DIFFERENTIABLE STRUCTURES ON FRACTAL LIKE SETS,
DETERMINED BY INTRINSIC SCALING FUNCTIONS
ON DUAL CANTOR SETS!

by Dennis Sullivan

There is an easy notion of differentiable structure on a topological space.
Inthe case of an embedded Cantor set in the line the differentiable structure
records the fine scale geometrical structure. We will discuss two gxampies
from the theory of one dimensional smooth dynamical systems, namely Cantor
sets dyramically defined by i} folding maps on the boundary of chaos,and by
ii} smooth expanding maps.

In example i) there is a remarkabie discovery due to M. Feigenbaum[l] and
independently.P. Coullet and C. Tresser[2] that there is a universality or
rigidity in the fine geometric structure of the Cantor set attractor for folding
maps on the boundary of chaos. Feigenbaum expressed this discovery in terms
of a universal scaling function for the Cantor set. Both papers offer an
explanation motivated by the renormalization group idea of physics. These
discoveries were empirical, and even today after much thesretical work they
are not well understood. For example, the fine structure is codified by a
scaling function defined on a logically distinct perfect set — the dual Cantor
set. The main unsolved mystery is why the renormalizations converge., We
prove here the rigidity coniecture assuming renormalization convergﬁ;

$5,6. We also prove a converse. The proofs use the theory of the second
example and a study of non linearity based on the bounded geometry of the
Cantor set.

Inthe example ii) the Cantor set is the opposite of an attractar. It is the
maximal invariant set of a C{],«) expanding mapping of a I-dimensional
manifoid. Now the fine structure of the Cantor set is not rigid but depends on
many parameters. A complete set of invariants is again a scaling function but
now the scaling function is an arbitrary Holder continuous function on a perfect
set. Here the theoretical discussion is complete, straightforward and BaASY
51,2,3.

IProceedin<_;ps of the Herman Wey!l Symposium, Duke University, to appear in -
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ZIn eartier unpublished work with Feigenbaum we proved the rigidity
differentiy assuming a definite rate of convergence. Recently, David Rand
has aiso derived a rigidity result.



§Y _Oifrerentiable structyrés o fractal s88ls.

Let X be a topological space which is locally compact and can be locally
embedded in R, If Q denctes some adjective like smooth, real analytic,
complex analytic, etc. defining a pseudogroup of local isomorphisms of R?, we
can define &8 &-sfruclture an X of gimension 7. Say thaf a collection of
tocal embeddings inR™ is @~coherentif whenever i and j are two such
embeddings defined near x € X there is a Tocal @ isomorphism ¢ of R so that
®ei =j near x. Then a G—structure {of dimension n) on X is a maximal

collection of G—coherent local embeddings whose domains cover all of X.

82 _Linegr differentiable structures on Lantor sels.

For concreteness let C denote the set of one sided infinite sequences of O's
and 1I's with the product topology. Let C{l,&) denote the pseudogroup of
smooth local diffeomarphisms of R with a~Holder continuous derivatives, for
alla O0<ax e 1. We denote this pseudogroup C(1,a) (instead of the usual

symbaol) because o is not fixed,

We will consider those C(i,x) structures on the Cantor set C where if
Cw= {sequences with initial n~segment = w} then there is a finite coordinate

cover so that in a chart containing Cw we have the picture

Tw
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where I,» denotes the smallest interval containing Cp - In other words we
want I,q and I to be disjoint.

We define in terms of the coordinate cover the raéio geometry of w ta be
- the 3 ratios length In/length I, length I, /1ength [, length w-gap/iength I,,.

Definition We say the differential structure has bounded geometry if in
addition to the above disjointness property these ratios are bounded away from
zero (uniformly in w).

Lemma 1 If length [, tends exponentially fast to zero in length w, the

coordinate ratio function w — ratio geometry is determined exponentially fast
in length w by the differentiablie structure.

Proof:  Changes of coordinates being C(1,&) have exponentially small
nen—linearity on intervals of exponentially small size.

Now for some cover of C given by a finite system of charts deform the
embeddings into R. Namely, imagine changing the lengths of the [, and the

gaps without changing the local ordering of points of C.



Theorem 2  If C has bounded geometry and if the ratio functions of the
deformed charts are only changed by an exponentially small error in length w,
then the new charts belong to the ariginal differentiable structure.

Proof:  We fill in the diagram Tocally to construct

oid chart

Lnmnasenmny 10

new chart R

defined between the images of C. The difference quotient (x) — ¢{y)}/x—y for
X,y € Cy, has the form aj+az+./b+by+.. where aj and b; are respective gap

lengths in the two different charts and the sums are infinite. These are
determined exponentially fast by the respective tengths of Iy, and the ratio

functions.

One sees the diffehencequotéent for x,vy in Cy,, is Holder continuous with
approximate value {new chart length I, }/(old chart length [,,).

An elementary extension lemma shows ¢ has local C{1,a) extensions for
some <o ¢ ]. QED

We say two ratio functions are exponentially equivalent if they differ by
exponentially small quantities in tength w.

Theorem 3 There is a one to one correspondece between C{1,a)
differentiable structures on C of bounded geometry with given local order on
the one hand and exponential equivalence classes of bounded from zero ratio
functions, {w} - ratio geometry, on the other.

Proofi One way is Theorem 2. Conversely, if an abstract ratio function is
bounded away from zero one builds the Cantor set C inR directly satisfying i)
and ii). -

S3 Differentistle structures with smeolh magnification and scaling
functions.,

J

- Now we ask the question: when is the shift map (gge €p.. ) ¥ { €1€5.) of C
tocally a smooth diffeomorphism of class C_(?,-&)‘ for some given differentiable
structure on C,



There is a subtiety we will not deal with here. We will only characterize
the situation when one of the iwo equivalent properties holds:

i) J is smooth and for some smooth metric J2 % >1  or,

ii) Jdis smooth and the structure has bounded geometry.

The basic fact for everything is that the non-linearity of the composition
J J J
Iw, - Iwz — Iwa - . Iw“ where wy.y =¥w , will be controlled by
2(length 1, ) which is part of a geometric series. {(See Apendix 1.) This

implies the ratio geometry of w stops changing exponentially fast in iength w if
we add arbitrary symbols to w on the left,

Thus there is a limiting ratio geometry o{..£,¢£5) atiached to each

left infinite word, These limit ratios are called the scaling function of the
differentiable structure. This proves

Theorem 4 If the shift map on the Cantor sel of right infinite words is
smooth (C{1,a)) in a structure of bounded geometry, the coordinate dependent
ratio function w = ratio geometry defines a limiting scaling function which is
coordinate cover indepenident and attached intrinsically to the differentiable
structure. The scaling function assigns te each left infinite word a triple of
positive ratios adding up to cne.

Remark: The proof shows this scaling function is exp-continuous on
{...626180), namely there is exponentially fast determination of the value of o

by knowledge of initial n—segment of (.€,€1¢5). We call this property Hoider
continuity of the scaling function o.

Theorem J: Conversely, if there is a Holder continuous limiting scaling
function for the differentiable structure (as inthe remark) the shift is a
smooth C{1,«) expanding map {in some smooth metric).

Remark: All Holder continuous scaling functions on {...6287‘69} gccur in this
discussion.

The proof of theorem 3 involves exactly the same consideration as that of
theorem 2. One sees the relevant difference quotient is Holder using the
scaling function. A standard argument shows the shift is expanding in some
smooth metric because the bounded geometry implies all the derivatives at
period points are greater than unity.



Summary Differentiable structures on C where the shift is a C{1,a)
expanding map are precisely those structures which have bounded geometry
and whose asymptotic ratio geometry is described by a scaling function.
5 _
{.£58,€} = ratio geometry.

All Holder continuous G occur-in this discussion. Jhere /s g ane to one
correspondence between these £/, o) structures and exponentiallyv
conlfinyggus scaling functions Thearems 3, 4, 5.

Furthermore if the structure admits a C(k,a) refinement so that the shift is
Cl{k,«), this structure is also determined uniguely by the same scaling
function k=0,1,..; k=0, or Kk =w , In fact, a shift commuting
homeomorphism between structures which has a non zero derivative at ane
point, already is the restriction of a C{k,x) equivalence. (Appendix, part ii)
of corollary}

An unsolved problem here is to determine what further properties of the
scaling function o allows higher smoothness. From earlier work we also know
that if the structure is at least CZ and for any smooih meiric the second
derivative of the shift is non zero at some point of C, the scaling function itself
is determined by the thermodynamics of C which we know to be determined by
the underiying Lipschitz structure. By thermodynamics we mean a certain
mathematical discussion whose input is the sizes of the I the set of numbers

obtained by taking k—-fold products of @ over k-foid shifts of k-periodic
seguences.

84 The period doubling attracter {Informai discussion)

Let us consider the simplest class of maps which 3llows 3 transition from
very simple dynamics to complicated dynamics with exponential effects,
_ ; _
These are the folding maps of an interval I — I which have a turning point
¢ in1sothat f is increasing before ¢ and decreasing after c.

A
If there is a parameter t in the formuia for f which raises the graph enough
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and the family has appropriate smoothness there will be a parameter value a
where f, has an attractive Cantor set (all but a countable sequence of points

are asymptotic to C).
This Cantor set is the closure of the forward orbit of the turning point and is

created by an infinite sequence of period doublings bifurcations of known form:

Figure 2

_—d

The forward orbit of the critical point denoted {1,2,3,..} increases its
complexity as t increases to a. At a sequence of values a1, 87, @z, .. tending

to a, the critical point has 20 - periodicity (figure 3).

Figure 3

The numbers in L at stage n are just those at stage (n-1) doubled and
reversed in order. The numbers in R at stage n are obtained from those in L at
stage n by subtracting 1 and reversing the order.

In the Timiting map f, (at the "boundary of chaos™) there is g 2-adic

Cantor type structure on which f acts by “adding 1" . The more precise
statement is that the closure of the orbit of the critical point is a Cantor set on
which f is equivalent to (gg€4..) 72 g(€p€y..) where g(eqgey..) is, change the first

zero to a one and all previcus ones to zeroes (adding "1” in the 2-adic
 integers.)

The identification can be chosen so that the critical peint is 111--» and the
critical value ig 000 .



Feigenbaum made the remarkable discovery that for many examples deep
ratios in the Cantor set have asymptotic limits independent of the family fy. His

calculations involved smooth functions with quadratic turning points. The only
way to change the fine scaling in practice was to change the nature of the
critical point or to introduce other critical points.

S5 Jhe Feigenbaum Rigidity Coniecture

Let us formulate a precise rigidity statement corresponding to the
Feigenbaum discovery. We assume f is a folding map f:I - [ satisfying
i) fhas aLipschitz first derivative i.e. f€ C{1,1). '
ii} f has exactly one critical point ¢, namely f'¢ =0, and 'x=0 for x=c.
iii) finsome C(1,1) coordinate system near c is just (x-c)2 + f(¢).
iv}) fc, fzc, f3c, .. is deployed in the interval in terms of order as
described in §4., '

Rigidity Conjecture: The closure of the forward orbit of the critical point
{fc, fzc, ... ) is the 2-adic Cantor set C of one sided sequences of 0's and I's
with f acting on C by adding "1". The C(l,a) differentiable structure on
induced from its embedding in R is unigue and described by a universal scaling
function (83).

A corollary of the mere existence of the scaling function for C is that the
shift map J of the Cantor set is a C{l,&) expanding map {S3). Inthe 2-adic
notation x=gq+ ... +g2'+ ..., f{x} = x+1 on C, and the shift map J is

-x—? greatest integer in 1/2x = [1/2x]. The calculation 1/2[x+1+1] = ﬁ/gﬂ + |
shows [Jff = fJ| This is the topological form of celebrated Cvitanovié-
Feigenbaum functional equation[£]. :

"
This equation can be iterated to obtain JMZ = fJ7. Now JD provides 2" |
diffeomeorphisms between I, the interval subtending C, and the 20 I8, the

n
intervals subtending the Cw's, length w=n. The I, are each invariant by £2
. : n .
and the branches of JM=n provides smooth conjugacies between fzflw and /1.

For example, let Iy¢nys where win) has w.ith nl's, converge down to the
critical point 111111+ fixed by J. If &« = J‘g‘llm---), then by calculus a”J::(n)
has a limit. Thus if J',:= Jw(n) and f, = fz/iw(n), then Q”Jangio("” =alf
has a limit. {These equations only hold on the Cantor set, a detail we will
clarify in the next paper. The limit g satisfies the Cvitanovic- Feigenbaum
functional eqUation, where g = lim a"2a™M o = J(111=). This

Viede el

proves the first part of Theorem 6. The rest is explained by the argument of
the next section.



Theorem 6 If ihe period dozg‘bling Cantor set has a scaling function, than the
nth renormalization of f, oMo M converges to g, a solution of the

CF functional equation ag?a™! = g. The limit ¢ only depends on the scaling
function. :

- 86 The Rigidity Conjectire and Renormalization

The folding maps f we are considering satisfy {(by hypothesis) that
{1,2,3,...,2k) denoting the first 2k forward iterates of the critical point k=2"
are deploved

12 ) Izn Ij I}

f—t e ! § — e '
2 k+? 2n it ik k41

n
Consequently, i = ¢k preserves each of the indicated intervals and is a folding
map of the same form. Each of these is calied an nth renormalization of f.

- As we observed in 85 one of these renofmalizations after linear rescaling
by powers of J'(11ls} = g{+111) converge assuming the part of the conjecture
about the existence of the scaling functien g.

There i3 a converse.

Theorem 7 If the renormalization of f about the critical point converges
{in the 0 topology to a folding map with a quadratic critical peint), then the
Cantor set of { has a scaling function only dependent on this renormalization
limit.

Corollary: If two folding maps have the same renormalization limits there
is a C{1,a) diffeomorphism between their Cantor sets conjugating the dynamics

on the Cantor sets,

Proof of Corellary: Theorem 7 and Summary of §3.

We make the proof of Theorem 7 assuming the Cantor sets have bounded
geometry. We will expose our general result {(valid for all maps described at
the beginning of the section) on bounded geometry and general a priori
gstimates on the non-linearity of renormalization in the next paper.

Now consider the measure |dx/x| restricted to all the intervals at the ntP
tevel except I>n containing the criticat point. Here *=0 is the critical point.

8y induction on n we prove two properties:
i) the density of the measure is quasi-constant on each interval

i) the total mass is controlied independent of n,



Passing from level n to n+l we cut away a middle piece from each interval
which by i) and the bounded geometry reduces the total mass by a definite
factor (and keeps property i). We also add a new interval near the critical
point. This only adds a new term of beunded mass and quasi constant density
because the interval is nicely situated with respect to the critical point by the
bounded geometry assumption on C. This completes the induction.

New the non linearity of f (the measure {(f'/f )dx) is contrelled by a bounded
density measure away from the critical point and the measure |dx/x] near the
critical point. Thus |f*/f|dx] is controlled by a measure satisfying i) and ii)
above since [dx/x| and bounded measures satisfy i) and iil.

Now consider the ratio geometry associated a long word w (length r say).
Fixj. We can keep the j—segment on the right fixed and change the other digits
to U's by applying f no more than 27 J times. The ratio geometry of wis that of
something at level j inside some interval at depth r—j. We transform this over
ta the critical point interval by applving f no more than 2771 times.

These iterates all have bounded non linearity by ii) above (applied to level
r-j}. We care about the distortion of an object j levels deeper. This object is
exponentially smaller in j, relatively {by bounded geometry). The non
linearity measure (by i) at level (r~j)) we see is exponentially smailer inj.
Thus the distortion of the appropriate iterate of f restricted to the smaller
object is exponentially small inj. Thus the ratio geometry of w of length r is
the same as that of the word beginning with r—j ones and ending with the same
tast j segment as w with an exponentiaily small inj error. This much follows
from the just bounded geometry assumption on the Cantor set.

Now let r increase still keeping the final j segment of w fixed. The
structure of the ratio geometry of 1IN ... 111{final j segment of w) only
depends on the 2] forward orbit of the renormalized map which is converqging in
cOto a folding map fo. Thus we can define the scaling function at arguments

..M (word of length i) interms of the first 2] iterates of fog- Since j was

unrestricted in the arqument we have defined the scaling function at all left
infinite words which are all I's eventually. Maoreover, by the first pari of the
argument these values are determined exponentially fast by the initial
segments on the right. This proves theorem 7 assuming bounded gecmetry
of C.

Appendix {(Composition of Contractions in C{k,x)}).
Censider a composition g of diffemorphisms I} = Ip —...— 4 where

i

i

£ n <1,

If xy and vy are 2 points in Iy Tet (x4, v4¢) = (F;0¢), £(y;)).



Note [x; ~ yil < x i ¢y = yil. If @ is a function on I; satisfying
foi(x) = oyl « e = v3f®  O<axel, then g (x;) + @p(xp) +....is also Holder
continuous with constant C(1/1-x %) and same exponent «.

£ .
We apply this to ¢, = Dkleg fi k=0,1,Z,... to see that if the f;'s satisfy
Ipk1og %) - D¥log fi{y)| « Clx = ¥/ then so does D¥log g'{x) for the same «
1 i
and the new € as above. '

Corollary 1} A compositon of uniforms contractions which are
individually bounded in C{k,) (as diffeomorphisms) is also in C{k,x). {same
& and new constant).

2) If a sequence of such compositons is renormalized by post
composition with linear maps to obtain mappings between unit intervals the
sequence is precompact in C{k, ).
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