) applied to any geodesic disk on (a, c¢) of radius less than that of one
contained in the region of bounded nonlinearity of h! (e.g. < scale of J).

There are several points to make.

(1) It is simple to see that gJ:lM in Figure 3(a) lies in a sector 7/2 <
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arg(z —d') < m — 6,(6, < 6) because we have only applied a bounded
distortion map ' toa piece of the sector in Figure 2 on previous page and
then a right root. Here gﬁfl = f+_1 f(n).

(2) The same remark applies to i (n) = g_' and g__l(M) (Figure
3(b)).

(3) By the proposition below, distance(c, b') and distance(a, b') are each
a definite factor greater than distance(a’, b'), where b’ is the critical point
of R"f.

(4) If n(T) is large enough, then M can be taken large relative to N in
the sector inequality for some N C M with N large relative to (a, ¢). This
yields Figure 4 on previous page.

Now we reflect across the x axis to obtain Figure 1 and the result. Q.E.D.

ProPOSITION. Distance(a, b') and distance(b’, ¢) are each greater than
distance(a’, b') by a definite factor.

Proor. We use what de Melo calls the basic fact, (a, c) contains the
critical point interval I, € %, and its two immediate neighbors. Call these
the three intervals. Also a' is a critical point of f% , where R"f = f% /I
which is closest to b'. Thus, 4’ lies in one of the preimages of I, by f%
which is closest to I, . The proposition follows from the bounded geometry
of the three intervals and their critical points. This follows using §3 in the
manner of the self-contained first paragraph of §15.

9. Douady-Hubbard theory and Riemann surface laminations. Consider the
set Q. of complex quadratic-like mappings F: D — FD with connected
invariant set K, = N F "D up to C-analytic conjugacy near K - Two
F, G are h-equivalent [DHI1] if they are qc conjugate near K and K, by
a map which has no conformal distortion (i.e., § map =0, a.e.) between K F
and K a.e. Lebesgue.

THEOREM (Douady-Hubbard). (a) The quadratic polynomials with con-
nected invariant set cut each h-equivalence class in one point.

(b) Each h-equivalence class is bijectively equivalent to the set of real ana-
Iytic degree two expanding maps of S ! up to real analytic equivalence.

ReEMARK. The quadratic polynomial in part (a) is called the internal class
of g € Q. while the expanding mapping in part (b) is called the external class
of g € Q.. Thus the internal class is a point on the Mandelbrot set. We
refer to the various “submanifolds” of Q. with constant internal class, i.e.,
constant label in the Mandelbrot set, as the prestable manifolds of renormal-
ization. In any C-analytic family, fixing the internal class defines a C-analytic
subspace [DH1]. Therefore in the context of symmetric C-analytic mappings
the stable manifolds of renormalization (Theorems 2 and 2') have at least a
real analytic structure.

Now we associate to any smooth degree two expanding map f of the circle
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(f > 1, f Holder) a Riemann surface lamination (appendix) whose point
in Teichmiiller space determines the smooth conjugacy class of f. For real
analytic f the point determines the external class.

Form the inverse limit space, a dyadic solenoid,

with induced mapping f = lim {f}. By the theorem below leaves of S
carry unique affine structures compatlble with their smooth structure so that
f becomes affine. Now attach upper half spaces of the leaves of S using
these affine structures to obtain a Riemann surface lamination L. Then f
on S extends affinely to a holomorphic mapping F:L — L. Remove the
boundary and quotient by the group generated by F to obtain L =L /{F }.
The Riemann surface lamination L 7 up to Teichmiiller equlvalence (ap-
pendix) remembers the conformal structure on leaves up to qc isotopy. Lift-
ing the L and recalling Flis contracting we see the qc isotopy converging
to the identity on the d solenoid. Thus, the affine structure on the leaves
is determined by L ¢ up to T eichmiiller equivalence. (The unique field of

affine structures on the dynamic solenoids (§ f ) are continuously varying.
Thus, the structure on even one leaf determines the field of structures.)

The eigenvalues of f can be read off from the affine expansion factors
of the f periodic leaves. The eigenvalues of f determine the sizes (up
to a bounded factor) of the intervals in the nth level Markov grids f "
(fixed point of f). The Markov grids for f and g determine a unique
conjugacy A which is quasisymmetric in general and obviously Lipschitz
if the corresponding sizes are in bounded ratio. A Lipschitz conjugacy #
between f and g is differentiable at most points. It follows that 4’ exists
and is Holder using the approximate formula # ~ g"Df™" when f"
chosen to converge to a point of differentiability of #. When f and g are
real analytic, domains of analyticity are easily controlled and # is seen to be
real analytic.

_ Here is the discussion for the theorem below. The natural projection
S -5, S is used to induce smooth structures and smooth Riemannian met-

rics in the one-dimensional leaves of S. The induced mapping f on S
then inherits the same geometric structure as f had. In particular, & = f -
is uniformly contracting on leaves. To construct a leaf translation x to y
on the same leaf, approximately, we apply g” until these points become X
and ¥y, very close together. We translate X to ¥ using the smooth structure
and transport this back by g”. The limit of this construction defines the
translation pseudogroup of the affine structure on each leaf. It is invariant by
construction. The construction also shows any invariant structure must be
this one. The field of translation pseudogroups varies continuously because
we have an a priori estimate on the error of the g” approximation. This
proves
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THEOREM (global linearization). Each leaf of S carries a translation pseu-
dogroup or affine structure compatible with its smooth structure so that f
between leaves is affine. The affine translations in the leaves vary continuously
in the transverse direction, and they are uniquely specified by continuity and
f invariance.

CoRrOLLARY. The external classes {f} can be embedded [ — L, in the
Teichmiiller space of a surface lamination (appendix).

REMARK. In the real analytic case there is a direct construction of L Y
and the hnearizatlon in terms of a holomorphic extension F of f to some
neighborhood F7'U of {|z| =1} in {|z| > 1}. It is:

Form V = lim{---F>U - F~'U > U} and F: W — ¥, where W =

lim{---F" v~ F'U }. This construction of passing to the inverse limit
coverts F, which is neither globally defined on its image or injective, into
F, whlch is lnjCCtIVC but still not globally defined on its image. So form
G=F"':V - V, which is globally defined and injective but not onto. Now
make G onto by passing to the direct limit U — hm {V -V ...} and

G = li)n G to obtain the bijection G:U—-U. (The direct limit step was
suggested by Lyubich.)

The leaves of the Riemann surface lamination U are upper half planes
permuted holomorphically by G. This proves anew the linearization theo-
rem. The quotient of U be the group generated by G is the orbit lamination
L.

10. The modulus function on external classes. Let m(x) denote the supre-
mum of the conformal modulus of N for some representative F: F NS
N, where x denotes th C-analytic equivalence class of germs of degree two
holomorphic mappings of a neighborhood of {|z| = 1} in {|z| > 1}. Let
distance(x, y) denote the infimum of qc distortion of conjugacies between
representatives on some neighborhood of {|z] =1} in {|z| > 1}.

THEOREM. If m(x) = oo, then x is represented by z — 2. If x and y
satisfy m(x) > ¢ and m(y) > ¢ then distance(x, y) < d(¢) < oo.

Proor. Choose coordinates so N is a standard annulus. The modulus of
F7'N is % modulus N. Thus F~'N contains a definite neighborhood of
|z] =1 in |z| > 1. We can apply Koebe distortion to control the nonlinearity
of F. Then by replacing N by a smaller concentric annulus N’ we have
on F _I(N') a completely controlled analytic mapping. In particular, the
geometry of the glued fundamental domain is controlled. Thus, for two such
maps we can construct by pull back a quasiconformal conjugacy (§11) with
controlled distortion. This proves the second statement. The first statement
is standard.



BOUNDS AND RENORMALIZATION CONJECTURES 451

11. Thurston equivalences and the pull back conjugacy. Start with two com-
plex quadratic-like mappings F: D — F(D) and G: D — G(D). A Thurston
equivalence between F and G is a certain kind of homotopy class of pairs

(Xp, Cp) 25 (X, Cp),

where X, is a contractible region containing the positive critical orbit Cp, =
{1,2,3,...} of F, X, is a contractible region containing the positive
critical orbit {1,2,3,...} of G, H(1) =1, H(2) =2, etc. and the phrase
“homotopy class” is defined by isotopies of the contractible regions X, ,
X, fixing {1, 2, 3, ...} and homotopies of restrictions of H ’s to common
smaller regions also fixing {1, 2, 3,...}.

To define which homotopy classes are Thurston equivalences consider Fig-
ure 1.

Start with a homotopy class H;, and lift it through the branch cover so that
1 goes to 1. We assume (a) the lift H, carries 2 to 2, 3, to 3, etc. and (b) the
homotopy class of H, equals the homotopy class of H, (rel{1,2,3,...}).
In (b) we have used the (dynamic) point that the covering spaces are subsets
of their respective bases. Note also that property (a) only depends on the
homotopy class of H,, . In effect we have defined a Thurston map on homotopy
classes Hy — H, and a Thurston equivalence is a homotopy class which is fixed
by this Thurston map.

For the pull back conjugacy theorem we start with a certain representative
of a Thurston equivalence H: F(D) — G(D) which (a) is also a conjugacy
between the maps F: 8D — 0F(D) and G: 0D — 9G(D) and (b) is a
quasiconformal homeomorphism.

Then H,: F(D) — G(D) and the pull back H,: D — D restrict to maps
OH;: 9D — 90D satisfying G-0H;, = 0H,-F, i =0,1,s0 0H, = 0H,
or 9H, = 0H, -1, where 7 is the involution of the double cover F: 8D —
0G(D) . If we lift the homotopy asserting H, and H, have the same homo-
topy class rel {1, 2, 3,...}, then we see the first possibility holds (Figure 2
on next page), i.e., 0H,=0H,: 0D — 0D.

Thus, we may add to H, the restriction of H), to the outer annulus F(D)—
D to get an extension of H; to a homeomorphism between F(D) and G(D).
This homeomorphism, called H,: F(D) — G(D), will be quasiconformal if
we make the technical assumption that D in f(D) is a quasicircle. Its

1 1
0 H, 0
3 2 — 3 2
lF H, lG
—>
L 4 *—& *— & *—O o—
4 1 2 3 4 1 2 3

FIGURE 1
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FIGURE 2

distortion will be the same as that of H,, because it is the union of a piece
of Hy (on F(D)— D) and a “complex analytic conjugate” of H, (since
GH, = H F on D). (This step was suggested by Curt McMullen.)

We iterate the process to construct an infinite sequence of K-quasiconfor-
mal homeomorphisms with fixed values on {1, 2, 3, ...} and not changing
on the outer rings F(D)— D, then D — F7'D,then F"'D—F72D, etc. By
quasiconformality, we can extract convergent subsequences on all of F(D).
The limit actually exists on the union of the outer rings. So if this union
is dense all limits over subsequences are equal and equal to the continuous
extension of what is on the outer rings. If the union is not dense there is
some ambiguity in the limit on the interior of the invariant set. This interior
is classified in types by Sullivan [S5] and homotopies to conjugacies and
discussed in Mane-Sad-Sullivan [MSS] and McMullen-Sullivan [MS] (see
also [ST]). We continue this discussion in the more rigid case when there is
no interior and the limiting map in unique and is a conjugacy.

The conformal distortion of the limiting conjugacy depends on the dis-
tortion of H, on the fundamental domain and the distortion on the Julia
set. The latter may be zero by construction as in §14 where internal classes
are discussed. Or it may be zero because the Julia set may not support a
new measurable invariant conformal structure. An example of the latter is
the infinitely renormalizable bounded type symmetric complex quadratic-like
mapping (Theorem 6, §15). We express this last property by there is no “mea-
surable invariant line on the Julia set” or “no measurable line field.” All the
above amounts to the

THEOREM. Suppose F and G are complex quadratic-like mappings which
are Thurston equivalent (along their positive critical orbits) via a quasiconfor-
mal homeomorphism. Then if 8D C F(D) and 8D C G(D) are quasicircles
there is a quasiconformal conjugacy H: F(D) — G(D) between F and G.
The conformal distortion of H depends only on the pairs (F(D)— D, F/8D)
and (G(D) — D, G/dD) if the invariant set has no interior and the Julia set
has no “measurable line field.”

REMARK. Otherwise the distortion depends also on the construction of the
conjugacy on the invariant set. (a) In case there is no interior for the invariant



BOUNDS AND RENORMALIZATION CONJECTURES 453

set but the Julia set has a “measurable line field,” the construction is canonical
and leads to a specific distortion on the Julia set parametrized by a complex
number in the unit disk (see [MSS] for more details, however conjecturally
this case does not exist). (b) In case there is interior there must be either (i)
a super attracting cycle, (ii) an attracting cycle, (iii) an indifferent periodic
point, or (iv) a Siegel disk [S5]. In cases (i) and (iii), the construction can be
made so that the limit has no conformal distortion on the filled in Julia set
[MSS]. In case (ii) the distortion required is essentially |logi,/A,|, where 4,
are the eigenvalues at the attracting cycle [MSS]. In case (iv) it is reasonable
to think the Thurston equivalence makes the eigenvalues equal and then the
construction can be made with no distortion on the filled in Julia set (see
[MSS, ST, S5]). This point does not concern us in this paper where we
study mappings symmetric about the real axis.

ProoF. Besides the discussion before the statement of the theorem we
need to add that a quasiconformal homeomorphism representing a Thurston
equivalence can be restricted, deformed by an isotopy, and extended to fit
with a quasiconformal equivalence between the pairs (F(D) — D, F/0D)
and (G(D) — D, G/8D) to satisfy (a) and (b) of the second paragraph of
this section. This is elementary planar topology. Q.E.D.

12. Renormalization of complex quadratic-like mappings. One says a com-
plex quadratic-like mapping F with connected invariant set is renormaliz-
able if there is an n and a disk D containing the critical point so that
F": D — F"D is complex quadratic-like with connected invariant set. Let
RM C M be the subset of points of the Mandelbrot set A which have
representative quadratic-like mappings which are renormalizable. Recall the
Douady-Hubbard theorem (§9) that germ equivalence classes of quadratic-
like mappings are isomorphic to M x T = { internal class, external class}. We
can define a renormalization operator R on representatives by F — F" /D,
where n is minimal.

THEOREM. Renormalization defines a mapping RM x T R MXT re-
specting the prestable manifolds {pt x T}, namely R equals the union over
RM of mappings {m, T} En, {R(m), T} for an induced surjective operator

RM 2 M. The individual mappings R, are induced by mappings on the
spaces of special conformal structures preserving special Beltrami paths.

DEFINITION. A special Beltrami path is one coming from a Beltrami path
of invariant conformal structures outside the filled in Julia set. The latter are
the special conformal structures.

Proor. The theorem follows, once m € M is fixed, from the definitions
and the picture of renormalization, as merely the restriction of the variable
conformal structure exterior to the Julia set of f to the exterior of the Julia
setof Rf = f"/D.
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Addendum. (Renormalization of vector fields on the laminations.) A back-
ward orbit of G, the renormalized mapping of F, extends in a natural way
to a backward orbit of F . Thus we have an embedding of L, the lamina-
tion of G, minus the contribution K » coming from the germ of K, near
K;,in Lp, the lamination of F. Thus a continuous vector field on L
with & in L™ can be restricted to obtain one on L, — K ¢ Which has 8
in L™ and is uniformly bounded in the P-metric coming from (nghd of
L;- K r) - Extending by zero on K » Wwe obtain a continuous vector field on
L, with & in L. (This may be shown most easily using the equivalence
(0 in L) ~ (Zygmund in conformal metric).)

13. Teichmiiller contraction of renormalization for symmetric complex
quadratic-like mappings. If a real analytic folding mapping f has a com-
plex quadratic-like extension we have two notions of renormalization—real
renormalization (of the introduction and §§1-4) and complex renormaliza-
tion (of §12). The following theorem is proved below.

THEOREM 13.1. These two notions are compatible in the sense that when-
ever real renormalization is possible for f for some n, then for the same n so
is complex renormalization for the complex extension F of f. Moreover, the
complex extension of Rf is a quadratic-like mapping which is C-analytically
equivalent to RF on neighborhoods of their respective connected invariant
sets.

Let f have a complex quadratic-like extension F: D — F(D) so that the
conformal modulus of D—F (D) > & > 0. Suppose f admits n > n(T, ¢, /)
renormalizations of return times < T for a certain function n(T, ¢, ),
where [ is chosen below. Let u be a Beltrami coefficient defined on F(D)—D
which is symmetric about the real axis and let |u|, denote the Teichmiiller
length of u = sup,,_; J ou (see appendix). Let I' be determined by the
universal bounds of §§8 and 10. Choose / > /' and let A(/,/') < 1 be
determined by the Grotzsch inequality (see appendix). Then we have renor-
malization qua Teichmiiller contraction.

- THEOREM 13.2. |R"u|, <AL, I)|pul, for n>n(T, ¢, 1).

CoROLLARY. Under bounded return time renormalization of symmetric
Mandelbrot internal classes, the Teichmiiller distance between external classes
decreases exponentially fast.

PRrROOF OF THEOREM 13.1. Now suppose for some 7n, g” is renormaliz-
able on the real axis, i.e., there is the little box on the diagonal of Figure
1(c) of the introduction which encloses the graph of Rg. Consider the con-
nected component D, in G "U of the critical point in the complement of
G'zy , G"3y, ..., G™"y. Then by construction G" has one critical point
inside D,. The intersection J, of D, with the real axis is the interval
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between the next two critical points of g” out from the central one again by
construction: thus, it contains the dynamic interval I, of Rg (Figure 1).

The image of D, by g" is U= C—{x realnotin J} further slit in from
either side by the images under G" of the arcs G 2y, G >y, ..., G "y.
These are vy, gy, ..., g"_zy. By the discussion of §8, based on point (2) of
the proof of Theorem 1 in §3, the unslit interval covers the small dynamic
interval [R 2(6); (R g)zc] and its two immediate neighbors in the nth level
collection of small dynamic intervals (see Figure 3, §3). And these intervals
cover J,, as discussed in §8. Thus, G": D, — (U with further slits) is a
quadratic-like mapping—in the 4-fold symmetric Epstein form.

ProOF OF THEOREM 13.2. We choose an extremal ji, representing the
same tangent vector to L as u defined on the same fundamental domain
(see Remark below). We deform along a Beltrami path a distance / greater
than /' (see below). We may assume /i is also symmetric about the real axis.
Then the two C-analytic systems at the endpoints have a definite modulus
(§10). So there is a definite number of renormalizations required so that the
modulus is greater than the universal constant of §8. Then the qc distance is
at most a certain constant, call it /' (§10). Now we apply the almost geodesic
lemma (appendix) to see that the renormalized tangent vector is reduced in
Teichmiiller length by a universal factor A(/, I') < 1.

ProOF oF COrROLLARY. Choose a Beltrami path between two real analytic
external classes. The tangent vectors along these paths are represented by
1’s to which Theorem 13.2 applies. As we renormalize this continues to be
true by the complex bounds (§8). Thus, the Teichmiiller arc length of this
path decreases exponentially by integrating the inequalities of Theorem 13.2.
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REMARK. If a tangent vector to T(L f) is defined by an F-invariant u

on a neighborhood U of the circle, we can push forward the F invariant
holomorphic quadratic differentials on L to obtain holomorphic quadratic
differentials ¢ on U satisfying F.9 =¢.

The holomorphic invariants (¢, u) are just [¢@u on any fundamental
domain of F . By Hahn-Banach there is a ji on this domain with L*°-norm
it = sup(p, u). This is the definition of an extremal ji. By the appendix
there is a vector field ¥ on the lamination so that ¥ is u — & pulled up
to the lamination. We can renormalize V' (see Addendum §12) to see that
R"u and R"% pulled to the appropriate lamination differ by @ (vector field).
Thus they continue to have the same 7-norm by the integration by parts
formula (appendix). Alternatively (McMullen), we can see they continue to
have the same T-norm by pushing forward quadratic differentials using the
map of the Addendum §12.

14. Proof of Theorem 2. Let { f,} be an inverse chain related by renor-
malization, --- — f, N foy = = Ny 2, A 2, fy» where o; is
bounded in size by T'. Then if all the f, are smooth quadratic-like map-
pings which are uniformly bounded, by §4 they are all Epstein and by §8
they are all complex quadratic-like with a definite modulus (§10). Let c(f)
denote the internal class of Douady-Hubbard (§9). Suppose {g,} is another
such inverse chain with the same combinatorics and suppose c¢(f;) = ¢(g,) -
We want to show {f,} = {g,} as complex analytic mappings up to affine
rescaling.

(1) c(f;) = c(g,)-

ProOOF OF (1). Start with a quasiconformal conjugacy between f; and g,
expressing the fact that c(f) = c(g,) (§11). By a finite construction on the
real axis then the two half planes, this can be promoted to a qc homotopy
conjugacy between f; and g, which is a conjugacy between the forward
critical orbits of f, and g, (§11).

Now perform the pull back conjugacy construction of §11 to obtain a qua-
siconformal conjugacy between f, and g, which is a.e. conformal on the
saturation of the filled in Julia sets of f; and g,. The measure of what is
left in the filled in Julia set of f; or g, is zero (see Remark below). Thus,
c(f;) = c(g,) . Continuing in this way c(f,) = c(g,) -

(2) Now work in the topology of uniform convergence on a definite neigh-
borhood of the dynamic interval where all maps have the Epstein form and
are normalized to have the same dynamic intervals. We will choose this
neighborhood once and for all to include the Julia sets of all the maps ap-
pearing in inverse chains. If this were not possible the modulus bound on
the annuli (§8) would be violated.

The closure K of these maps in this topology is compact because they are
actually bounded in the space defined by sup norm on a larger neighborhood.
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It is also clear that the set of elements of bounded inverse chains is closed.

(3) By Theorem 13.2 the Teichmiiller distance d between f, and g,
must be zero.

(4) Let (F, G) be a limit point of (f,, g,). Then F, G have the same
internal class. This continuity of the internal class is proven in [DH1]. Since
F and G are members of inverse chains we must also have d(F, G) =0.

(5) Take a C-analytic conjugacy between F and G on some neighborhood
of the filled in Julia sets (see §9). This means for a sequence of n — oo we
can have K, qc conjugacies between f, and g, on definite neighborhoods
of filled in Julia sets and K, — 1.

Now we view (f;, g,) as lying deep inside (f,, g,) and take a limit
of the above conjugacies. The fixed neighborhood of f, becomes a huge
neighborhood of f;, and the limiting conjugacy is a C-analytic conjugacy
between f, and g, defined on all of C. Q.E.D.

REMARK. McMullen offers this proof: It is known (Lyubich) that almost
every point in a Julia set of a complex quadratic-like mapping is forward
asymptotic to the closure of the forward critical orbit. If we apply this state-
ment to f; we see almost every point in the Julia set of f, eventually lands
on the Julia set of f, by the renormalization disk picture (§12).

From the classification [S5] the interior of the filled in Julia set of f is
the union of the preimages of the interior of the filled in Julia set of f.

15. Proof of Theorem 2. Theorem 2 follows from Theorem 2’ and the
following (see §9).

THEOREM 6. If two symmetric complex quadratic-like maps F and G
have the same bounded type (o, 0,, ...), then they have the same internal
class.

ProOF. All the renormalizations are bounded smooth quadratic-like map-
pings by Theorem 1. Because the combinatorics is bounded this means the
geometry of the interval collections at one level inside an interval at the pre-
vious level is bounded. Otherwise, we could change the kneading sequence in
a limit of bounded shape examples with converging combinatorics, and this
would contradict the continuity of kneading sequences in the C ! topology.

Bounded geometry of the interval collections means we can present the
critical orbit Cantor sets as an intersection of symmetric pictures in a plane of
disks within disks of bounded geometry (Figure 1 on next page). But then we
can construct construct a qc mapping between two such critical orbit Cantor
sets by choosing the standard symmetric rigid maps between corresponding
circles and extending them to bounded distortion diffefomorphisms between
intermediate “pairs of pants” regions. Using §11 we can promote this to a
symmetric qc conjugacy between F and G.

The complex polynomial z — 2 +c , ¢ real equivalent to F, admits a
symmetric invariant conformal structure on its Julia set. This conclusion is
valid for all the polynomials z — z2+¢ with this kneading sequence (thinking
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FIGURE 1

of them as G above, e.g.). There is a closed interval of such c’s if Theorem
6 is false. Apply this statement about conformal structures to an endpoint
of this interval. Construct a quasiconformal deformation of this quadratic
polynomial Sullivan [S5] to see it is not the endpoint. Contradiction.

REMARK. The theorem is unknown for unbounded type because even
though we have by Theorem 1 uniform bounds on the renormalizations we
do not know there is a qs conjugacy between critical orbits of two f and g
of the same unbounded type. This gap, because of Yoccoz’s recent work, and
the above Theorem 6 is the only one left to settle the celebrated question of
density of hyperbolic systems in the quadratic family.

Appendix. Riemann surface laminations and their Teichmiiller theory. Here
is what we need to provide a basis for the argumentation of §§9-15.

(1) The notions of Riemann surface laminations, Beltrami tensor, and
integrable quadratic differential have to be defined.

(2) (a) For a real analytic degree two expanding map f, L ’ constructed

as in §9 or as the space of orbits of F on U, where U = 1i(_r_n{~--F"2U —

F'U - U}, F = lim F, and F is a C-analytic extension of f to a
neighborhood U, should be a Riemann surface lamination.

(b) The integrable quadratic differentials » on Lf lift to U and then
project to ¢ on U, which satisfy F,¢ = ¢ . (This means a system {¢,}
with ¢, on F~"U and F,¢, =9, _,.)

(c) If a Beltrami tensor i on L, comes from an F -invariant Beltrami
coefficient on U, then the pairing (@, &) is computed as an integral [ou
over a fundamental domain of F in U.

(3) Two Beltrami tensors x4 and y on L 7 differ by a trivial deformation
u—y =090V for a continuous vector field on L ; tangent to the leaves iff
the holomorphic invariants are equal, (x4, ¢) = (7, ¢), for all integrable
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holomorphic quadratic differentials ¢ on L ’

(4) The notion of holomorphic quadratic differential also has to be such
that the Grdtzsch inequality is valid. If y,, 0 <¢ <1, is a quasiconformal
isotopy in the leaves of the lamination between conformal structures ¢, and
¢;, where ¢, is obtained by stretching ¢, by a factor / along the trajectories
of ¢, then [ < [K(x)d|p|, where K(x) is the conformal dilatation of v,
at x.

(5) The Grotzsch inequality leads directly to the almost geodesic lemma.
We say u is e-extremal if |u| < (sup [ou)(1+e¢), |p| = 1. (Extremal
means ¢-extremal for ¢ = 0.) This allows one to prove the almost geodesic
property of the global deformation determined by stretching a distance /
along an ¢-extremal 4. Let y,, 0 <t <1, be a qc isotopy which compares
the initial conformal structure ¢, and the conformal structure ¢, obtained
by stretching along u, which is e-extremal, a distance /. Let K be the
maximum dilatation of y, , then there is a universal function d(¢, /), where
o(e,l)—> 0 as e — 0 so that / < K(1 —9) (almost geodesic lemma).

Here we go.

(1) and (2) A closed Riemann surface lamination L will be a compact
space so that each point has a neighborhood (open disk x transversal) with
overlap homeomorphisms F(z, A) preserving the disk factors and holomor-
phic in z. Beltrami tensors from the point of view of functional analysis are
bounded Borel measurable functions modulo equality a.e. in each disk. We
assume in addition that as a function of A, u(z, A) varies continuously in
the topology of convergence against each element in L (disk). For changing
coordinates, u(z, A) is the coefficient of the tensor dZ/dz . Quadratic differ-
entials analytically, in a product chart, are elements in a direct system of L
spaces. The direct system is all o-finite measure classes on the transversal.
For each of these we form the product measure class with Lebesgue measure
on the disk, form the L space, and take the union (or rather direct limit).
For changing coordinates these objects can be viewed for each measure as L
cross sections of the line bundle whose fiber is (volume elements of measure
class on the transversal) ® (d z* on disk).

We lose no generality by restricting attention to transversally invariant
measure classes because these are cofinal in the directed set of all transversal
measure classes.

We have a pairing (¢, u) between Beltrami coefficients and quadratic
differentials by integration over L. With these definitions the requirements
of (2) are satisfied.

(3) (a) Using the formula on one disk

_ d¢dg di
V—/DﬂC—Z+ aDVZ—C’

where u = 0V shows V is bounded near O € D with a modulus of con-
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tinuity of the form Jlogd near there with constants depending on |u|
whenever V' vanishes on dD.

(b) Now a continuous vector field ¥ on a compact Riemann surface lam-
ination L is bounded by compactness. We now make a hyperbolic assump-
tion on L : there is a continuous leafwise Riemannian metric on L which is
conformal and which on the universal cover of each leaf is uniformly quasi-
isometric to the hyperbolic metric on the cover which is assumed to be the
disk. Then ¥V vanishes at the boundary of the cover and by (a) we have
bounds and a leafwise modulus of continuity (in the hyperbolic metric and
therefore the Riemannian metric) controlled by [0V]_ .

(c) Suppose 51/;. = u; and u; — p weakly in L™ on each leaf. By (a)
and (b) we can in each leaf take pointwise limits of the formula (a) with
no boundary term. The limit V' satisfies 0V = u and the formula with no
boundary term for every point in each leaf. The argument works for nets as
well as sequences.

Claim. V is a continuous vector field on L.

ProoF oF CLAIM. We combine four points

(i) The formula (a) can be restricted to a large metric disk in a leaf to
compute V' approximately at the center.

(i) If x, — x in L, large metric disks about x; converge isometrically
to a large metric disk about x (or at least a covering of such a metric disk).
This is the basic property of laminations.

(iii) The kernel dz/z of formula (a) is almost fixed in L' by a mapping
fixing O of a large hyperbolic disk with small isometric distortion.

(iv) Since u is weakly continuous in the A variable (by assumption) and
L™ bounded, its integral against a A-continuous family of L' functions is
continuous in 4.

(d) By (c) the bounded u’s of the form 9V for continuous ¥ ’s on
L is closed for the weak topology defined by integration against integrable
quadratic differentials. Thus, these u’s are precisely those which annihilate
all the ¢’s which annihilate all the 87 . But the integration by parts for-
mula [,9V¢ = [VOp shows [VDp =0 forall V,or ¢ is holomorphic
on leaves. This proves (3).

(4) A holomorphic quadratic differential can be viewed locally as a pos-
itive measure on the transversal times an L' function in the holomorphic
quadratic differentials on the disks. With this convention in mind we as-
sociate to a holomorphic integrable quadratic differential ¢ (i) a metric on
leaves on curvature < 0 (the coordinates where ¢ is locally dz* or Z*d %),
(ii) the measured lamination on each leaf whose trajectories are tangent to
the line elements so that ¢ (line element) > O and whose transverse mea-
sure is determined by the metric of (i), and (iii) a further transverse measure
to these trajectories in the transverse direction defined by the (transverse)
measure defining ¢ .
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These trajectories so transversally measured defined a generalized closed
geodesic curve |p| which is of course tangent to the leaves. If we deform this
curve by an isotopy ¥,, 0 < ¢ <1, in the leaves the length can only increase
because the curvature is < 0 and we start from a geodesic. Let ¢, be the
original conformal structure and let ¢; be the conformal structure associated
to the metric obtained by stretching the g@-metric by a factor / along the
trajectories of ¢ .

Let K(x) denote the conformal dilatation of y, between ¢, and ¢;. Let
J(x) be the Jacobian of y, between these two metrics. Then we compute
the length of y, (curve) in the stretched metric

Vp(x)d(p < /Kl/z(x)Jl/z(x)d(p < (/dep)m (/de)l/z,

where D(x) < K(x)l/zJ(x)l/2 is a derivative of y, .

Assume |p| = 1; then [Jdg =1 and recall the length of the image can
only be longer than the homotopic closed geodesic whose length is /|| =1.
We deduce the Grotzsch inequality

(@) < [IK@)|dlp].

REMARK. One can write an exact formula
D(x) = Kl/z(x)Jl/z(x)(angle factor)l/2
and get the better inequality (Reich Strebel)

1< /|K(x) (angle factor)|d|¢|,

which implies if sup K(x) =/(1+¢) for ¢ small, then the angle factor must
be near 1 on a fraction of points near 1 relative to the measure |¢|.

(5) Now we prove the almost geodesic lemma mentioned above. Suppose
U is e-extremal and choose an integrable holomorphic quadratic differential
¢ of norm 1 so that | [ou|(1+¢) > |u| .

It follows by elementary arithmetic that 4 must line up in measure (rela-
tive to |p|) with the trajectories of ¢, and (relative to |¢|) have essentially
constant L> norm. So stretch the original conformal structure in the u
direction by this essentially constant factor / to obtain ¢, .

Now stretch the conformal structure ¢, by a factor / along ¢, where
I = |u|, , to obtain ¢,. Consider the map y between ¢, and c, which is

-1
_  identit ¥ .. .
¢ o, ¢, —— c¢,. If K is dilatation of y, between ¢, and c,, then

the dilatation of the composition above is at most 2/+ K at almost all points
and < K +o0(1) at most points because x# and ¢ line up in measure relative
to |g|. '

Now c, is obtained from ¢, by stretching along the orthogonal trajectories
by a factor /. By Grotzsch, / < [ |dilatation y|d|¢|. This is a contradiction
if K =1"islessthan / by an amount which is independent of & for / and
I' fixed.
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(6) The Teichmiiller metric is defined infinitesimally by sup [, ug, ¢
holomorphic and |¢| = 1, for all Beltrami coefficients x4 which define tan-
gent vectors to the space of conformal structures on L. We integrate to get
the length of paths of conformal structures and define the resulting metric
on leafwise isotopy classes of conformal structures on a fixed background
quasiconformal model L. This defines the Teichmiiller metric space of L.

In the L s case, f real analytic, the Teichmiiller metric is related to the
gc conjugacy metric by the following:

REMARK. All the /" have small ratio distortion at small enough scales,
with constants depending on the Holder constants. Similarly, all the F~" for
some C-analytic extension F of f to a neighborhood U of S = {|z| =1}
have small nonlinearity on a small enough neighborhood of .S, with constants
depending on U.

The T metric d between f and g estimates linearly log ratio descrepan-
cies between the Markov grids for f and g at arbitrarily fine scales. (Proof:
these ratios are organized by a Holder continuous scaling function on the
Cantor set of ends of the tree of inverse branches [S3] and d estimates
the speed of change of the scaling function; (see example below). Thus, if
d(f,g)<e and F and G are defined on definite neighborhoods U, then
all corresponding consecutive ratios between the grids for f and g are esti-
mated by O(e) below a scale depending on U and ¢. Also, we can construct
for F and for G an invariant system of vertices for a system of Carleson
boxes starting at a definite scale (see Figure 2).

We divide each box into three triangles and construct an almost simplicial
conjugacy between fundamental domains of F and G. We pull this back to
obtain a qc conjugacy between F and G.

ConcLusioN. If the Teichmilller d(f, g) = O(¢), f and g have C-
analytic extensions to a definite neighborhood U of {|z| = 1}, then on
smaller definite neighborhoods (depending on ¢ and U) there is a gc conju-
gacy between F and G with conformal distortion, O(e).

EXAMPLE (quadratic differentials on L,). An integrable holomorphic
quadratic differential ¢ on an upper half plane leaf of U can be pushed
down to L 7 For example if we take ¢ to have poles at infinity plus three
points of the Markov grid of a solenoidal leaf (the grid is pulled up from the
circle) we obtain a ¢ which measures the change in one of the asymptotic
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ratios which are recorded by the scaling function [S3].

ReMARK. (1) The Teichmiiller discussion above goes through for locally
compact laminations. We only need to require that the quasiconformal vector
fields are continuous and uniformly bounded. Then the proofs of (3), (4),
(5), and (6) are unchanged. In this way we have a generalization of classical
Teichmiiller space by considering the case of a lamination with one leaf.

(2) There are enough integrable holomorphic differentials to have a version
of (3) in the measurable theory where u(x,A) and V(x, i) are defined,
uniformly bounded, and measurable in ‘A for each transversal measure class
in a consistent manner. Then the Beltrami tensors form the complete dual
of measurable integrable quadratic differentials.

The proof of (3) is the same and in addition there is the formula for the
Teichmiiller norm (measurable theory) inf}, |1 +9V|=sup 0 Juro=luly, o
holomorphic of mass one. We used this formula in the continuous theory for
L, for those tangent vectors 4 coming from fundamental domains of F .
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