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ON CONFORMAL WELDING HOMEOMORPHISMS
ASSOCIATED TO JORDAN CURVES

Y. Katznelson, Subhashis Nag, and Dennis P. Sullivan

Abstract

tr'or any Jordan curve C on the Riemann sphere, the conformal welding home-

omorphism, Weld(C), of the circle or real line onto itself is obtained by comparing

the bLundary values of the Riemann mappings of the unit disk or upper half-plane

onto the two complementa,ry Jordan regions separated by C.
In Part I we show that a family of infinitely spiralling curves lie intermediate

between smooth curves and curves with corners, in the sense that the welding for
the spirals has a non-differentiable but Lipschitz singularity. We also show how

the behaviour of Riemann mapping germs under analytic continuation implies that
spirals were the appropriate curves to produce such weldings. A formula relating
explicitly the rate of spiralling to the extent of non-differentiablity is proved by

two methods, and related to known theorems for chord-arc curves.

Part II studies families of Jordan curves possessing the same welding. We

utilise curves with positive area and the Ahlfors-Bers generalised Riemann map-

ping theorem to build an infinite dimensional "Teichmiiller space" of curves all
having the same welding homeomorphism. A point of view on welding as a prob-

Iem of extension of conformal structure is also derived in this part.

Introduction

In this paper we address two questions regarding the conformal welding home-

omorphism, Wetd(C), associated to any Jordan curve C on the Riemann sphere

Ö. W"ta1C) is the homeomorphism of the real line on itself obtained by compar-

ing the boundary values of the two Riemann mappings of the upper half-plane U

onto the two complementary Jordan regions Dr and D2 separated by C. (W"
assume that C is an oriented Jordan curve, so that D1 is chosen to be the region

to the left of C.)
Precisely, Iet fi: IJ --. D;, i:Lr2, denote any two Riemann mappings onto

the relevant domains. By caratheodory's theorem one knows that fi *d f,
extend continuously to the boundaries. Let 0f;:0U : RU {oo} 'C, i:7,2,
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curves.
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denote these two boundary homeomorphisms. Then Weld(C) is the orientation
reversing self-homeomorphism of the circle (R U {*}) given by

Note that reversal of orientation on C replaces the welding by its inverse.
Since fi ar,d f2 are ambiguous up to pre-composition by arbitrary elements

of Aut(U) : PSLz(R), we note that Weld(C) as defined is ambiguous up to
arbitrary pre and post compositions by elements of PSL2(R). Moreover, if the
curve C is replaced by its image under any Möbius automorphism of Ö, the
corresponding welding homeomorphism class remains precisely the same. Thus,
one should think of the welding as a map:

(1)

(2)

Weld(C) -0f;'o0fr.

Weld: {Möbius equivalence classes of Jordan curves on C}
--+ PSLz(R) \ Ho*eo(^9t) I YSLz(R).

"(1) - 
{Jordan curves that are quasicircles} / UoU(C)

f G) - {Quasisymmetric homeomorphisms of R fixing 0, 1, m}.

By normalising the choice of fi and fz *" may assume that Weld(C) fixes
each of the points 0, 1, oo. No further normalisations are then possible using
pre and post compositions by PSL2(R) transformations. It is also sometimes
convenient to make Weld(C) orientation preserving by taking f2 tobe a Riemann
mapping from the lower half-plane .L orrlo D2. We will assume, without loss of
generality, that C passes through oo, and that fi(m): oo, ,fz(oo): oo.

The conformal welding arises rather ubiquitously in various contexts in ge-

ometric function theory. As is well-known, two standard ways of viewing the
universal Teichmäller space 7(1) are:

(3)

and

(4)

The passage between these two descriptions of the complex Banach manifold 7(1)
is precisely via conformal welding. In particular note that Weld( C) for C a
quasicircle is quasisymmetric, and this correspondence is a nice bijective one.

One may a,lso note that the homeomorphism Weld(C), (and its barycentric
extension), was utilised critically for arbitrary Jordan curves C in the paper [E-N].

With the foregoing background we are ready to explain our work in this arti-
cle. Inside the universal Teichmiiller space 7(1) one may conveniently distinguish
certain special subfamilies of quasicircles. First of all there are the smooth (C-)
Jordan curves-whose corresponding welding homeomorphisms are C- diffeomor-
phisms. Because, by classical results of S. Warshawski, the Riemann mapping to
a Jordan domain with C- boundary extends C- to the bounclary.
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In contrast, suppose the curve C has a "corner" of positive angle oz-, (0 <
q < 1), at some point. Weld(C) will then have a "power law" behaviour (t r-,
7Q-a)la, near t : 0) at the corresponding point (t : 0 say). Thus Weld(C)
will have vanishing or infinite derivate there. A natural inquiry therefore is to
seek Jordan curves which are in a sense intermediate between the C- ones and
the ones with corners by requiring the welding homeomorphisms to have non-
differentiable but Lipschitz behaviour at some point(s).

(5) Table.

Curve Welding

c@ C@ diffeomorphism

? Lipschitz

Corner Power law

In Part I of this paper we will ffll in the ? slot in the above table by ex-
hibiting a large family of. infrnitely spiralling Jordan cu.rve,s for which the welding
homeomorphism, at the point corresponding to the eye of the spirals, has the req-
uisite behaviour. The derivatives from the left and right of Wetd(C) will exist, be
finite and non-zero, but are unequal. Moreover, we find an explicit formula (equa-
tion (8)) relating the rate of spiralling parameter to the ratio of the left and right
derivatives. We deduce that the discrepancy between the left and right derivatives
will decrease down to zero as the rate of spiralling increases to infinity.

This last assertion ties in intimately with certain general results of David et aI.
regarding the welding homeomorphisms of "chord-arc" curves with small chord-
arc constants. The "chord-arc" curves are a well-known subfamily of quasicircles,
and our spirals fall within this subfamily.

In Section I.2 we develop a criterion for Weld(C) to possess a non-differ-
entiable but Lipschitz point in terms of. analytic continuation properties of the
Riemann mappings involved. This leads to a rather surprising explanation, from
a very different point of view, of why the spirals were the right Jordan curves for
producing the type of Weld(C) desired. The explicit formula (8) mentioned above
is reproved by the new method.

In marked contrast to the previous part, Part II of this paper looks at Jordan
curves quite outside the realm of quasicircles. We consider the question of non-
injectivity of the welding correspondence (2).

We reinterpret welding as a problem of extension of conformal structure. This
gives us a criterion for a homeomorphism to be a welding, and also for there to be
only one curve from which it arises as welding homeomorphism.

One then observes that there exist Jordan curves C with positive two-di-
mensional Lebesgue measure. The next idea is to use the ,,p,-trick, (i.". the
Ahlfors-Bers generalized Riemann mapping theorem), to construct a large fu*i|y
of Jordan curves possessing the same welding homeomorphism as C.
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It is natural to consider then a "Teichmiiller space of C'-comprising tJre

various quasiconformal deformations of C with dilatation supported on C. We

conclude by conjecturing that the Jordan curves sharing the given welding home-

omorphism are precisely the members of this Teichmiiller space.

Ad<nowledgements. T. Wolff and S.C. Bagchi are thanked for useful conver-

sations. The second author would like to heartily thank the Institut des Hautes

Etudes Scientifiques for their kind hospitality during Spring 1989, when much of
this work was done.

Part I. Welding homeomorphisms for spiralling curves

1. A rnain result

We start with a simple but crucial observation on the "locality" of the welding

correspondence. Suppose we wish to concentrate at a point zs an the curve C.
The nature of Weld(C) at the corresponding point to:?ftl(zs) is then at

issue. The point of the following Lemma is that although the Riemann mappings
are global constructs, the smoothness/non-smoothness of Weld(C) at t6 are only
dependent on the local nature of C around zs.

Lemma I.L, LocaJIy the welding homeomorpåism is determined, up to pte
a.nd post composition by real analytic diffeomorphisms of real intervaJs, by an

a,rbitra,rily smaJl neighbourhood of the cltrve.

Proof. Consider two different conformal mappings, "f *rd g, of a. standard
half-disk D onto a topological half-disk B bounded by a portion of the curve

around the relevant point zs € C .

C

Figure I.1.
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The self-map g-'o / on D will extend conformally, by the Schwarz reflection
principle, throughout a full disk containing the real interval AD . It follows that the
welding ti determined by looking at any small portion of C arounf zs is obtained
from the actual welding ur, (determined by the global Riemann mappings), via
the relation:

(6)

where $ and
nate changes)

?i)- QzowoQt

Qz are two real-analytic diffeomorphisms (i."., real-analytic coordi-
of the relevant segments on the real axis. s

Figure I.2.

where it polar coordinates:
given by Co - 7t U {0} U ^yz,

0 -> *oo(7) ^lt ', f : €-o0 , ^tZiT:-€-o0,

so each C o is a disjoint union of two logarithmic spirals that join up at the vortex
point z : 0 (Figure I.2). This point is our focus of interest-we will call it the
"eye" of these spiralling curves. The quantity a, 0 ( o < oo, is the "rate of
spiralling" parameter.

Theorem T.2, For each a, 0 < a < x, the homeomorpåism Weld(Co), in a
neighbourhood of the point (say ts) corresponding to the eye of Co, is Lipschitz
but not differentiable at ts. The left derivative (,\1 , say) and the right derivative
(),2 , say) for Weld(C") both exist, are finite and non-vanishing at ts , but do not
match.

In fact, the rate
explicitly:

(8) lml'

of spiralling pararneter can be related to the ratio \t I \z

Thus, the discrepancy between the derivatives from the opposite sides decreases
monotonically to zero as the rate of spiralling blows up to a.

\

\ r,
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Remark. Weld(Cr) is, of course, diffeomorphic everywhere except at f6
since Co is a C- curve away from the eye. The last statement asserts that as the
rate of spiralling becomes larger and larger the curve, or more precisely its welding,
looks more and more smooth even at the eye. This assertion will be ramified in
two further ways in following sections.

Proof. The proof is by a direct computation keeping in mind the locality
lemma. Consider the entire function

G(z) - e-(a*i) z

G maps the positive r-axis and certain parallel horizontal half-Iines onto the
spirals .ft and 12.

In fact, let R denote the half-strip region below and above the horizontal
half-lines U : 0 and A : alr /(! * o'), and bounded to the teft by the line segment
joining the origin to

\-- 7f 
-; 

ar
Lla2'"L+oz'

Then the maps G1 : G and Gz : -G restricted to .B are conformal mappings
onto releva.nt portions of the complementary Jordan domains D1 and D2. The
boundary point "oo !iy" of .E corresponds to the eye of. Co.

Now, the welding for Co, looked at on the boundary of .8, becomes

- lz*\, ono-axis,
'*- t r-),, orry: atr/(t*o').

Making a conformal change of variables, (using a holomorphic logarithm), we
can replace the domain .R by the upper half-plane and get the critical boundary
point " oo + iy" to correspond to the real number lo : 1 . Normalising so that
Weld(C") maps ts to itself, we get finally the following expression for the welding:

(e)

(10) * werd(cs) f ((* ,fi - il l@'fi - o))' for t > 1,t(v 
t(("'fi+il|@rfi+o))'fort<1

in a neighbourhood of t6 : 1 on the real line. Herc B > 1 > o ) 0 are determined
from the spiralling parameter by therelations 0:L+e-n/o, a:L- e-r/a.

[This expression (10) for WeId(Co) is up to real-analytic changes of coordi-
nates, as explained in Lemma I.1.]

Now, calculating the derivatives of (10) from the left and right of t : 1, one
obtains (" - §)/(" + B) : -e-tla from the left, and its reciprocal, -eulo, from
the right. But equation (6) in theproof of Lemma I.1 shows that the ratio )qf ),2
does not depend on ma^king real-analytic coordinate changes. Consequently one
gets Å1/)2 - u-2r/a,-md equation (8) follows. tr
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Part I.2. Lipschitz welding and analytic continuation of
Riemann mappings

There is an interesting and distinctly different way to explain why the spirals

were the right coordinates to produce Lipschitz welding homeomorphisms, utilising
an idea about analytic continuation of Riemann map germs. Even formula (8)
emerges naturally. We explain this method below.

Assume that Weld(C): R --» R has a graph with a corner at zero-say it is

r ++ \1x for small negative values of r and r r+ ),2a for small positive values of
r. (Namely, .\1 and .\2 are the derivatives of Weld(C) form the left and the right
at 0. Remember that we are interested only in the local considerations.)

Let f1: U -+ D1 and f2: L --+ Dz be Riemann mappings onto the comple-
mentary regions separated by C, with fi(O): å(0): the point of interest (p)
on C. We assume that the arc of the curve C on each side of p is real-analytic
up to, but not including, the point p. Thus the curve C in a neighbourhood of p
looks like r u {p} U 72 where "[1 and 1z aJe two open real-a,nalytic arcs meeting
at p.

Y-/

\---l

Figure L3.

Consider the restriction of the conformal map f2 or.a small half-disk E1 (in
the lower half-ptane) located infinitesimally to the left of the origin (see Figure I.3).

The idea is to use the stipulated nature of the welding homeomorphism to
obtain a relation between /2 restricted to E1 and its analytic continuation in a
circuit around the origin. In what follows'r4.'will be generic notation to denote
analytic continuation along some path.

Since /2 maps the real segment on the boundary of E1 to a piece of the
real-analyti c arc J1, one knows that f2 must extend conformally to the full disk
DzU?Et UE1 (see, for example, Nehari [N, p. 186]). Comparing this extended

299
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f2, call it Af2 (on D2 ) with the Riemann map å ot E2 we see that

(11) fr' o Afr: Kt, on E2

where K1 is some conformal map on 82. We assume that I(r is analytic in a ball
B around 0. Then the power series for K1 must be

( 12)

because (11), together with the stipulated nature of Weld(C) on the left of zero,
imply that the derivative of K1 at 0 is ,\1 1.

Thus the analytic continuation of /215, up to the region E3 will produce
the function f1 o K1 . Now, again by an argument as above, h o Kt extends
analytically to the disk Es U El, and we may compare this extension, call it
A(1, 

".I(1) 
: Afi o K1 with /2 itself on Ea. We get

(13) fl' o Ah o K1 : !{r, on »4

where K2 has a power series expansion

Kr(r): {r, + O(r'), around z : 0t

)Kz(z\- 'J, + O(r'), around. z - o.3\ 
' Ät

Afr(r): fz(fr)

This follows because Weld(C) : 0f ;'o Ofi has slope )2 to the right of the origin.
Thus, frl»r, analytically continued in a clockwise circle around the origin,

ends up as f2o Kz. We will neglect terms O(r') in the Riemann mappings, since
we are interested only in local structure around 0. We therefore see that if the
welding åas sJopes )1 and ),2 from the left and right of zero respectively, then the
germ of the Riemann map f2 restricted to a region infinitesima.lly to the left of
zero will satisfy the funtional equation:

(14)

( 15)

( 17)

where A denotes analytic continuation along a clocl<wise circuit encircling zero.
Notice that the analytic functions in .D satisfying (15) clearly form an algebra.

The countable family of functions:

(16) px(z): exp(§xlogz),

with

2kri
0* - 1"s( \rl )z ) - 2ir' k - 0, *L,*2,...
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where logz is any holomorphic log in the lower half-plane, aJI satisfy (15), (easy
to verify).

Moreover, these gx linearly span
(This is because gi?t - g j+x, since
c.)

To see therefore what kind of curve C will produce the type of welding pre-
scribed, we only need to calculate the images of smaJl portions of the positive rcaJ
axis (R+) and of the negative real axis (R-) under any non-trivial (i.e. k + 0)
one of these functions gx. Indeed one obtains two logarithmic spiraJs with the
same rate of spiralling from the two sides joining up at their common eye (the
point 'p' on C ). We indicate the calculation below.

Setting \l\z: Å, one gets from (17)

a subalgebra of the algebra satisfying (15).
the 0x constitute an additive subgroup of

,x:(ffi)+i(ffi) ,

so that

( 18)
R.0*
r* 0*

is independent of k. Now the portion 1of. C is g7,(l) for t < 0, t -» 0- and
the portion y of C is g1,(f) for t ) 0, t - 0*. These turn out to be spirals,
and the sign of fr has to be controlled so that the eye of these spirals as t -+ 0 is
not at m. (This depends on the sign of Imgx.) In polar coordinates one obtains
the curves J1 and 72 to be of the form (assuming ,\1 > lz )t

( 1e)

Here

(20)

Ttir:Ate-o', jz:r:Aze-ao, 0++oo.

comes out independent
-lfote that (19) and

Remark. If Å1 < .\2 one would find the spirals going in clockwise to their
common eye, i.e. as 0 ---+ -m. The equations for the spirals are essentially the
same as (19) (with a replaced by -r). By reflecting the curve C, and changing
the orientation on C if necessary, one can get the spirals to match the form (19) or
(7) exactly again. (Reflecting C replaces the welding ä(t) by -h(-t); reversing
orientation replaces h by h-r .)

2r--m

a:1. ?" I

llos( \l )r) I

of the choice of lc. At and Az are unequal real constants.
(20) tally exactly with (7) and (8) in the previous section.
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Somewhat more generally it is easy to show that even if one works with a

linear combination g of various g*'s, then one still obtains infinitely spiralling
curves as the image under under g of R+ and R-. This is because the term in
g with one particul* gr will eventually dominate as t --+ 0, and consequently
the image curve will look asymptotically exactly like the logarithmic spirats (19)
obtained from that dominating cpr. (To be precise, we call a curve infinitely
spiralling around an "eye" p on it, if the argument function on the curve (measured
with p as origin) becomes unbounded in every neighbourhood of p.)

Our resuläs of the preceding section are thus exactly corroborated, and some-

what generalised, by the present analysis. Note that the rate of spiralling always
satisrles (20), (i.e. (8) of Theoreml.2), and depends only on the ratio of slopes

of Weld(C) from the two sides of the 'singular' point.

Remark. The functional equation (15) for the approximate Riemann map-
ping makes contact with J. Ecalle's theory of "resurgent functions".

Part I.3. Chord-arc spirals and their weldings

The spiral family we have been deaJing with are "chord-arc" curves, and we

want to indicate a relationship between our results above and known facts about
the welding homeomorphism for chord-arc curyes.

Recall that a Jordan curve (normalised to go through oo ) is called a chord-
arccurve if itisarectifiablecurve z(s) (s isanarc-lengthparameter),suchthat
thereexists Il>0 sothat

(21)

for all s1 and s2 real; see Semmes [S].
Condition (21) implies Ahlfors' well-known condition for being a quasi-circle.

In fact, chord-arc curves are the images of R under bi-Lipschitz homeomorphisms
of the plane, where quasicircles are the images of R under the more general qua-
siconformal homeomorphisms of the plane.

Our double-spiralling curves Co of Theorem I.2 are chord-arc curves. This is
best seen by remembering (Semmes, loc. cit.) that chord-arc curves are in one-one
correpondence with a certain open region O in fåe real Banach space BMO(R)
(real valued functions on R of bounded mean oscillation). The connection is that
given 6 € O one associates the chord-arc curve such that

(22)

For the choice

(22)
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one obtains precisely the double log-spiral C" (ap to a global rotation and mag-
nification). Thus, the subfarnily "f quasicircles comprising the chord-arc curyes is
a real Banach manifold dl containing the one-parameter fr*ily of curves Co.

The welding homeomorphism ä for any chord-arc curve has derivative a.e.
and log(h') is known to lie again in BMO(R). (This is implied by the fact that ä'
itself is known to lie in the class Aoo of weights of Muckenhouptl see [S] and UK].)
One thus has, from the welding correspondence (2), a well-defined map

(24) W: f)-* BMO(R)

by associating to any ö € O the BMO function log(Wetd'(26)).
It is known that W maps a small neighbourhoold of the origin into a small

neighbourhood of the origin. Indeed, the curves z6 arising from small BMO func-
tions ä, (which are precisely the chord-arc curves with small chord-arc constant K
of (21)), have been shown (David [D]) to be characterized by having small BMO
norm for log(ä'). See [S], [D] and work of Coifman and Meyer.

This ties in exactly with what we established in the preceding two sections
about the spirals with very large rate of spiralling a. Indeed the BMO norm
of å in equation (23) and the corresponding K for the spiral, is small precisely
when a is very large. But then log(h') has a jump discontinuity at 0 of jump size

l), - )zl, where )1 and Å2 are as usual the derivatives from the left and right
of 0 of Weld(C,). The BMO norm of a function with a jump discontinuityis
easily estimated (locally around the jump) as approximately half the jump size.
ConsequentlS David's result that log(ä') should have small BMo norm for large
rate of spiralling fits precisely with the last assertion of Theorem I.2-which is
what equations (8) and (20) implied.

Remark. If one knew that the map W in (24) was continuous (in the
BMO norms) then one could generalise the result of Theorem 1.2 to an infinite-
dimensional family of chord-arc spirals. In fact then all chord-arc curves close
to the family C, would possess weldings that are (in BMo norm) close to the
weldings for the Cr. Such BMO functions, which are close to functions with a
jump discontinuity, have also a characteristic kind of discontinuity. Unfortunately
the map I7 is not known to be continuous (except at the origin, as \Me noted).

Remark. In concluding Part I we would like to recall that spiralling curves
figured prominently in the well-known paper of Gehring [G].

Part II. Jordan curves sharing the same welding

We study here the non-injectivity of the welding correspondence (2). To
handle the inverse map to (2) we consider the following point of view.

Given any (orientation preserving) homeomorphism ä: ,91 - sl we create
a 2-sphere S3 bV joining two copies of the closed unit disk along the boundary
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circle-the attachit g

us identify the circle
identification space

(25)
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map used on the boundary being h. More precisely, let
5t as R U {*} _ R, on the sphere Ö. Then Sl is the

S7: (u u n) Un (2, u n)

where U and.L are the upper and lower half-planes respectively. Notice that ^9f is
a topological^2-sphere with a well-defined conformal structure on the complement
of the circle R. The following proposition can be seen straight from the definitions.

Proposition II.1. The homeomorphism ä: R -- fr. o""rt" as a welding
homeomorphism for some Jordan curve C if a.nd only if Sf; canies a conformal
structure that extends the sta,ndard conformal structure already existing on the
open regions IJ and L. For any sueh conformal structure on Sf; (supposing at
least one exists) the Riemann surface 521, becomes conformdly equivalent to Ö.
The image of n(c 521) under any such biholomorphic equivalence is a Jorda.n
curve C whose welding is h.

Corollary I1,2, The Jordan curve C o, Ö i" the unique one (up to Möbius
transformations) that will produce the welding h : Weld(C) if and only if any
homeomorphism of Ö which is conformal on the complement of C is necessarily
conformal on all of Ö, i.e., is a Möbius transformation.

Proof. Suppose C1 and C2 are two Jordan curves producing the same welding
h. Let p1 and gz be two conformal equivalences of Sfr (with possibly different
conformal structures) onto Ö-as in the above proposition; rp; throws fr. onto
C;, i: L,2. Then o : gz o g, I is a self-homeomorphism of the Riemann sphere

Ö which maps C1 orfto C2 and which is conformal on the complement of Ct.
The corollary follows. o

Remark. If C is as in the above corollary we call C a removable set for
conformal mapping. In the analogous sense one can a,lso talk of Jordan curves
that are removable sets for quasiconformal mappings. This concept is relevant to
what follows, and is important in some further work.

Having noted the criterion for injectivity of (2) we now show how to apply
the Ahlfors-Bers generalised Riemann mapping theorem in a simple but fruitful
fashion to construct many inequivalent curves sharing the same welding. Since on

"(1) 
the welding correspondence is bijective, we are working outside the realm of

quasicircles.

A classical fact. There exists Jordan curves possessing positive two-dimen-
sional Lebesgue measure. Indeed, there exist Jordan curves on R2 that contain
the set Ax A where A is a Cantor set in [0,L] of linear measure arbitrarily close
to 1.
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References. see Gelbaum and olmsted [Go], pp. 135-138. For the original
paper see Osgood [O].

The idea is now to take a Jordan curve 7 of positive area as above and consider

Beltrami coefficients supported on 7. Namely, look at the complex Banach space

L*(i and consider it isometrically embedded in .L'"(C) by extending functions
to the whole plane by setting them identically zero off 7. Let .L-(7)1 '--+ tr-(C)1
denote the open unit balls.

By Ahlfors-Bers [AB], for every p in .[-(C)1 there is a unique quasiconfor-

mal homeomorphism of C solving the Beltrami equation:

(26) 6w-p.0w

and fixing the points 0, 1, oo. Call the solution tD : ltv .

Theorem II.3. For any p e L*(l), the Jordan curve 1p which is the image

of 1 under wP possesses fåe same welding homeomorpåism as 1 itself. If t has

positive areal measure L*(1)t is infinite dimensionaJ, a,nd consequently one has

many Jordan cttrves with the same welding Weld(7).

Remark. If 7 has zero two-dimensional measure then top is Möbius and the
theorem is trivially true.

Proof. wp is conformal on the complement of 7' So if fi and /2 were two

Biemann mapping-s U onto the two regions D1 and D2 separated by 7, then

ft : wp ofi and fz: wp o/2 will be Riemann mappings of U onto the respective

,"giorrr separated by ^,'.lt follows that 7ilt o0i1: Of;'"7fr. o

In analogy with the usual definitions of Teichmiiller theory, it appears natural
to define a "Teichmriller space" for the curve 7 as .t-(7)1 modulo the equivalence

relation - , where p * u if and only if u)F : 1!u on 7. But the equivalence relation
is trivial in this situation:

Proposition TI.4. We have L@(f),

Proof. If. p, - v consider F : (*")-1 o toq. .F' is a quasiconformal homeo-

morphism of C which has dilatation zero away from 7 since p and z are both
supported on 7. But F is given to be the identity on 7 itself-hence its dilatation
on 7 is also zero. Hence F is identitX maP, so ut' : llv orL C, and so Lt : u . E

We end by questioning whether for any Jordan curve 7, all the curves-tbat
share the same welding homeomorphism with 7 are just the members of this
"Teichmiiller space" L- (l)r. In particular this would iryply that the welding
determines uniquely the curve when-the curve has zero area. In the case of the well-
known quasiciröles 

-<-----+ 
quasisymmetric correspondence, recall that_the-proc.ess._9f

recovering the quasicircle from its welding is also via a " pr,-trick". See Vainio [V]
for related work.

l,'.,: L.o(f),
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